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Abstract— In this paper, we propose a glocal (global/local)
control method for large-scale network systems. The objective
of the glocal control here is to suppress global propagation
of a disturbance injected at a local subsystem based on the
integration of different types of controllers, called global and
local controllers. For the design of global and local controllers,
we construct an aggregated model and a truncated model that
can, respectively, capture global average behavior and local
subsystem behavior of the network system of interest. Based on
state-space expansion, called hierarchical state-space expansion,
we show that a cascade interconnection of the aggregated model
and the truncated model can be seen as a low-dimensional
approximate model of the original network system, which
has good compatibility with independent design of the global
and local controllers. Furthermore, we show that appropriate
integration of the global and local controllers can improve
control performance with respect to global propagation of local
disturbance. Finally, the effectiveness of the proposed method
is shown through a numerical example of a benchmark model
representing the bulk power system in the eastern half of Japan.

I. INTRODUCTION

As technology advances, systems handled in control en-
gineering have become larger and more complex. Typical
examples include smart grids, where grid operators must
maintain power balance among a number of generators
and consumers while utilizing a large amount of renewable
resources. As an approach to handle such large-scale com-
plex network systems, distributed control [1], [2], [3] has
been developed over the past few decades. Most distributed
controller design methods need the entire system model.
However, due to the complexity of large-scale systems, it
is not reasonable to assume the availability of the exact
model of the entire system. Instead, we, in practice, take an
objective-based approach to system modeling and control,
e.g., subsystem identification for local decentralized control
and modeling of aggregate system behavior for global broad-
cast control. We integrate such different kinds of control to
realize desired system behavior. Motivated by this practical
controller design, a concept called glocal (global/local) con-
trol is introduced in [4]. However, it is still an open question
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to what system model is appropriate for systematic design
of glocal control.

In [5], [6], the authors have proposed a retrofit controller
design method for network systems. In this method, assum-
ing that a preexisting network system is originally stable,
we consider retrofitting a local decentralized controller that
can improve control performance against disturbance that is
directly injected only into a subsystem of the network system
and we let such disturbance be called local disturbance.
The key to designing such a retrofit controller is to use a
state-space expansion technique, called hierarchical state-
space expansion, that derives a higher-dimensional cascade
realization of the original network system. The objective of
the retrofit control is to design a local controller for the
upstream part dynamics in the cascade realization that rep-
resents a truncated subsystem model, which we call a local
model, while the downstream part dynamics representing the
preexisting stable system is left untouched.

In this paper, as a generalization of the retrofit control,
we propose a glocal control design method for large-scale
network systems. The main idea for glocal control design
is transforming the downstream part dynamics into a new
coordinate system representing coherent and non-coherent
dynamics. The coherent dynamics can be regarded as an
aggregated model capturing global average behavior of the
original system, called a global model. On the other hand,
the non-coherent dynamics can be regarded as an error
dynamics neglected though aggregation. In Section III, it
is shown for a homogeneous network system that the non-
coherent dynamics can be exactly eliminated, i.e., the global
model is an exact low-dimensional model of the downstream
part dynamics. This implies that the cascade interconnection
of the local and global models, called a glocal model,
corresponds to a low-dimensional realization of the original
network system, which has good compatibility with glocal
controller design.

We discuss similarities and differences between the pro-
posed glocal control and composite control, which has been
applied to many systems, e.g., power systems [8], [9], multi-
robot networks [10], and transmission control protocols [11].
The composite control is based on the premise that the entire
system dynamics is separated into slow and fast dynamics
by using the singular perturbation technique [12]. Typically,
the slow and fast dynamics are regarded as global and
local models showing coherent and non-coherent behavior,
respectively. However, it is not theoretically justified to
derive such models by the time-scale separation. Indeed, the



entire system possibly becomes unstable unless the time-
scale separation is sufficient, due to unexpected interference
between the controllers for fast and slow dynamics.

Finally, we refer to localized system level synthesis [13],
[14], [15] as a different approach where the entire system
model is not required for control of large-scale systems.
In localized system level synthesis, optimal local controller
synthesis is achieved for separable problems by making
closed-loop responses to be finite impulse response and
implementing the optimal controller with the desired system
responses. While the applicability of that approach is limited
to discrete-time systems instead of achieving optimality, our
approach can be applied to continuous-time network systems.

