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Abstract

Self-triggered sampling is an attractive paradigm for closed-loop control over energy-constrained wireless sensor networks (WSNs) because
it may give substantial communication savings. The understanding of the performance of self-triggered control systems when the feedback
loops are closed over IEEE 802.15.4 WSNs is of major interest, since the communication standard IEEE 802.15.4 is the de-facto reference
protocol for energy-efficient WSNs. In this paper, a new approach to control several processes over a shared IEEE 802.15.4 network by
self-triggered sampling is proposed. It is shown that the sampling time of the processes, the protocol parameters, and the scheduling of
the transmissions must be jointly selected to achieve a good performance of the closed-loop system and an energy-efficient utilization
of the network. The challenging part of the proposed analysis is ensuring globally uniformly ultimately boundedness of the controlled
processes while providing efficient scheduling of the process state transmissions. Such a scheduling is difficult when asynchronous multiple
control loops share the network, because transmissions over IEEE 802.15.4 are allowed only at certain time slots. The proposed approach
establishes that the joint design of self-triggered samplers and the network protocol 1) ensures globally uniformly ultimately boundedness
of each control loop, 2) reduces the number of sensor transmissions, and 3) increases the sleep time of the transmitting nodes. A new
dynamic scheduling problem is proposed for the joint control of each process and network protocol adaptation. An algorithm is derived,
which adapts the network parameters according to the self-triggered sampler of every control loop. Numerical examples illustrate the
analysis and show the benefits of the approach. It is concluded that self-triggered control strategies over WSNs ensure desired control
performance, reduce the network utilization, and reduce energy consumption only if the protocol parameters are appropriately regulated.
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1 Introduction

Wireless Sensor Networks (WSNs) are composed by spa-
tially distributed autonomous nodes with sensing, com-
munication and computation functionalities. They provide
self-organizing and fault tolerant functionalities, require low
maintenance, and are supposed to be inexpensive and easy
to deploy (Willig, 2008). Because of the benefits offered
by such networks, Networked Control Systems (NCSs)
over WSNs are being widely researched in many industrial
and civilian applications including health care, smart grids,
process control, etc. (Ploplys, Kawka and Alleyne, 2004).

Email address: ubaldo.tiberi@volvo.com,
{carlofi,kallej}@kth.se,
mariadomenica.dibenedetto@univaq.it (U. Tiberi,
C. Fischione, K.H. Johansson, M.D. Di Benedetto).
1 A preliminary version of this work has appeared at IEEE CDC
2010 and IFAC World Congress 2011.

These benefits are achievable only if nodes of a WSN make
a parsimonious use of energy, because they are powered
by batteries or they harvest energy from the surrounding
environment. Hence, the utilization of traditional wireless
network protocols, such as for example the IEEE 802.11,
where energy efficiency is not a primary issue, is impos-
sible. To cope with the peculiarities of WSNs, the IEEE
802.15.4 networking protocol for Low Rate - Wireless Per-
sonal Area Networks (LR-WPANs) has been standardized
in the last decade (IEEE 802.15.4, 2006). It is currently
considered the reference networking standard for WSNs.
Other communication protocols for WSNs, such as for ex-
ample WirelessHART (WirelessHART data sheet, 2007)
and ISA100 (ISA100 Family of Standards, 2009) are based
on it. Nevertheless, there is not yet a systematic study of
NCSs over such a protocol.

The design of NCSs over WSNs is often performed by adopt-
ing one of three general approaches: top-down, bottom-up
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or system-level design (Sangiovanni-Vincentelli, 2007). By
following the first approach, the network is considered as a
black box that introduces non-idealities, and the controller
is designed by implicitly assuming that it does not have
any influence on the network, see for example (Hespanha,
Naghshtabrizi and Xu, 2007) and the references therein.
Such approach has the drawback of using simple models
of the network, whereby important constraints imposed by
the protocols are often neglected, (Tabbara, Nesic and Teel,
2005; Tabbara, Nešič and Martins, 2008). By the second ap-
proach, the desired NCS performance is encoded in fixed
specifications that must be fulfilled by the network. The de-
sign of the network is then performed according to the worst-
case reliability and time delays. In this case, the network
design is necessarily energy-inefficient because controllers
can tolerate some degree of delays and losses, whereas high
reliability and low time delays consume substantial energy.
While in the top-down and the bottom-up approach con-
trol, network issues are decoupled, in the system-level de-
sign they are jointly considered. By following such an ap-
proach, a tradeoff between latency, packet loss, energy ef-
ficiency, and control performance can be found. New pro-
tocol stacks for WSNs, such as Breath (Park, Fischione,
Bonivento, Johansson and Sangiovanni-Vincentelli, 2011) or
TREnD (Di Marco, Park, Fischione and Johansson, 2010),
have been recently developed to target such design objec-
tives. Despite that several research consider the problem of
designing IEEE 802.15.4 WSNs to ensure a certain level
of reliability or a maximum time delays guarantee, (Park,
Fischione and Johansson, 2010), (Di Francesco, Anastasi,
Conti, Das and Neri, 2011), (Misic, Shafi and Misic, 2006),
to the best of our knowledge (Tiberi, Fischione, Johansson
and Di Benedetto, 2010; Tiberi, Fischione, Johansson and
Di Benedetto, 2011) and the extension hereby presented, this
is the first approach to the problem of system-level design of
self-triggered control systems over IEEE 802.15.4 networks
by placing on the same domain of analysis the dynamics
of both the NCS and the protocol without any simplifying
protocol assumptions.

In addition to packets dropouts, time delays, and conges-
tions affecting NCS, in WSNs there is the problem of
the sensing and energy efficiency. The radio operations,
which include transmission, reception, and idle listening
for messages (Texas-Instruments, 2007), give the largest
contribution to the energy consumption of the wireless
sensor nodes. More specifically, idle listening is the time
duration in which a node keeps the radio active waiting for
messages. It is alone the main cause of energy consump-
tion (Shnayder, Hempstead, Chen, Allen and M., 2004).
It follows that the reduction of the number of transmis-
sions is not sufficient to achieve energy efficiency. To
cope with energy wasting in NCSs, the strategies of event-
triggered control (Tabuada, 2007; Heemels, Sandee and Van
Den Bosch, 2008; Dimarogonas and Johansson, 2009; Wang
and Lemmon, 2009b; Wang and Lemmon, 2008; Rabi, Jo-
hansson and Johansson, 2008; Henningsson, Johannensson
and Cervin, 2008; Henningsson and Cervin, 2010), and self-
triggered control (Velasco, Marti and Fuertes, 2003; Wang

and Lemmon, 2009a; Anta and Tabuada, 2010; Anta
and Tabuada, 2009; Araujo, Anta, Mazo, Faria, Her-
nandez, Tabuada and Johansson, 2011; Mazo, Anta and
Tabuada, 2010; Mazo, Anta and Tabuada, 2009; Millán Gata,
Orihuela, Muños de la Peña, Vivas and Rubio, 2011) have
been recently proposed. They are based on sampling the
state and actuating the control law only when it is needed.
In the event-triggered case, the state of the system is con-
stantly monitored, and a new sample is picked when a
function of the state crosses a certain threshold. In the
self-triggered case, the sampling occurs when a predicted
evolution of a function of the state crosses such a triggering
threshold. Thus the sampling is aperiodic and potentially
leads to fewer transmissions between the process and the
controller compared to conventional periodic sampling.

However, event-triggered control does not contribute to the
reduction of the idle listening because nodes are enforced to
keep the radio on for all the time to wait for the reception
of the event-generated data. Self-triggered sampling might
seem more appealing due to its predictive nature, compared
to reactive event-triggered sampling, because it allows us to
know in advance the next time by which the system must
be sampled again. Then, between consecutive sampling in-
stants, the network protocol can be adapted to save energy.
However, while self-triggered sampling appears more suit-
able in a network context, it lacks robustness to uncertainties
and disturbances. Since the determination of the next sam-
pling is strictly connected to the model of the system, when-
ever there is a model change, it will be detected only at the
next sampling instant. In this case, the controlled systems
may exhibit undesirable behavior or they may even become
unstable. To avoid this drawback, it is possible to design the
self-triggered sampler by considering a more conservative
model, but in this case the controlled system may result in
a unnecessary oversampling. Hence, a proper design should
provide an adaptation of the self-triggered sampler based on
the detected model changes and disturbances.