This paper is organized as follows. In Section II, we
formulate a glocal controller design problem. In Section III,
we provide an illustrative example of the proposed glocal
control and we develop a glocal control method for the
homogeneous network systems. Numerical simulations for
IEEJ (the Institute of Electrical Engineers of Japan) EAST
30-machine system [7], which is a benchmark model repre-
senting the bulk power system in the eastern half of Japan,
are shown in Section IV and Section V draws conclusion.

A. Notation

We denote the N -dimensional all-ones vector by 1N , the
N -dimensional identity matrix by IN , the image of a matrix
A by imA, the kernel by kerA, the pseudo-inverse of a
full-column rank matrix P by P †, the 2-induced norm of a
matrix A by ∥A∥, the Kronecker product by ⊗, the L2-norm
of a square-integrable function f(t) by ∥f∥L2 or ∥f(t)∥L2 ,
the H2-norm and H∞-norm of a transfer matrix G(s) by
∥G(s)∥H2 and ∥G(s)∥H∞ , respectively, and the cardinality
of a set X by |X |. A map F(·) is said to be a dynamical map
if the triplet with y = F(u) solves a system of differential
equations ẋ = f(x, u), y = g(x, u) with some functions f(·)
and g(·), and an initial value x(0). A dynamical system is
said to be stable if it is globally input-to-state stable in short.

II. PROBLEM FORMULATION

Consider an interconnected system each of whose subsys-
tems is described by

Σi :


ẋi = Aixi + Li

∑
j∈Ni∪{i} αi,jγj +Biui +Ridi

yi = Cixi

γi = Γixi,
(1)

where xi denotes the state, ui denotes the external input sig-
nal, di denotes an unknown disturbance signal, yi denotes the
measurement output signal, γi denotes the interconnection
output signal, αi,j denotes a scalar weight coefficient, and
Ni denotes the index set associated with the neighborhood
of the ith subsystem. In the following, we suppose that the
dimension of all subsystems is identical and it is denoted
by n. The number of subsystems is denoted by N . Without
loss of generality, we assume that xi(0) = 0 for all i ∈
{1, . . . , N}.

For this interconnected system, we suppose that just one
local disturbance is injected to the system for simplicity

though the following discussion can be easily extended to
the case of multiple local disturbances. To this end, we give
d1 = dL, di = 0 for all i ∈ {2, . . . , N}. We assume that
the local disturbance dL is injected to the first subsystem.
Our objective here is to suppress global propagation of the
local disturbance in the framework of glocal control. More
specifically, we suppose that a global input signal is injected
to all subsystems in a broad cast manner and a local input
signal is injected to the first subsystem. Such glocal inputs
can be represented as

u1 = uG/
√
N + uL, ui = uG/

√
N, ∀i ∈ {2, . . . , N}.

As measurement outputs to construct uG and uL, we use the
global and local outputs

yG = (y1 + · · ·+ yN )/
√
N, yL = y1.

In this setting, the entire dynamics, having nN -dimension,
is represented as

Σ :

 ẋall = Aallxall +BGuG +BLuL +RLdL
yG = CGxall

yL = CLxall,
(2)

where xall := [xT
1 , . . . , x

T
N ]T, Aall = (Ai,j) is given as

Ai,j =

 Ai, j = i
αi,jLiΓj , j ∈ Ni

0, otherwise
(3)

and the other matrices are given as

BG =
1√
N


B1

B2

...
BN

 , BL =


B1

0
...
0

 , RL =


R1

0
...
0


and

CG =
1√
N

[
C1 C2 · · · CN

]
,

CL =
[
C1 0 · · · 0

]
.

We also assume that the entire system (2) is stabilizable and
detectable.

In this paper, we do not assume that the complete system
model of Σ is available for glocal controller design. Instead,
we assume that a local subsystem model and an aggregated
model are available for local and global controller design,
respectively. This is formulated as follows. First, for the local
controller design, the model of Σ1 is assumed to be available,
i.e., the system matrices A1, B1, C1, L1, R1,Γ1, and α1,j

for j ∈ N1 are assumed to be available. The model for
local controller design, which we call here a local model, is
described as

ΣL :

{
ϕ̇L = ALϕL +LLγL +BLwL +RLηL
zL = CLϕL,

(4)

where ϕL denotes the state of the local model, γL denotes
the interconnection input signal, wL and zL denote the input



and output signals for the attenuation of the disturbance ηL.
A simple choice of ΣL, for example, can be given as

AL = A1, LL = L1, BL = B1, RL = R1, CL = C1.
(5)

However, there is a remaining degree of freedom to construct
a more suitable model of ΣL based on the system matrices
of Σ1. We first ignore the interconnection input signal γL,
i.e., γL = 0. Then we can design a local dynamical controller

KL : wL = KL(zL;ΣL) (6)

such that the feedback system of (4) with γL = 0 and (6) is
stable and the control performance bound

sup
∥ηL∥L2≤1

∥ϕL∥L2 ≤ ϵL (7)

is satisfied for a given tolerance ϵL. In this formulation, we
regard the local model ΣL as a design parameter to determine
a specification of the local controller KL.

Provided that Σ1 is isolated enough, i.e., the intercon-
nection input signal

∑
j∈N1

α1,jγj in (1) is negligible, we
can expect that the local control action uL = KL(yL;ΣL)
with the choice of (5) works to stabilize the local subsystem
Σ1 of (2). However, in general cases, we do not have any
guarantee not only for local subsystem control but also for
entire system control. Moreover, the local control action may
induce instability of the entire dynamics due to unexpected
interference among subsystems.

The global input uG is used to suppress interference
propagation to other subsystems. For a model for global
controller design, which we call a global model, we assume
that an aggregated model of Σ described by

ΣG :

{
ϕ̇G = AGϕG +BGwG +RGηG
zG = CGϕG,

(8)

is available, where ϕG denotes the state of the aggregated
model, wG and zG denote the input and output signals for
the attenuation of ηG, which is regarded as a model of the
interference signal. A simple model of ΣG, for example, can
be given as

AG = 1
N

∑N
i=1

∑N
j=1 Ai,j , BG = 1

N

∑N
i=1 Bi,

CG =
∑N

i=1 Ci, RG = 1
N

∑N
i=1

∑N
j∈Ni

Ai,j .
(9)

There is a degree of freedom to determine a more suitable
model of ΣG. On the premise that an aggregated model is
identified, we design a global dynamical controller

KG : wG = KG(zG;ΣG) (10)

such that the feedback system of (8) and (10) is stable and
the control performance bound of

sup
∥ηG∥L2

≤1

∥ϕG∥L2 ≤ ϵG (11)

is satisfied for a given tolerance ϵG. Similarly to the local
controller design, we regard the global model ΣG as a design
parameter to determine a specification of the global controller
KG.
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Fig. 1. Signal-flow diagram of the system.

Provided that the global model ΣG in (8) well approxi-
mates the average behavior of the original system Σ in (2),
i.e., ϕG ≃ 1

N

∑N
i=1 xi, we can expect that the global control

action uG = KG(yG;ΣG) works to suppress spatially global
interference propagation. However, it is not clear how to
give a reasonable global model ΣG for such interference
propagation suppression. Moreover, the simultaneous use of
global and local controllers may induce other unexpected
interference even if each controller is well designed.

As an adopter between the global and local controllers,
we introduce a dynamical compensator denoted as

C : ŷL = C
(
uG, {γi}i∈N1∪{1}

)
, (12)

which measures the input signal uG from the global con-
troller and the interconnection output signals {γi}i∈N1∪{1}
from the neighborhood subsystems to make a compensation
signal ŷL. This compensator is interconnected with the global
and local controllers as

uG = KG(yG;ΣG),

{
ŷL = C

(
uG, {γi}i∈N1∪{1}

)
uL = KL(yL − ŷL;ΣL).

(13)

Note that the compensation signal ŷL is sent to the local
controller.

To make discussion clearer, the assumptions for glocal
controller design are summarized as follows.

Assumption 1: For the interconnected system Σ in (2), the
following assumptions are made.

(i) For the design of a local controller KL in (6) and the
design of a compensator C in (12), a local model ΣL

in (4) is only available.
(ii) For the design of a global controller KG in (10), a global

model ΣG in (8) is only available.
(iii) For the implementation of the global controller KG, the

local controller KL, and the compensator C, the global
output yG, the local output yL, and the interconnection
outputs {γi}i∈N1∪{1} are measurable, respectively.