In this paper, we consider a NCS composed of several con-
trol loops that share the same IEEE 802.15.4 network. We
propose a distributed control strategy to reduce the energy
expenditure of the network in terms of number of trans-
missions and idle listening periods, while ensuring globally
uniformly ultimately boundedness (GUUB) of each control
loop. According to the system-level design paradigm, we
start our analysis from a higher level of abstraction and we
refine the design as we move down the layers. We start by
proposing a self-triggered sampler capable to ensure GUUB
of linear systems, where the guaranteed minimum sampling
interval depends on the controller and on the ultimate bound,
the initial conditions, the maximum time delay introduced
by the network, and the maximum amplitude of a possible
external disturbance. The main difference of the proposed
self-triggered sampler with respect to others proposed in
literature is on the closed-loop specifications and the pres-
ence of the dynamics of a networking protocol, which have
not been considered earlier. For example, the closed-loop
specifications in (Wang and Lemmon, 2009a) are encoded
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in terms of the L2 gain, whereas in (Mazo et al., 2010)
they are given in terms of a Lyapunov function decay rate.
By contrast, here the closed-loop specifications are encoded
through an ultimate bound. We show that the NCS perfor-
mance parameter can be easily tweaked thanks to a new sim-
ple scalar inequality which captures the closed-loop system
specifications and the guaranteed minimum inter-sampling
interval. Robustness under external perturbations are also
addressed. For instance, there are still few results which ad-
dress the problem of robustness in self-triggered control.
The work (Wang and Lemmon, 2009a) is limited to the case
of self-triggered control with state dependent disturbance.
Such work has been extended to the case of arbitrary distur-
bances in (Wang and Lemmon, 2010), but the result applies
only to H∞ controllers. The result in (Mazo et al., 2010)
applies to any external disturbance and to any stabilizing
controller, but it neglects the system behavior between the
inter-sampling times. Moreover, in all the cited papers, in-
formation about the disturbance in the self-triggered sam-
pler is never explicitly used. Here, an estimate of the dis-
turbance is explicitly considered when computing the next
sampling instant. This permits us to obtain less conserva-
tive inter-sampling times and to achieve a better system re-
sponse, thus providing a benefit for both the network and
the closed-loop response. Finally, we show that the design
of a self-triggered sampler alone is insufficient for energy-
efficient WSNs and that if the network dynamics are not
considered, self-triggered sampling may not introduce any
benefit. The IEEE 802.15.4 protocol does not allow to per-
form transmissions at any time, but poses several constraints
on how and when communication can take place. We ex-
plicitly include the IEEE 802.15.4 protocol requirements in
the design of the NCS, and we propose a dynamic network
protocol adaptation to achieve energy saving, while meeting
the control specifications. This approach enables us to es-
tablish a novel co-design of the IEEE 802.15.4 network and
self-triggered control system.

The remainder of the paper is organized as follows: we in-
troduce basic notation and preliminaries in Section 2, while
in Section 3 we describe the IEEE 802.15.4 NCS architec-
ture, and provide an overview of the IEEE 802.15.4 stan-
dard. We formally state the problem we aim to solve in Sec-
tion 4, and in Section 5 we propose a self-triggered sampler
to ensure GUUB of each control loop. This result is instru-
mental for the joint design of the controller and the network
considered in Section 6 where we propose the system-level
design of the IEEE 802.15.4 NCS. In Section 7 we validate
our methodology by simulations. A discussion in Section 8
concludes the paper.

2 Notation and Preliminaries

Given a square matrix M ∈ Rn×n we denote with λmin(M)
and λmax(M) its minimum and maximum eigenvalues, re-
spectively, and we say that M is positive definite (M ≻ 0), if
vTMv > 0 for any v ∈ Rn. Given a matrix A ∈ Rn×m, we
denote ∥A∥ :=

√
λmax(ATA). We indicate by ∥v∥ the eu-

clidean norm of a vector v ∈ Rn, and by Br := {v : ∥v∥ ≤
r} the ball of radius r centered at the origin. For a signal

v : R+ → Rn, we denote ∥v∥Lp :=
(∫ t

0
∥v(s)∥pds

) 1
p

, p ∈
[1,+∞), its Lp-norm, with ∥v∥L∞ := ess supt∈R+ ∥v(t)∥
its L∞-norm and with vk := v(tk) its realization at t = tk.
Given two consecutive times tj and tk, we denote with v̂k|j
an estimation of vk based on measurements up till time tj .

Given a system ẋ = f(t, x), x ∈ Rn, x(t0) = x0, f :
R+ ×D → Rn, where f is Lipschitz with respect to x and
piecewise continuous with respect to t, and where D ⊂ Rn

is a domain that contains the origin, we say that the solutions
are Ultimately Uniformly Bounded (UUB) if there exists
three constants a, b, T > 0 independent of t0 such that for
all ∥x0∥ ≤ a it holds that ∥x(t)∥ ≤ b for all t ≥ t0 + T ,
and Globally Ultimately Uniformly Bounded (GUUB) if the
solutions are UUB for arbitrarily large a.

3 IEEE 802.15.4 NCS Architecture

We consider N independent controlled processes that share
the same IEEE 802.15.4 network. We limit our attention
to star topology networks, where the sensor nodes directly
communicate with the central node and we consider one
way feedback channel NCSs, in which there is bidirectional
wireless communication only between the sensor nodes and
the central node, see Fig. 1. Such architectures are highly
relevant in many control applications, for instance in process
industry (Samad, McLaughling and Lu, 2007; Tiberi, Lind-
berg and Isaksson, 2012). We assume that each sensor node
is capable to measure the full state of the associated process,
and we assume that the measurements are sent to the central
node within a bounded time delay. The central node is wired
to the controller nodes, and the controllers are wired to the
actuators. We assume negligible time delay between a con-
troller update instant and the corresponding actuator instant
and we assume that the controller and the actuator of a given
control loop is updated every time the controller receives a
measurement from the associated sensor node. Finally we
assume that the network is designed and operated according
to the IEEE 802.15.4 standard (IEEE 802.15.4, 2006). The
PANC Node in Fig. 1 represents the Personal Area Network
Coordinator which is the central node that coordinates all
the network operations. More details on the PANC will be
given in Section 3. The PANC is directly connected to the
controllers, while the nodes denoted by Node 1, . . . , Node
N are the sensing nodes directly connected to the processes.
The dashed lines represent wireless connections, while the
continuous lines represent wired connections.

3.1 Processes and controllers

The dynamics of every process is linear and of the form

ẋi(t) = Aixi(t) +Biui(t) + di(t) , (1)
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Fig. 1. A networked control system where a number of independent
control loops transmit over a shared IEEE 802.15.4 network.

where xi ∈ Rni , ui ∈ Rmi , i = 1, . . . , N , are the states anc
control, respectively, and di ∈ Rni is an external bounded
non-measurable disturbance ∥di∥ ≤ d̄. We assume that for
each control loop a controller of the form

ui(t) = Kixi(t) (2)

is designed so that the matrices (Ai + BiKi) are Hurwitz
for all i.

When feedback channels of several processes share a com-
mon network, the transmissions of measurements of process
states cannot be continuous and istantaneous. We consider
zero-order hold between two consecutive controller updates,
such that the controller outputs can be written as

ui(t) = Kixi(ti,k) := Kixi,k , (3)

for t ∈ [ti,k + τi,k, ti,k+1+ τi,k+1), where ti,k is the time in
which the k-th measurement of the i-th process is picked,
and τi,k is the time elapsed between ti,k and the update
instant of the corresponding controller. By using (3), (1) can
be rewritten, for all t ∈ [ti,k + τi,k, ti,k+1 + τi,k+1), and for
all k = 1, 2, . . . , as

ẋi(t) = (Ai +BiKi)xi(t) +BiKiei,k(t) + di(t) , (4)

where ei,k(t) = xi,k−xi(t) is the error due to the sampling.
In the sequel, we assume initial delay τi,0 = 0 for all i and
that 0 ≤ τi,k ≤ τmax for all i, k, where τmax > 0 represent
the maximum time delay introduced by the WSN.