Fig. 1 shows a signal-flow diagram of the glocal control
system.

Then we address the following design problem of glocal
control.



Problem 1: Consider the nN -dimensional interconnected
system Σ in (2). Under Assumption 1, find a local controller
KL in (6) associated with an n-dimensional local model ΣL

in (4), a global controller KG in (10) associated with an n-
dimensional global model ΣG in (8), and a compensator C
in (12) such that the following requirements are satisfied.

– The resultant feedback system is stable under the inter-
connection of (13).

– If the control performance specifications in (7) and (11)
are satisfied, then there exists a function f : R2

+ → R+

such that

sup
∥dL∥L2

≤1

∥xall∥L2 ≤ f(ϵL, ϵG) (14)

where f(·, ϵG) and f(ϵL, ·) are strictly monotone in-
creasing for each fixed ϵG and ϵL, respectively.

III. GLOCAL CONTROLLER DESIGN

A. Illustrative Example

To see an overview of our proposed glocal control design
method, let us consider an example that models a simple
homogeneous network system where N = 3. In the example,
we suppose that every subsystem is modeled as a scalar
system with Ai = −1, Li = Bi = Ci = Γi = 1 for
i = 1, 2, 3, R1 = 2, and α1,2 = α1,3 = α2,1 = α3,1 =
1, α2,3 = α3,2 = 0, α1,1 = −2, α2,2 = α3,3 = −1 in (1).
The system parameters of (2) are given by

Aall =

 −3 1 1
1 −2 0
1 0 −2

 , BG =
1√
3

 1
1
1

 ,

BL = [1 0 0]
T
, RL = [2 0 0]

T
,

CG =
1√
3
[1 1 1], CL = [1 0 0].

Suppose that the matrices A1, B1, C1, L1,Γ1, R1 and the co-
efficients α1,j for j = 1, 2, 3 are available for controllers de-
sign. We will, however, show that this homogeneous network
system can be represented by a specific low-dimensional
(two-dimensional) system having a cascade structure where
the upstream part shows non-coherent (local) behavior of
the first subsystem and the downstream part shows coherent
(global) behavior.

First, as a local model, let us consider a one-dimensional
system in the form of (4) with LL = 0, BL = 1, RL = 2,
wL = uL, ηL = dL, i.e.,

ϕ̇L = ALϕL + uL + 2dL, (15)

where ϕL represents the local behavior directly affected by
the inputs uL and dL and AL ∈ R is a modeling parameter
that we can choose. Since the state equation (15) is closed in
the local system, ϕL can be controlled and the disturbance
ηL can be suppressed by the local control input uL. Next,
to clarify the relationship between ϕL and xall and discover
an effective design method for the global control input uG

in (2), we introduce the variable ΦG ≜ xall − PϕL where

P = [1 0 0]T. By simple calculation, we see that ΦG obeys
the dynamics

Φ̇G = AallΦG + (AallP − PAL)ϕL +BGuG

= AallΦG +

 −3−AL

1
1

ϕL +
1√
3
13uG.

(16)

Here, we consider choosing the free parameter AL such that

im(AallP − PAL) = im(BG), (17)

namely, AL = −4 in this case. Then (16) can be rewritten
as

Φ̇G = AallΦG + 13

(
1√
3
uG + ϕL

)
. (18)

Note that this system is exactly reducible because its control-
lable subspace is only im(13). Hence, by taking the subspace
decomposition based on controllability with the coordinate
transformation[

ϕG

ϕG

]
≜ TΦG, T ≜

[
P̃ †

Q̃†

]
where P̃ = 13/

√
3, P̃ † = 1T

3 /
√
3 and P̃ P̃ † + Q̃Q̃† = I3,

(18) can be transformed into the two independent systems,

ϕ̇G = −ϕG + uG + ϕL, (19)

which represents average behavior of (18), and ϕ̇G =
Q̃†AallQ̃ϕG. From the condition on initial values, ΦG(0) = 0
and hence ϕG(t) = 0 for all t ≥ 0. Then ΦG = P̃ ϕG

holds. Finally, it follows that xall = P̃ ϕG + PϕL. This
implies that we can describe the behavior of xall by the
cascade interconnection of the global model (19) and the
local model (15). This stems from the particular choice of
AL satisfying (17). Furthermore, it would be notable that in
order to choose such an appropriate AL we need to know
the first column of Aall only, namely, the interconnection
from the first subsystem to the other subsystems, because
the matrix P extracts only the corresponding column. In
homogeneous network cases, if one knows the neighborhood
of the first subsystem, the associated matrices from the first
subsystem to other subsystems are available. Therefore, AL

can be determined only with the global and local models.
Based on the local model (15) and the global model

(19), uL can be designed independently of uG owing to
the cascade structure, and moreover, we can design effective
uG only with the global model in which ϕL is regarded as
a disturbance input. A difficulty here is that, since ϕL and
ϕG are virtual variables we cannot directly measure them as
output signals for the controllers. We can actually overcome
this difficulty by considering an implementable realization
of the closed-loop system with the designed controllers and
the detail is explained in the next subsection.

B. Homogeneous Network Systems

Let us consider homogeneous network systems. All sub-
systems are supposed to have the same dynamics except for
local control inputs and the interconnection links among their



neighborhoods. More specifically, we assume for (2) that the
system matrices are given as

Aall = IN ⊗A0 − L⊗ (α0L0Γ0), BG = 1N ⊗B0/
√
N,

BL = e1 ⊗B0, CG = 1T
N ⊗ C0/

√
N, CL = e1 ⊗ C0

with matrices A0, B0, C0, L0,Γ0 and a scalar α0, where
e1 ∈ RN is the canonical basis associated with the first
coordination and L is assumed to be the graph Laplacian of
the network among subsystems. Note that the pair (Aall, BG)
is uncontrollable, i.e., the corresponding system has an
uncontrollable subspace. Moreover, we put an assumption:

Assumption 2: N1 = {2, . . . , N}.
In other words, we assume that the first subsystem is directly
connected to all the other subsystems.

For the homogeneous system (2), consider the following
hierarchical state-space expansion [5], [6]:{

ϕ̇L = ÂϕL +B0uL +R0ηL
Φ̇G = AallΦG + (AallP − PÂ)ϕL +BGuG,

(20)

with the zero initial condition ϕL(0) = 0 and ΦG(0) = 0
where P = e1 ⊗ In and Â ∈ Rn×n can be any matrix. The
following lemma holds.

Lemma 1: Consider the systems (2) and (20) with the zero
initial conditions. For any Â ∈ Rn×n, if ηL(t) = dL(t) for
all t ≥ 0, then xall(t) = ΦG(t) + PϕL(t) for all t ≥ 0.

Proof: The proof is omitted due to the page limit.
Letting the matrices in the local model (4) and the global

model (8) for design of controllers

AL = Â, BL = B1, RL = R1, CL = C1,
AG = A0, BG = B0, RG = B0X, CG = C0,

(21)
we have a glocal (global/local) model for (4) and (8){

ϕ̇L = ALϕL +BLuL +RLηL
ϕ̇G = AGϕG +RGϕL +BGuG.

(22)

The following theorem shows the equivalence between (20)
and (22) with an appropriate choice of Â.

Theorem 1: Consider the systems (2) and (20) with the
zero initial conditions. Let Â = A0 − (|N1| + 1)α0L0Γ0,
then ΦG(t) = P̃ ϕG(t) for all t ≥ 0 and hence xall(t) =
P̃ ϕG(t) + PϕL(t) for all t ≥ 0 holds for any uG, uL, dL,
and ηL when dL(t) = ηL(t), for all t ≥ 0.

Proof: The proof is omitted due to the page limit.
This theorem implies that the state of the original system can
be exactly described by the states of the glocal model (22)
for homogeneous network systems under Assumption 2 and
the assumption on locality of disturbance. Consequently, KL

and KG in (6) and (10) can be designed based on (22).
A problem here is that uG = KG(CG(P̃ ϕG + PϕL))

and uL = KL(C0ϕL) cannot be generated with ϕL and ϕG

because the states are virtual variables and the system is
not directly implementable. We construct an implementable
system as{
ẋall= Aallxall +BGKG(yG) +BLKL (yL − ŷL) +RLdL
˙̂x = A0x̂+ (P †Aall − ÂP †)xall +B0uG,

Fig. 2. Signal-flow diagram of the equivalent closed-loop systems where
ΞL and ΞG represent the dynamics of ϕL and ΦG, respectively.

by applying the coordinate transformation xall = P̃ ϕG +
PϕL, x̂ = P †P̃ ϕG. From the relationship (P †Aall −
ÂP †)xall = L0

∑N
j=1 α0γj , we establish a compensator C

in (12) to generate x̂ as

C :

{
˙̂x = A0x̂+ L0

∑N
j=1 α0γj +B0uG

ŷL = C0x̂
(23)

with the zero initial condition x̂(0) = 0. As a result, the
closed-loop system can be realized with the entire system
composed of (2) and (13).