3.2 IEEE 802.15.4 protocol

The IEEE 802.15.4 standard specifies the physical (PHY)
and medium access control (MAC) layers of the protocol
stack (IEEE 802.15.4, 2006). In each network there is a
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Fig. 2. Slotted IEEE 802.15.4 superframe time organization. The
index k ≥ 0 denotes the superframe k. BDk denotes the super-
frame duration and BIk denotes the beacon interval. T0,k is the
time in which the superframe begins. During the inactive period,
nodes sleep to save energy. IEEE 802.15.4 allows us to adapt the
protocol parameters SD and BI to the needs of the NCS.

node, the PAN coordinator (PANC), that manages the oper-
ations of the entire network. We assume that the controllers
are wired to the PANC. The 802.15.4 has two operating
modes: the unslotted and the slotted communication mode.
In the unslotted mode the nodes attempt to transmit pack-
ets according to the Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) algorithm all the time, while in the
slotted mode, the nodes can transmit packets either accord-
ing to CSMA/CA or according to time division multiple ac-
cess (TDMA). In the slotted mode time is divided into super-
frames, which are time intervals bounded by special packets
called network beacons sent by the PANC to all nodes of
the network. The beacons contain information related to the
setting of the incoming superframe. The superframe length
is denoted Beacon Interval (BI) and satisfies

BI = aBaseSuperFrameDuration× 2BO , (5)

where 0 ≤ BO ≤ 14 is called Beacon Order and
aBaseSuperFrameDuration is a parameter of the proto-
col fixed to 15.36 ms. By denoting T0,k, the time in which
the k-th superframe begins, we have T0,k+1 − T0,k = BIk.

Fig. 2 illustrates the IEEE 802.15.4 superframe. The super-
frame is split into an active and an inactive period. The active
period is the time interval when there can be transmissions
of packets, while in the inactive period no communication is
allowed and the nodes turn off the radio to save energy. The
duration of the active period is called Superframe Duration
(SD) and it is divided into 16 equally sized time slots. The
SD is given by

SD = aBaseSuperFrameDuration× 2SO , (6)

with 0 ≤ SO ≤ 14, where SO is called Superframe Order,
and every time slot has duration aBaseSlotDuration =
SD/16. Notice that according to the IEEE standard SO ≤
BO. By denoting with Ti,k the time in which the node i per-
forms a transmission during the k-th superframe, we further
have the constraint T0,k < Ti,k < T0,k + SDk, where SDk

is the value of SD in the k-th supeframe. The values of SDk

and BIk are included in the beacon packet sent by the PANC
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to all nodes at time T0,k and it cannot be modified until time
T0,k+1, i.e., until a new beacon packet is broadcast.

The active portion of the superframe is further divided in
two parts: the Contention Access Period (CAP) and the
Contention Free Period (CFP). During the CAP nodes con-
tend to access the medium with the CSMA/CA algorithm,
whereas in the CFP the PANC reserves Guaranteed Time
Slots (GTSs) to nodes to transmit or receive data. Such GTSs
are allocated by the PANC upon request from the nodes. A
node can request the allocation of one or more GTSs, and
during these time slots the node is allowed to communicate
only with the PANC. The PANC can allocate maximum 7
GTSs in total in each superframe, and their scheduling is
decided before the starting of the superframe. The PANC
encapsulates the GTSs allocation, along with the setting of
SO and BO in the beacon message. Notice that the deci-
sion about the superframe duration, the superframe length
and the GTSs allocation are taken at the PANC during su-
perframe k. The decisions and they will take effect only at
the superframe k+1, when nodes receive the beacon. In the
sequel we denote with ωi,k ∈ {0, 1, . . . , 7} the time slot as-
signed to node i in superframe k and we assume that, every
time a node is allocated, it performs a transmissions, and the
associated controller is updated consequently. This means
that if node i is allocated to every superframe, then after k
superframes we have experienced k updates of controller i.
If ωi,k = 0 then the node i does not have any time slot as-
signed in superframe k. Hence, if for a certain superframe
k and a certain node i, ωi,k ̸= 0, the time in which the node
i performs a transmission in superframe k is given by

Ti,k = T0,k + hCAP,k + ωi,k × aBaseSlotDuration ,

where hCAP,k is the length of the CAP in superframe k.

A common measure of the energy efficiency of the network
is given by the duty cycle, which is defined as

DCk =
SDk

BIk
. (7)

For a fixed SDk, a reduction of the duty cycle is achieved
by enlarging BIk. A reduction of the duty cycle leads to
a reduction of the idle listening of the nodes, which is the
main cause of energy consumption in WSNs. The network
utilization, indicates how many nodes are allowed to transmit
on the network during a superframe. We define the network
utilization of the k-th superframe as the ratio of the available
time slots in the k-th superframe to the used time slots in
that superframe:

Uk =
#allocated GTS in superframe k

16
. (8)

During the CAP, there is no control on the delay encoun-
tered by the packets before being transmitted, and there is

no guarantee that the packets can be received successfully
due to possible collisions. Therefore, in this paper, we limit
our attention to the CFP. We assume that a node attached
to a process is scheduled for transmission to one GTS, and,
whenever a GTS is allocated, the associated node sends the
full measurement to the PANC within a time slot duration
aBaseSlotDuration. Since the PANC can allocate up to 7
GTSs per superframes, we assume that the maximum num-
ber of loops over the same network is N ≤ 7. Furthermore,
because of the simple network topology (star topology) and
the utilization of the GTSs, we assume full reliability and
bounded communication time delays with bound τmax. We
finally assume that a beacon is sent and received by all the
nodes within a time equal to aBaseT imeSlot.

In the sequel we will show how to adapt SOk,BOk, and
how to dynamically schedule the GTSs to reduce the average
duty cycle, the number of transmissions of the nodes and
to reduce the average network utilization while ensuring
GUUB of each loop. To start with, we assume that the sensor
nodes send their measurements to the PANC, which is in
charge of performing all the computations. It is possible to
distribute the computation as described in Section 6.

4 Problem Statement

The insertion of a WSN in the feedback channel of a con-
trol system introduces problems related to delayed informa-
tion exchange between the sensors and the controller, and
also the problem of the network energy consumption. Ad-
ditional problems are introduced if the network is designed
according to some specific protocol, which restricts how the
communication among the nodes should be performed. The
complexity in the design of the NCS further increases when
the network is shared among several control loops with dif-
ferent requirements that should be accommodated based on
the constraints imposed by the protocol.

In this paper we consider a NCS composed of several con-
trol loops that share a common IEEE 802.15.4 network. We
aim at designing a control strategy to achieve a desired be-
havior of each loop and with energy efficient utilization of
the network as stated in the following problem definition:

Problem 4.1 Given the IEEE 802.15.4 NCS described in
Section 3, we aim at

(1) Designing a robust self-triggered sampler with respect
to external disturbances to ensure GUUB of every
closed-loop system;

(2) Reducing as much as possible the average duty cycle;
(3) Reducing as much as possible the number of transmis-

sions of the nodes, i.e., reducing as much as possible
the network utilization.

◁
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To achieve these goals, we first propose a robust self-
triggered sampler that ensures GUUB of the systems (4),
where the minimum inter-sampling interval guarantee is a
function of the size of the ultimate bound region, the maxi-
mum time delay, the size of the initial condition region, the
maximum allowed inter-sampling time and the maximum
value of the possible external disturbance. The self-triggered
sampler employs a disturbance observer to achieve good
reaction to disturbances without adding too much conser-
vativeness to the inter-sampling times. Then, based on the
response of the self-triggered sampler of each loop, we
propose a decentralized control strategy to set SOk,BOk

and to dynamically schedule the GTSs allocation.

5 A Self-triggered Sampler

In this section we propose a self-triggered sampler that en-
sures GUUB of (4), where the next sampling time is de-
termined by a static function of both the current and the
previous measurement, the current measurement time de-
lay and a disturbance estimate. Then, we derive a condition
that ensures a certain minimum inter-sampling time guar-
antee based on the ultimate bound and the initial condition
regions, the dynamics of the open loop and the closed loop
system, the maximum time delay, the maximum disturbance
and the maximum inter-sampling time. The idea we use to
determine the next sampling instant is to predict when the
next measurement of the state is at a distance δ from the
current measurement. The difference of this sampling strat-
egy and the Lebesgue sampling introduced in (Åström and
Bernhardsson, 2002) is that Lebesgue sampling is performed
in a reactive fashion, whereas the sampling rule here is per-
formed in a predictive fashion. For the sake of notational
simplicity, in the rest of this section we drop the index i
of (4).

The next sampling instant given by the self-triggered control
is obtained by exploiting a model of the system. We assume
perfect knowledge of the pair (A,B) of every process, and
we further assume that the external disturbance d(t) is not
measurable but we know an upper-bound. The model we use
to design the self-triggered sampler, for t ∈ [tk+ τk, tk+1+
τk+1), has the following dynamics

˙̃x(t) = (A+BK)x̃(t) +BKẽk(t) + d̂k , (9)

Where d̂k is an estimate of the external disturbance d(t)
acting on the process.

To design our self-triggered sampler we need an upper bound
of the measurement error ∥ẽk∥, where ẽk := xk−x̃(t). Such
an upper-bound is given by the following result.

Lemma 5.1 Consider system (4). Then, for t ∈ [tk +
τk, tk+1 + τk+1), the error ẽk is upper bounded as

∥ẽk∥ ≤ g(xk−1, xk, d̂k−1, d̂k, τk) , (10)

where

g(xk−1, xk, d̂k−1, d̂k, τk) := exp(∥A∥(t− tk − τk))

× ∥Axk −BKxk−1∥+ ∥d̂k−1∥
∥A∥

(exp(∥A∥τk)− 1)

+
∥(A+BK)xk∥+ ∥d̂k∥

∥A∥
(exp(∥A∥(t− tk − τk))− 1)

(11)

◁

Proof: Since ˙̃ek = −ẋ, we have that, for t ∈ (tk+τk, tk+1+
τk+1)

d

dt
∥ẽk∥ = (ẽTk ẽk)

− 1
2 ẽTk ˙̃ek ≤

ẽTk
˙̃ek

∥ẽk∥
≤ ∥ ˙̃ek∥ .

It follows that

∥ ˙̃ek∥ = ∥ − ẋ∥ = ∥ −Ax−BKxk − d̂k∥
= ∥A(ẽk − xk)−BKxk − d̂k∥
≤ ∥A∥∥ẽk∥+ ∥(A+BK)xk∥+ ∥d̂k∥ .

By using the Comparison Lemma (Khalil, 2002) we get the
bound

∥ẽk∥ ≤ exp(∥A∥(t− tk − τk))∥ẽk(tk + τk)∥

+
∥(A+BK)xk∥+ ∥d̂k∥

∥A∥
× (exp(∥A∥(t− tk − τk))− 1) . (12)

Next, we have to compute the value of ∥ẽk(tk + τk)∥. For
t ∈ (tk, tk + τk) we have

∥ ˙̃ek∥ = ∥ − ẋ∥ = ∥ −Ax−BKxk−1 − d̂k−1∥
= ∥A(ẽk − xk)−BKek − d̂k−1∥
≤ ∥A∥∥ek∥+ ∥Axk −BKxk−1∥+ ∥d̂k−1∥ .

(13)

By taking into account that at the sampling instants t = tk
it holds ẽk(tk) = 0, we have

∥ẽk∥ ≤
∥Axk −BKxk−1∥+ ∥dk−1∥

∥A∥
× (exp(∥A∥(t− tk))− 1) , (14)

for t ∈ [tk, tk + τk). Finally, because of the continuity of
the error ẽk in t = tk + τk, by combining inequalities (12)
and (14), inequality (10) follows. □

The idea behind the self-triggered sampler we propose, con-
sists in predicting the time it takes for ∥ẽk∥ to go from
∥ẽk(tk + τk)∥ to δ. In this way, we can bound the error
due to sampling ẽk through δ. However, it can happen that
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d̂k−1 = d̂k = 0 and xk = (0, . . . , 0)T . Then the right-hand
side of (10) is equal to zero. The consequence is that the next
sampling instant goes to infinity (i.e., no more controller up-
dates are performed). In this case, a disturbance d(t) may
drive the trajectories to infinity since no more controller up-
dates are performed. Hence, an additional degree of free-
dom can be provided by upper-bounding the inter-sampling
times with a certain hmax > 0. By using such hmax we are
able to prove the next result.

Theorem 5.1 Consider the system (4), let hmax, δ > 0, and
consider the self-triggered sampler

tk+1 = tk +min{γ(xk−1, xk, d̂k−1, d̂k, τk), hmax} , (15)

where

γ(xk−1, xk, , d̂k−1, d̂k, τk) :=

1

∥A∥
ln

(
Ψ(xk, d̂k)

Ξ(xk−1, xk, , d̂k−1, d̂k, τk)

)
+ τk − τmax ,

and where

Ψ(xk, d̂k) := ∥A∥δ + ∥(A+BK)xk∥+ ∥d̂k∥
(16)

Ξ(xk−1, xk, d̂k−1, d̂k, τk) :=(
∥Axk −BKxk−1∥+ ∥d̂k−1∥

)
× (exp(∥A∥τk)− 1)

+ ∥(A+BK)xk∥+ ∥d̂k∥
(17)

and for some fixed d̄ > 0 such that d̂k is such that ∥d̂k∥ ≤ d̄
for all k. Then, the closed-loop system is GUUB. ◁

Proof: Consider the Lyapunov candidate V (x) =
xTPx, P = PT ≻ 0 such that P (A + BK)T + (A +
BK)P = −Q,Q = QT ≻ 0. For t ∈ [tk+τk, tk+1+τk+1)
the derivative of the Lyapunov candidate function along the
trajectories of (4) satisfies

V̇ ≤ −xTQx+ 2xTP (BKek + d)

= −xTQx+ 2xTP
(
BK(ẽk + x̃− x) + d

)
≤ −λmin(Q)∥x∥2 + 2∥P∥∥x∥

(
∥BK∥(∥ẽk∥

+ ∥x̃− x∥) + ∥d∥
)

≤ −λmin(Q)∥x∥2 + 2∥P∥∥x∥(
∥BK∥(g(xk−1, xk, d̂k−1, d̂k, τk)

+ 2d̄(t− tk − τk)) + d̄
)
. (18)

By exploiting the continuity of V , under sampling rule (15)

we can further upper bound V̇ as

V̇ ≤ −λmin(Q)∥x∥2+2∥P∥∥x∥(∥BK∥(δ+2d̄ hmax)+d̄) ,
(19)

for all t ≥ t0 + τ0 = t0. Now, pick any ϑ ∈ (0, 1). We can
rewrite (19) as

V̇ ≤− (1− ϑ)λmin(Q)∥x∥2 − ϑλmin(Q)∥x∥2

+ 2∥P∥∥x∥(∥BK∥(δ + 2d̄ hmax) + d̄) . (20)

We have V̇ < −(1− ϑ)∥x∥2 if

∥x∥ > 2∥P∥(∥BK∥(δ + 2d̄ hmax) + d̄)

ϑλmin(Q)
:= µ . (21)

For the chosen Lyapunov candidate function it holds that
λmin(P )∥x∥2 ≤ V (x) ≤ λmax(P )∥x∥2, so the system is
GUUB with ultimate bound (Khalil, 2002)

b =

√
λmax(P )

λmin(P )
µ . (22)

□

The ultimate bound (22) can be conservative. A tighter ul-
timate bound can be achieved by exploiting the BIBO sta-
bility property of the sampled-data system. Under the sam-
pling rule (15), the system (4) can be rewritten as ẋ =
(A+BK)x+BK(ẽk+(x−x̃)(t−tk−τk))+d, for t ∈ [tk+
τk, tk+1+τk+1). Since the sampling rule enforces all the per-
turbations acting on the process to be bounded, i.e., ∥ek∥ ≤
δ, ∥d(t)∥ ≤ d̄ and ∥x−x̃∥ ≤ 2d̄hmax for all t ≥ t0, and since
(A+BK) is Hurwitz and x(t) is continuous, it follows that
the closed-loop system is BIBO. Hence, we have ∥x∥L∞ ≤
∥Φclx0∥L∞ + ∥H∥L1(δ + 2d̄hmax + ∥BK∥−1d̄), where
Φcl := exp((A+BK)(t−t0)) andH := exp((A+BK)(t−
t0))BK are the state transition and the impulse responses
matrices of (4), respectively (Boyd and Barrat, 1991). Hence,
a less conservative ultimate bound of (4) under the sampling
rule (15) is given by b = ∥H∥L1(δ + 2d̄hmax + d̄). Notice
how by enlarging δ we also enlarge the ultimate bound b,
but we also enlarge the inter-sampling times through (15).
Hence, δ can be interpreted as a design parameter that en-
codes a tradeoff between the inter-sampling times and the
deviation of the trajectories from the origin. Note that the
sampling rule obviously does not change the Hurwitz prop-
erty of the matrix (A+BK).