Finally, we show the following theorem to satisfy the
criteria on glocal controller design.

Theorem 2: Set the parameters of the global and local
models as (21) and the initial values of the states in KG,KL,
and C to be zero. If (7) and (11) are satisfied with KL

and KG, then the entire system with (13) is stable and
f(ϵL, ϵG) = (ϵG + 1)ϵL satisfies (14).

Proof: The proof is omitted due to the page limit.
Based on this theorem, the solution to Problem 1 is given
as follows: Design KG and KL such that the conditions
in Theorem 2 are satisfied. Construct a compensator as
(23). Then the closed-loop system satisfies a performance
specification (14). Fig. 2 shows a signal-flow diagram of the
equivalent systems (2) and (20) with the controllers and the
compensator.

IV. NUMERICAL SIMULATION
In this section, we show the effectiveness of the proposed

control strategy through numerical simulation for IEEJ EAST
30-machine power system model, which is a benchmark
model of the bulk power system in the eastern half of
Japan. The model consists of 107 buses, 30 generators, 31
loads, and transmission network connecting them as shown in
Fig. 3. The loads are modeled as constant impedance loads.
Each generator model consists of a synchronous machine
described as a Park model [16], turbine, and exciter with
an automatic voltage regulator (AVR). The models of the
turbine and the exciter with AVR are described in [17]. Let
us consider a linearlized state space equation of the power
system around an equilibrium point, which can be written
by (2). The control objective here is to enhance damping
performance of generators’ velocity.

Let us suppose that a fault happens in the area surrounded
by the blue line in Fig. 3. The effect of the fault is modeled
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Fig. 3. IEEJ EAST 30-machine power system. It is supposed that a fault
happens in the area surrounded by the blue line.

by an impulsive disturbance on the angle of the generator
indicated by the red one in Fig. 3. To mitigate the influence
caused by the fault, we consider applying our method to
the power system regarding the system as a homogeneous
network system, where we set the set of the generators in
the area as a subsystem. While the global controller KG

in (13) uniformly actuates the AVR’s of all generators, the
local controller KL in (13) actuates to the AVR’s of the
generators in the area. We set the performance criterion for
the local controller ϵL = 1 in (7).

We plot the responses of all generator frequencies in
Fig. 4. The red lines correspond to the case without control
and we see that the free responses without any control have
large oscillation. The green lines correspond to the case
of the proposed glocal control (13) where the performance
criterion for the global control is given as ϵG = 5 · 106 in
(11). We can see from Fig. 4 that the green trajectories after
t = 5 show similar behavior as compared to the red ones.
This implies that non-coherent behavior of the case without
control can be mitigated by the local controller. However,
coherent frequency deviation remains with slow convergence,
since the global controller is designed with an extremely low
gain as complying with a conservative condition derived from
the small gain theorem. The blue lines in Fig. 4 correspond to
the case of the glocal control (13) where we design KG with
ϵG = 11. Even though the robust stability is not theoretically
guaranteed, the coherent frequency deviation, depicted by the
green lines, is significantly damped by increasing the gain of
the global controller. Note that the non-coherent dynamics is
not excited by the global controller.

V. CONCLUSIONS

We have proposed a glocal control design method for
network systems. This design method is based on a new
representation of the system, called glocal model, which
is an integrated system of a truncated subsystem model
and an aggregated model. Owing to the cascade structure
of the glocal model, we can independently design global
and local controllers and improve the system performance.
Simulation results have been illustrated using the IEEJ EAST
30-machine power system.

Fig. 4. Responses of all generators’ frequencies, t ∈ [0, 10]. Red, green,
and blue are the cases of no-control, the proposed glocal control (13) with
ϵG = 5 · 106, and the proposed glocal control with ϵG = 11, respectively.
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