Remark 5.1 The stability property of the closed loop sys-
tem under the sampling rule (15) is independent of the par-
ticular choice of the disturbance observer, but it depends
on the maximum difference ∥x̂ − x∥, which is bounded as
∥x̂ − x∥ ≤ d̄(t − tk − τk) for t ∈ [tk + τk, tk+1 + τk+1),
see Figure 3. This means that we can even set d̂k = 0 for
all k, thus obtaining fairly large inter-sampling times, and
still achieving GUUB. However, in doing that, we may ex-
perience big peaks of the state trajectories if a disturbance
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δ

tk tk+1 tk+2 tk+3 tk+4

‖e
k
‖

g(
·)

g(·), ‖ek(t)‖

Fig. 3. The continuous line represents g(xk−1, xk, d̂k−1, d̂k, τk, t),
while the dashed line represents the norm of the error ∥ek∥. The
error estimate norm is always bounded by δ, while the error
norm ∥ek(t)∥ can assume different values at the sampling instants
t = tk, depending on the disturbance d(t). However, since the
external disturbance d(t) is bounded, then ∥ek∥ is also bounded.

actually enters the process, since the next time in which the
system will be sampled again can be very far, and in the
meanwhile the disturbance may steer the trajectories far
from the origin. Alternatively, we can use a model by con-
sidering a worst-case disturbance acting over all the time,
as done in (Tiberi et al., 2010). Nevertheless, the resulting
self-triggered sampler would be too conservative if there are
no disturbances acting on the process. Hence, the utiliza-
tion of a disturbance observer permits to get tradeoff be-
tween the conservativeness of the inter-sampling times and
the reactiveness to external disturbances of the controlled
system. This aspect will be illustrated in the simulations in
Section 7. ◁

Remark 5.2 It is well known that a stable system can be
destabilized if the sampling period of the controller is too
large. This can be easily seen using our framework. If we
fix a constant sampling period h, we would have that the
realization of ∥ek∥ that corresponds to the sampling instants
t = tk+jh, j = 1, 2, . . . , is not constant and equal to δ, but
it will generate a sequence δk that represents a perturbation
to the system. For sufficiently large values of h, it is easy to
prove that the sequence δk diverges, leading to instability,
while for small values of h the sequence δk converges to zero.
In our scheme, we are instead fixing δ, which ensures BIBO
stability, but it necessarily gives varying inter-sampling as
per rule (15). ◁

Theorem 5.1 does not give any information about the min-
imum inter-sampling time guaranteed by the self-triggered
sampler (15). In addition, if ∥ek(tk + τk)∥ ≥ δ for some
k, we would have tk+1 ≤ 0. Nevertheless, since communi-
cation protocols impose a constraint on the minimum inter
transmission time hmin > 0, it is worth to find out under
which condition the proposed self-triggered sampler gives
tk+1 − tk > hmin > 0, ∀k. Such condition is given by the
next result.

Proposition 5.1 Consider the system (4) under the sampling
rule (15). Let 0 ≤ τk ≤ τmax, 0 < hmin and M(δ, x0) =
∥Φx0∥L∞ + ∥H∥L1(δ + 2d̄hmax + d̄). If

δ > ∥A∥−1
((

(∥A∥+ ∥BK∥)M(δ, x0) + d̄
)

× (exp(∥A∥τmax)− 1) exp(∥A∥hmin)

+ (∥A+BK∥M(δ, x0) + d̄)

× (exp(∥A∥hmin)− 1)
)
, (23)

then system (4) is GUUB and it holds that tk+1 − tk >
hmin > 0 for all k. ◁

Proof: A necessary and sufficient condition to have
γ(xk−1, xk, d̂k−1, d̂k, τk) > 0 for all k is

∥A∥δ > (∥Axk−BKxk−1∥+∥d̂k−1∥)(exp(∥A∥τk)−1) > 0 ,
(24)

whereby, maximizing τk and ∥dk−1∥, we derive the suffi-
cient condition

∥A∥δ > (∥A∥+∥BK∥+ d̄)M(δ, x0)(exp(∥A∥τmax)−1) .
(25)

Now, let us define

γ̃(xk−1, xk) :=
1

∥A∥
ln

(
Ψ̃(xk)

Ξ̃(xk−1, xk)

)
. (26)

where

Ψ̃(xk) :=∥A∥δ + ∥(A+BK)∥∥xk∥+ d̄ , (27)

Ξ̃(xk−1, xk) :=
(
∥A∥∥xk∥+ ∥BK∥∥xk−1∥+ d̄

)
×
(
e∥A∥τmax − 1

)
+ ∥(A+BK)∥∥xk∥+ d̄ .

(28)

If condition (25) holds, then 0 < γ̃(xk−1, xk) ≤
γ(xk−1, xk, d̂k−1, d̂k, τk) for all k. Hence, to find the guar-
anteed minimum inter-sampling interval given by (15), it is
enough to solve the following optimization problem

min
xk,xk−1

γ̃(xk−1, xk) (29)

s.t. ∥xk∥ ≤M(δ, x0)

∥xk−1∥ ≤M(δ, x0) . (30)

The objective function is monotonically decreasing on the
decision variables over the domain specified by the con-
straints. It follows that this is a so called Fast-Lipschitz
optimization problem (Fischione, 2011). The minimum is
achieved for ∥xk−1∥ = ∥xk∥ = M(δ, x0). By imposing
that the objective function at optimum greater than hmin,
inequality (23) follows. □

The self-triggered sampler (15) encodes a tradeoff between
inter-sampling times, maximum time delay, ultimate bound
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region, the maximum inter-sampling time, the maximum
disturbance and the set of initial conditions. Given a sys-
tem with a maximum time delay and a maximum external
disturbance, we can tune the parameters δ and hmax to ful-
fill condition (23). However, while an increase of δ or hmax

increases the inter-sampling times, it also increases the ulti-
mate bound region.

Remark 5.3 For given A,B,K, d̄, δ and a desired hmin, it
is possible to compute the maximum allowable time delay to
ensure tk+1− tk > hmin for all k by computing the inverse
of (23). We have

τmax <
1

∥A∥
ln

(
1 +

G1

G2

)
, (31)

where

G1 := ∥A∥δ
− (∥(A+BK)∥M(δ, x0) + d̄)(exp(∥A∥hmin)− 1))

(32)
G2 :=

(
(∥A∥+ ∥BK∥)M(δ, x0) + d̄

)
exp(∥A∥hmin)

(33)

The right hand side of the previous inequality is a positive
real number if, and only if, G1 > G2, and then, if, and only if
∥A∥δ > (∥(A+BK)∥M(δ, x0)+ d̄)(exp(∥A∥hmin)−1)).
If such a condition is not verified, then condition (23) is
not verified even for τmax = 0. This means that the current
choice of hmin may be too large or δ may be to small. It is
however possible to tweak the parameters δ and hmin, or to
choose a different controller K so that (23) is verified and
tk+1 − tk > hmin for all k. ◁

Remark 5.4 Since the condition (23) requires a bound
on the initial conditions set, it seems that it is possible to
achieve UUB but not GUUB. However, the bound on the
initial condition required by (23) affects only the minimum
inter-sampling time guarantee, but not the stability property
of the closed-loop system as in Theorem 5.1. ◁

Remark 5.5 If hmax is chosen so that it is possible to stabi-
lize the system with a periodic implementation with period
hmax, then it would be possible to experience less transmis-
sions with respect to the proposed self-triggered sampler.
However, it is well known that the utilization of a large sam-
pling period would lead to a questionable system response
(oscillating behavior, long transients, bad disturbance rejec-
tion, etc). On the other hand, self-triggered control is able
to enlarge the sampling intervals when nothing relevant is
happening, and it is also able to shrink them when it is
needed, ensuring both a good system response and a good
network utilization. ◁

Finally, we design a disturbance observer. A simple dis-
turbance observer can be designed by considering the

model (9) and three consecutive measurements. For in-
stance, given three measurements xk−2, xk−1 and xk at
times t = tk−2, t = tk−1 and t = tk respectively, we
consider a deadbeat observer given by

d̂k =

(
Φ(tk − tk−1 − τk−1)Γ(τk−1)

)−1

×
(
xk − (Φ(tk − tk−1)

−BKΓ(tk − tk−1 − τk−1))xk−1

− Φ(tk − tk−1 − τk−1)BKΓ(τk−1)xk−2

)
,

(34)

where

Φ(s) := exp(As) , (35)

Γ(s) :=

∫ s

0

exp(A(s− σ))dσ . (36)

The disturbance observer (34) gives a first-order estimate
of a constant disturbance acting for t ∈ [tk−1, tk). The uti-
lization of a disturbance observer does not affect the sta-
bility property of the closed-loop system, as we shown in
Theorem 5.1. However, we use such observer with the only
purpose of achieving a trade-off between the conservative-
ness of the inter-sampling times and the reactiveness of the
closed-loop system with respect to external disturbances.

Remark 5.6 The computation of d̂k requires the invertibil-
ity of the matrix Φ(tk − tk−1 − τk − 1)Γ(τk−1). If such a
matrix is not invertible in the current coordinates, we can
always find a coordinate transform T so that TΦ(·)Γ(·)T−1

is invertible, and estimate the disturbance d̂k in the new co-
ordinates. ◁

Based on the self-triggered sampler (15), in the next section
we show how to solve Problem 4.1. We assume that for every
controlled process of the NCS a self-triggered sampler of the
form (15) is available, and that there exists a proper value
of δ and hmax to ensure tk+1 − tk > BImin for every loop.

6 Energy-Efficient IEEE 802.15.4 NCS

In this section we investigate how the protocol parameters
are selected and adapted to solve Problem 4.1. The protocol
adaptation policy will be presented in two steps: first we
show how to choose SOk and BOk assuming that all the
nodes perform a transmission in each superframe. Then,
we remove this assumption by proposing a dynamic GTS
scheduling policy based on adaptive superframes.

Since the nodes are constrained to perform transmissions
only at time Ti,k, the self-triggered samplers (15) can be
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rewritten as

ti,k+1 =Ti,k

+min{γi(xi,k−1, xi,k, d̂i,k−1, d̂i,k, τi,k), hi,max} ,
(37)

and the disturbance observer (34) becomes

d̂i,k =

(
Φi(Ti,k − Ti,k−1 − τi,k−1)Γi(τi,k−1)

)−1

×
(
xk − (Φi(Ti,k − Ti,k−1)

−BiKiΓi(Ti,k − Ti,k−1 − τi,k−1))xi,k−1

− Φi(Ti,k − Ti,k−1 − τi,k−1)

×BiKiΓi(τi,k−1)xi,k−2

)
. (38)

In the sequel we use the notation xi,k to indicate xi,k =
xi(Ti,k).

6.1 Superframe duration and superframe length adapta-
tion

In this subsection we show how to set SOk and BOk at
each superframe to achieve duty cycle reduction, under the
assumption that in every superframe all the nodes are allo-
cated to a certain time slots, i.e. ωi,k ̸= 0 for all i, k. Pro-
vided that at a certain time t ∈ [T0,k, T0,k+1), all the self-
triggered sampler responses are large enough, a variation of
the duty cycle can be obtained by setting the (k + 1)-th su-
perframe BOk+1 such that ti,k+1 ≤ Ti,k+1 for all i, which
means that all the nodes will perform a transmission before
the deadlines ti,k+1, thus ensuring GUUB.

Unfortunately, the IEEE 802.15.4 standard does not al-
low us changing the k-th superframe setting at time
t ∈ [T0,k, T0,k+1). Nevertheless, at time t ∈ [T0,k, T0,k+1)
it is possible to decide the structure of the (k+1)-th super-
frame and to encapsulate this information in the next beacon
packet. Therefore, we use the last measurement of process
i xi,k to obtain an estimate x̂i,k+1 of the next measurement
picked in a certain time slot ωi,k+1 in superframe k + 1:

x̂i,k+1 :=
(
Φi(Ti,k+1 − Ti,k)

+BiKiΓi(Ti,k+1 − Ti,k − τi,k)
)
xi,k

+ Γi(Ti,k+1 − Ti,k − τi,k)d̃i,k
+Φi(Ti,k+1 − Ti,k − τi,k)

×
(
BiKiΓi(τi,k)xi,k−1 + Γi(τk)d̃i,k

)
, (39)

where d̃i,k = 0 if we do not use any disturbance observer,
d̃i,k = d̂i,k if we are using the disturbance observer, or
d̃i,k = d̄ the worst-case disturbance. Note that x̂i,k+1 is a
function of the next time slot ωi,k+1 because during super-
frame k is not known yet in which time slot node i will

be allocated in the superframe k + 1. We consider then the
self-triggered sampler (37) in a predictor form as

t̂i,k+2 = min
ωi,k+1

{Ti,k+1

+min{γi(xi,k, x̂i,k+1, d̃i,k−1, d̃i,k, τmax), hi,max}} .
(40)

We wish to remark, that in case we want to consider the
worst-case disturbance for the next measurement estimate
x̂i,k+1, we have to solve the following optimization problem

min
ωi,k+1,d̃i,k

{Ti,k+1

+min{γi(xi,k, x̂i,k+1, d̃i,k−1, d̃i,k, τmax), hi,max}} .
(41)

It is possible first to minimize with respect to d̃i,k, and then
with respect to ωi,k+1. For a given a ωi,k+1, and according
to (15), it follows that solving the minimization problem

min
d̃i,k

γi(xi,k, x̂i,k+1, d̃i,k−1, d̃i,k, τmax)

is equivalent to solve the maximization problem

max
d̃i,k

∥(Ai +BiKi)x̂i,k+1 + d̃i,k∥ . (42)

By inserting (39) into (42), it is easy to see that the maximum
is achieved at some point d∗i on the boundary of Bd̄i

. Then,
when assuming the worst-case disturbance, (41) reduces to

t̂i,k+2 = min
ωi,k+1

{Ti,k+1

+min{γi(xi,k, x̂i,k+1, d
∗
i , d

∗
i , τmax), hmax}} .

(43)

We are now in position to determine an energy-efficient set-
ting of the protocol parameters SOk and BOk as summa-
rized in the following result.

Theorem 6.1 Consider the NCS over IEEE 802.15.4 as de-
scribed in Section 3. Suppose that a state estimator of the
form (39) and a self-triggered sampler of the form (41) for
each control loop has been designed. Assume that ωi,k ̸= 0
for all i, k and that condition (23) is satisfied with hi,min >
BImin > 0 for all i. Finally, let hmin = mini hi,min, hmax =
maxi hi,max and BImax ≤ hmax. Then, by setting

SOk =

⌊
log2

hmin

aBaseSuperFrameDuration

⌋
∀k , (44)

and by adapting the BOk+1 with

BOk+1 = min
{
B̂Ok+1,BOmax

}
, (45)
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where

B̂Ok+1 :=⌊
log2

t̂k+2 − (T0,k+1 + aBaseSlotDuration+ SD)

aBaseSuperFrameDuration

⌋
(46)

where t̂k+2 = mini t̂i,k+2 all the control loops are GUUB. ◁
Proof: Since the standard imposes SDk ≤ BIk for all k, the
minimum inter-transmission interval allowed by the stan-
dard is obtained for BIk = SDk, that in (44) is imposed to
be smaller than the minimum inter sampling time required
by each self-triggered samplers. Hence, the minimum inter
sampling time requirement of all the self-triggered samplers
meets the standard specifications.

GUUB of each loop is ensured if we adapt BIk+1, so that
t̂i,k+2 ≥ Ti,k+1+BIk+1 for all i. Since t̂k+2 = mini t̂i,k+2,
Ti,k+1 ≤ T0,k+1 + SDk for all i, and since we assumed
that the beacon packet takes one time slot, all the deadlines
imposed by the self-triggered samplers are met if BIk+1

is adapted so that t̂k+2 ≥ (T0,k + aBaseSlotDuration +
SDk+1) +BIk+1. By using the previous inequality in com-
bination with (5), then (45) follows. □

When the state of all the control loops are close to the ori-
gin, we have an enlargement of the intersampling times, and
then an enlargement of the beacon interval that ends up in
a reduction of the duty cycle and then a reduction of the
idle listening. Theorem 6.1 describes how to set SOk, and
how to dynamically adapt BOk to achieve a reduction of the
duty cycle. If the self-triggered response of the control loop
i becomes too large compared to the other self-triggered re-
sponses, then the i-th control loop is oversampled since we
assumed ωi,k ̸= 0, for all i, k. In the next section we show
how to dynamically schedule the GTSs to achieve further
communication savings by avoiding such unnecessary over-
samplings. This means that the released time slots can be
used by other nodes that implement non-time critical appli-
cations, such as monitoring applications. Hence, for a given
network utilization, a proper GTSs scheduling increases the
amount of information flowing through the network.

6.2 GTS scheduling

In the previous subsection we have established how to set
the superframe duration and how to adapt the superframe
length to reduce the idle listening of the nodes, but we also
pointed out how some control loop could be oversampled
due to a fixed time slot allocation. Now, the next step is to
determine how time slots in the CFP are scheduled to reduce
the number of transmissions from the nodes to the PANC
and to reduce the network utilization.

The GTS scheduling we propose is based on the following
idea. If there is a slow control loop that rises large inter
sampling times, there is no need to reserve it a time slot in

every superframe, but its time slot can be deallocated and
reallocated later on. Since now time slots can be deallocated,
it is useful to track when the last transmission has been
performed. Hence, we denote the last superframe in which
node i performed its last transmission

ℓi(k) = max
0≤j≤k

{j : ωi,j ̸= 0} .

According to the above definition, ℓi(k) gives the last su-
perframe in which node i has been allocated, ℓi(ℓi(k)− 1)
gives the second last superframe in which node i has been
allocated, ℓi((ℓi(ℓi(k)− 1))− 1) gives the third last super-
frame and so on.

Clearly, in the case in which all the nodes perform a trans-
mission in every superframe, then all the controller would
have experienced k updates after k superframes, and it would
hold ℓi(k) = k and ℓi(ℓi(k)− 1) = k − 1 for all i, k. Nev-
ertheless, the protocol parameter settings (37) and (44) are
still valid, provided that the disturbance observer, the state
estimator and the next time estimator take into account of
when the nodes perfomed their last transmissions, and are
thus modified as

d̂i,ℓi(k) =(
Φi(Ti,ℓi(k) − Ti,ℓi(ℓi(k)−1) − τi,ℓi(ℓi(k)−1))

× Γi(τi,ℓi(ℓi(k)−1))
)−1

×
(
xi,ℓi(k) − (Φi(Ti,ℓi(k) − Ti,ℓi(ℓi(k)−1))

−BiKiΓi(Ti,ℓi(k) − Ti,ℓi(ℓi(k)−1) − τi,ℓi(ℓi(k)−1)))

× xi,ℓi(ℓi(k)−1)

− Φi(Ti,ℓi(k) − Ti,ℓi(ℓi(k)−1) − τi,ℓi(ℓi(k)−1))

×BiKiΓi(τi,ℓi(ℓi(k)−1))xi,ℓi((ℓi(ℓi(k)−1))−1)

)
,

(47)

x̂i,k+1|ℓi(k) :=
(
Φi(Ti,k+1 − Ti,ℓi(k))

+ Γi(Ti,k+1 − Ti,ℓi(k) − τi,ℓi(k))
)
xi,ℓi(k)

+ Γi(Ti,k+1 − Ti,ℓi(k) − τi,ℓi(k))d̃i,ℓi(k)
+Φi(Ti,k+1 − Ti,ℓi(k) − τi,ℓi(k))

×
(
BiKiΓi(τi,ℓi(k))xi,ℓi(ℓi(k)−1)

+ Γi(τℓi(k))d̃i,ℓi(ℓi(k)−1)

)
, (48)

and

t̂i,k+2|ℓi(k) = min
ωi,k+1

{Ti,k+1

+min{γi(xi,ℓi(k), x̂i,k+1|ℓi(k), d̃i,k−1, d̃i,k, τmax), hi,max}} .
(49)

By considering the last measurement picked in the super-
frame ℓi(k) by the node i, the next time by which a new
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measurement must be picked again is given by

ti,ℓi(k)+1 = Ti,ℓi(k) +min{
γi(xi,ℓi(ℓi(k)−1), xi,ℓi(k), d̃i,ℓi(ℓi(k)−1), d̃i,ℓi(k), τi,ℓi(k)),

hi,max} . (50)

Thus, after a superframe is adapted, we should allocate the
GTSs according to the deadlines given by the previous self-
triggered sampler. Nevertheless, if ti,ℓi(k)+1 is larger than
the adapted supeframeBIk+1, it appears natural to deallocate
such node in the (k + 1)-th superframe, and to reallocate
it when its deadline fall into a certain beacon interval in
the future. These consideration are summarized in the next
result.

Proposition 6.1 Consider the NCS over IEEE 802.15.4 as
described in Section 3. Let the protocol beacon order and
superframe order be as in (44) and in (45), respectively,
with t̂k+2 = mini,ωi,k+1

{t̂i,k+2|ℓi(k)}. Let Ik+1 := {i :
T0,k+1 ≤ ti,ℓi(k)+1 ≤ T0,k+2}. Then, by scheduling the
GTSs with

ωj,k+1 ̸= 0 for node j : t̂j,k+2|ℓj(k) = t̂k+2 ,

ωi,k+1 ̸= 0 for all nodes i ∈ Ik+1 ,

ωi,k+1 = 0 for all other nodes

(51)

all the control loops of the NCS are GUUB. ◁

This result together with Theorem 6.1 establish how the
superframe duration is set, how the suprerframe length is
adapted, and how the GTSs are scheduled to ensure GUUB
of each loop and to reduce the energy expenditure of the
nodes in terms of number of transmissions and idle listen-
ing. Moreover, since some nodes are deallocated in certain
superframes, the average network utilization is also reduced
with respect to the case in which ωi,k ̸= 0 for all i, k. A
sketch of the proposed protocol adaptation policy is depicted
in Fig. 4.

6.3 On practical implementation and possible extensions

The implementation of the proposed protocol adaptation
strategy requires the computation of the next time ti,ℓi(k),
the disturbance estimate d̂k,ℓi(k), the state estimate x̂i,k|ℓi(k)
and the next time estimate t̂i,k+2|ℓi(k). All (or part of) these
computations can be performed either at time t = ti,k (by
the nodes) or at time t = ti,k+τi,k (by the PANC). In the first
case, the value of the time delay τi,k is unknown, but it can
be replaced with its upper-bound τmax. Then, the nodes di-
rectly compute the next sampling time ti,ℓi(k), the state esti-
mate x̂i,k|ℓi(k), the estimated next sampling time t̂i,k+2|ℓi(k),
and then they encapsulate these values along with the cur-
rent measurement into one packet. This packet is sent to
the PANC that will select the appropriate BO and the GTS
scheduling. That way, the computation load on the PANC is
reduced, but the inter-sampling times can be slightly more

conservative because a maximum communication time de-
lay is always considered in the computation of the next sam-
pling instant. In the second case, the value of τi,k is available
at the PANC provided that the packets are time-stamped. In
this second case, the inter-sampling times are less conser-
vative, but the computation load on the PANC is larger. A
sketch of a possible algorithm, where all the computations
are performed by the nodes is depicted in Algorithm 1.

Regarding the number of available control GTSs in every su-
perframe, in the IEEE 802.15.4 protocol is fixed to 7. How-
ever, this does not imply that the maximum number of the
loops that can be controlled is limited to 7. For instance, it
is possible to consider meta-superframes that are composed
by r superframes. In that case we can consider 7r GTS
per meta-superframe, but the minimum inter-sampling time
guaranteed should be larger that rBImin. Given that, we can
still design a protocol adaptation policy based on such meta-
superframes by proceeding along the same line we proposed.
That way, we have no limitation on the number of control-
lable loops over the same network, but we should consider
that the minimum inter transmission time guaranteed by the
network may be fairly long.

Finally, despite we considered only wireless connection be-
tween the sensor nodes and the controllers, our framework
can be easily extended in the case of two-channel feed-
back, in which there is also wireless communication be-
tween the controllers and the actuators. This is easy to do
as long as we assume a constant control in the time interval
[tk + τk, tk+1 + τk+1). In this case, it is enough to con-
sider two different time delays: for instance, let τsc,k and
τca,k the delays from sensor to controller and from con-
troller to actuator respectively of the loop i in the super-
frame k. We consider two consecutive time slots allocated
in one superframe for each control loop: one slot is used
for the communication between the sensor and the con-
troller, and the other one is used for the communication be-
tween the controller and the actuator. Hence, by considering
piecewise constant control inputs of the form u = Kxk for
t ∈ [tk + τsc,k + τca,k, tk+1 + τsc,k+1 + τca,k+1) and by
proceeding with the design along the same line presented in
the paper.

7 Simulations

In this section we illustrate the analysis presented in the pre-
vious section by numerical simulations. We consider N = 3
control loops over a IEEE 802.15.4 network and a simula-
tion time tsim of about 80 s for all the simulations. The con-
trol loops setup together with the network setup are specified
below:

7.1 IEEE 802.15.4 Network

We set the minimum superframe order BOmin = 1, and the
maximum superframe order BOmax = 10, for which we get
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Fig. 4. Sketch of the proposed protocol adaption policy: a) At the
k-th superframe, BOk+1 is adapted according to t̂1,k+2|k and node
1 is scheduled in the (k + 1)-th superframe. b) At the (k + 1)-th
superframe, the only node scheduled for transmission is node 1.
BOk+2 is adapted according to t̂3,k+3|k and nodes 2 and 3 are
scheduled in the (k+2)-th superframe. c) The resulting superframe
after the (k+2)-th adaptation. Note how the (k+2)-th supeframe
is enlarged and how all the deadlines imposed by the self-triggered
samplers are met.

Algorithm 1 Network protocol adaption with all the com-
putations at the nodes

init
PANC sets SO with (44);
PANC sets BI1 = BImin;
PANC sets ωi,1 ̸= 0, ∀1 ≤ i ≤ n;
end init
for all k do

PANC sends a beacon;
for all the nodes i s.t. ωi,k ̸= 0 do
ℓi(k)← k;
Node i picks the measurement xi(Ti,k);
Node i computes ti,ℓi(k)+1 and t̂i,k+2|ℓi(k) with
τi,k = τmax;
Node i sends xi(Ti,k), ti,ℓi(k)+1 and t̂i,k+2|ℓi(k) to
the PANC;
PANC updates the control laws;

end for
for all the nodes j s.t. ωj,k = 0 do

PANC computes t̂j,k+2|ℓi(k);
PANC sets BOk+1 as in (45);
PANC sets ωi,k+1 as in Corollary 6.1;

end for
end for

BOmin = 30.7 ms and BOmax = 15.73 s, and we set a
maximum time delay of τmax = 2 ms. We assumed that all
the computation are performed by the PANC and that the
packets are time-stamped.

7.2 Control Loop # 1.

We set

A1 =

(
−0.1 0.05

0.2 0.1

)
, B1 =

(
0

1

)
.

The controller is designed to place the closed loop sys-
tem eigenvalues in λ1,1(A1 + B1K1) = −0.25, λ1,2(A1 +
B1K1) = −0.18. The initial condition are x1,1(0) =
−20, x1,2(0) = 15, the triggering threshold is δ1 = 2
and the external disturbance upper-bound is d̄1 = 0.6.
With this setting the condition (23) is satisfied with
h1,min = 33.1 ms ≥ BImin.

7.3 Control Loop # 2.

We set

A2 =

(
0.01 0.2

0.03 0

)
, B2 =

(
1

1

)
.

The controller is designed to place the closed loop sys-
tem eigenvalues in λ2,1(A2 + B2K2) = −0.15, λ2,2(A2 +
B2K2) = −0.3. The initial condition are x2,1(0) =
−12, x2,2(0) = 12, the triggering threshold is δ2 = 1.4 and
the external disturbance is upper-bounded wih d̄2 = 1.2.
With this setting the condition (23) is satisfied with
h2,min = 31.6 ms ≥ BImin.

7.4 Control Loop # 3.

We set

A3 =

(
0.2 0.01

0.3 −0.8

)
, B3 =

(
1

2

)
.

The controller is designed to place the closed loop sys-
tem eigenvalues in λ3,1(A3 + B3K3) = −0.4, λ3,2(A3 +
B3K3) = −0.6. The initial condition are x3,1(0) =
−5, x3,2(0) = 4, the triggering threshold is δ2 = 2.7 and
the external disturbance is upper-bounded with d̄3 = 0.55.
With this setting the condition (23) is satisfied with
h3,min = 49.2 ms ≥ BImin.

We first compare the simulation results by considering the
cases d̃i,k = 0, d̃i,k = d∗i and d̃i,k = d̂i,k for all the loops,
where d̂i,k is computed with (47) and is used in both the self-
triggered samplers to compute the real next-sampling time
and the estimated next sampling time. The same disturbance
observer has been also used in the state estimators. To test
the robustness against external disturbances, we further add
a disturbance d3(t) = (0.55 0)T for t ∈ [28, 32] s entering
the loop #3. We finally compare the loops response when
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Fig. 9. Comparison of the self-triggered sampler with disturbance
observer with periodic implementations with BO=1 and BO=8.
Note the worst transient and the disturbance rejection when BO=8
compared to the the other two cases.

Superfr. Tx 1 Tx 2 Tx 3 DCavg Uavg

d̃i,k = 0 50 36 28 29 3.93 11.62

d̃i,k = d∗i 171 58 171 49 6.72 10.16

d̃i,k = d̂i,k 56 33 36 31 4.21 11.16

BO = 1 2600 2600 2600 2600 100 18.75

BO = 8 20 20 20 20 0.78 18.75
Table 1
The table shows the simulation results when the proposed self-
triggered control and two periodic implementations with BO=1
and BO=8 are used for a simulation time of ∼ 80 s. The data
set includes the number of superframes, the number of transmis-
sions of each sensor node, the average duty cycle and the average
network utilization.
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using different self-triggered samplers with the response ob-
tained by the same continuous-time control and with discrete
time control with periodic implementations with BO=1 and
BO=8.

The results are illustrated in Figs. 5–9. All the loops are
correctly controlled. In the case d̃i,k = 0 we can appreci-
ate how the inter-sampling times enlarge as the trajectories
goes toward the origin, with the consequently reduction of
the duty cycle. For this first setup, we experienced 36, 28
and 29 number of transmissions for the loop #1,#2 and #3
respectively over 56 superframes that correspond to 79.68
s of simulation time. Moreover, we have an average duty
cycle DCavg ≃ 3.92% and an average network utilization
Uavg = 11.62%. However, there is a big peak of the process
state at time t ≃ 33 s, because of the disturbance entrance.
This effect leads to a reduction of the inter-sampling times,
and then to an abrupt increasing of the duty cycle.

To reduce the big peak experienced in the previous simula-
tion, in this second simulation we conservatively set d̃1,k =

d∗1 = (0.6 0)T , d̃2,k = d∗2 = (1.2 0)T and d̃3,k = d∗3 =
(0.55 0)T . That way, the peak in the loop #3 is reduced,
but the inter-sampling times are pretty short. This leads
to an increase of both the average duty cycle that result
DCavg ≃ 6.72%, and to an increase of the number of trans-
missions that resulted 58, 171 and 49 for the loop #1,#2 and
#3 respectively. For this simulation we have an average net-
work utilization Uavg = 10.16%. Such results are obtained
by considering 171 superframes that correspond to 80.85 s
of simulation time.

Finally, in the case where the disturbances are observed, the
trajectories of the inter-sampling are similar to the case in
which they are neglected, with the difference that the peak
of the loop #3 is drastically reduced. It is also interesting to
see how the system reaction to the disturbance is very simi-
lar to the second case and to the case with continuous-time
control. Moreover, the inter-sampling times shrink corre-
spondently to the detection of the disturbance, and the duty
cycle increases. For this third simulation we experienced
an average duty cycle DCavg ≃ 4.21%, and 33,36 and 31
number of transmissions respectively. The average network
utilization is Uavg = 11.16%. Such results are obtained by
considering 57 superframes that correspond to 83.06 s of
simulation time.

The network utilization and the duty cycle in the case with
d̃i,k = 0 and d̃i,k = 0 is very similar, but the reaction to
external disturbances is much better when the disturbance
observer is used. On the other hand, such a disturbance can
be better handled if d̃i,k = d∗i for all the time. However, the
number of transmissions when the worst case disturbance is
considered increased considerably. Thus, the proposed self-
triggered sampler appeared to be the best choice.

For the sake of completeness, we also compared the pro-
posed self-triggered sampler with periodic implementations

with BO=1 and BO=8 since for periodic implementations
with BO greater than 8, some loop resulted to be unstable.
The comparison of the proposed self-triggered sampler with
the periodic implementation with BO=1 provided a very sim-
ilar system response, but the number of transmissions, the
duty cycle and the network utilization in the periodic case
are much worse. A drastic reduction of both the number of
transmissions and the duty cycle is achieved when BO=8,
but the transient and the reaction to external disturbance is
worst compared to the self-triggered sampler, as shown in
Fig. 9. Hence, the best tradeoff between network perfor-
mance and system response is given again by the proposed
self-triggered sampler.

We finally wish to remark that the solely adaptation of the
superframes would led to the reduction of the duty cycle
as the trajectories of the loops move toward the origin, en-
suring then an energy saving. However, without the GTSs
scheduling, we would experienced a number of transmission
of each loop equal to the number of superframes considered,
and a fixed average network utilization of Uavg = 18.75%
as in the periodic case. Indeed, the GTS scheduling led to a
reduction of both the number of transmissions and to a re-
duction of the network utilization, in addition to a reduction
of the duty cycle.

8 Conclusions

In this paper a novel co-design methodology of NCSs
composed by several control loops sharing the same IEEE
802.15.4 network was presented. In the analysis and design
of the NCS the networking protocol was explicitly consid-
ered. Based on a self-triggered sampler for each control
loop, an adaptation policy of the protocol parameters to
ensure GUUB of the NCS and to reduce the energy expen-
diture of the nodes in terms of number of transmissions
and idle listening was developed. It was shown how a re-
duction of the number of transmissions leads to a decrease
of the network utilization. A system-level design approach
allowed us to capture all the essential control and net-
working issues within one framework. However, since any
self-triggered control may cause the controlled system to
run in open loop for arbitrary large times, we showed that
the drawback in the proposed control strategy relies on the
robustness of the closed-loop system.

We plan to extend this study by mixed event and self-
triggered control strategies over hybrid MAC protocols. Ad-
ditional future work includes the study of closing the loop
over the contention access period of the protocol superframe,
where the main challenge is represented by packets colli-
sions of the contention access scheme. Finally, we also plan
to address the problem of designing NCS over multihop net-
works.
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