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Abstract— In this paper, we consider state estimation using
a Kalman filter of a linear time-invariant process with nonsta-
tionary intermittent observations caused by packet losses. The
packet loss process is modeled as a sequence of independent,
but not necessarily identical Bernoulli random variables. Under
this model, we show how the probabilistic convergence of the
trace of the prediction error covariance matrices, which is
denoted as Tr(Pk), depends on the statistical property of the
nonstationary packet loss process. A series of sufficient and/or
necessary conditions for the convergence of supk≥n Tr(Pk)
and infk≥n Tr(Pk) are derived. In particular, for one-step
observable linear system, a sufficient and necessary condition
for the convergence of infk≥n Tr(Pk) is provided.

I. INTRODUCTION

Last decade has witnessed an increasing attention on
networked control systems (NCSs) from the control, com-
munication and networking communities, thanks to a rapid
development of micro-electronics, wireless communication,
and information and networking technologies. NCSs have
applications in a wide range of areas in space exploration,
environmental monitoring, health care, intelligent building,
smart transportation and power grid [1]–[3], due to many
advantages, including reducing operational cost, allowing
distributed sensing and information sharing among different
nodes, etc. Nevertheless, new challenges have also been in-
troduced at the expense of all the aforementioned advantages.
For instance, in NCSs, the information, represented in binary
bits and transmitted in packets as the basic units [4] over a
digital communication channel, is used to stabilize one or
more dynamical systems, but packet dropouts and random
delays, which ubiquitously exist in wireless communication,
may deteriorate the performance of the closed-loop system
or even cause the system to be unstable.

State estimation, offering the control unit with estimates
of the system state based on the system outputs observed,
is adopted in many networked control applications and is
typically implemented recursively using a Kalman filter. The
problem of Kalman filtering over a packet-dropping network
was presented and investigated in [5], where modeled the
packet losses as a Bernoulli process and studied how the
Kalman filter evolves when packet losses are taken into
consideration and how packet losses effect the stability of
Kalman filtering. They proved that there exists a certain
critical arrival rate for the packet losses, below which, E[Pk],
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the expected value of the prediction error covariance matrix,
is unbounded. Upper and lower bounds for this critical rate
were provided. The above result was extended to partial
observation losses in [6]. Mo and Sinopoli [7] and Plarre and
Bullo [8] investigated the critical value under some less con-
strictive conditions for a linear system. To characterize the
temporal correlation nature of practical channels, the Gilbert-
Elliott model can be used to describe time-homogeneous
Markovian packet arrivals. Huang and Dey [9] considered the
same problem under the effect of Markovian packet losses.
They introduced the notion of peak covariance and studied
the peak covariance stability. Some sufficient conditions for
peak covariance stability were provided in [10]. In [11], You
et al. proved that the stability of Kalman filtering at packet
reception times is equivalent to the stability at sampling time
(i.e., the mean square stability). For some certain classes of
linear systems, necessary and sufficient conditions for the
mean square stability were derived. Essentially, the bound-
ness of the moments of Pk can be fully characterized by its
probability distribution function. Some related efforts have
been made from a probabilistic perspective. Shi et al. [12]
considered the calculation of P(Pk ≤M) and derived upper
and lower bounds thereof. Mo and Sinopoli [13] analyzed
how the trace of the estimation error covariance matrix
decays. For non-degenerate systems, the critical arrival rate
can be exactly derived from the decay rate.

Variance of channel’s characteristics over time, such as
in indoor radio channels and underwater acoustic channels,
is difficult to model by a stationary random process [14]–
[16], which is yet an important factor needs to be considered
when designing control systems over wireless communica-
tion channels. Nonetheless, both i.i.d. packet-dropping model
and the Gilbert-Elliott model as appeared in the aforemen-
tioned papers, fail to capture this basic nonstationary nature
of communication channels. To fulfil the theoretical gap, we
mainly focus on the probabilistic convergence of Kalman
filtering with intermittent observations over a nonstationary
fading channel. Note that the assumption, either that the
packet loss process is identically distributed, or that the
packet loss process has a stationary distribution imposed by
the Gilbert-Elliott model which describes time-homogeneous
Markovian packet arrivals, is relaxed in the packet loss model
we considered, which is more realistic and provides a better
modeling of the nonstationary channel fading. In this paper,
packet losses are modeled as a sequence of independent,
but not necessarily identical Bernoulli random variables.
Under this model, neither the deterministic modified Riccati
recursion with i.i.d. packet losses nor the stationary property
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imposed by the Markovian packet drops is valid. Rather than
stability in mean square sense, the probabilistic convergence
of Kalman filtering will be investigated in the present work.
A series of sufficient and/or necessary conditions for the
convergence of supk≥n Tr(Pk) and infk≥n Tr(Pk) are de-
rived. In particular, for one-step observable linear system,
a sufficient and necessary condition for the convergence of
infk≥n Tr(Pk) is provided.

The remainder of the paper is organized as follows.
Section II presents the problem setup. Section III introduces
the main result. Conclusions and future work are given in
the end.

Notations: N (N+) is the set of nonnegative (positive)
integers. k ∈ N is time index. For a real number x, dxe
denotes the smallest integer not less than x. Sn+ is the set of
n by n symmetric positive semi-definite matrices. σ(·) is the
σ-algebra generated by random variables. For a matrix X ,
λi(X), i = 1, . . . , n represents the ith largest eigenvalue of
X . Moreover, ‖X‖2 means the spectral norm of the matrix
X .

II. PROBLEM SETUP

Consider a linear time-invariant (LTI) process:

xk+1 = Axk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn is the process state vector, yk ∈ Rm is the
observation vector, wk ∈ Rn and vk ∈ Rm are zero-mean
Gaussian random vectors with E[wkwj

′] = δkjQ (Q ≥ 0),
E[vkvj

′] = δkjR (R > 0), E[wkvj
′] = 0 ∀j, k. The δkj

is the Kronecker delta function with δkj = 1 if k = j
and δkj = 0 otherwise. The initial state x0 is a zero-mean
Gaussian random vector that is uncorrelated with wk and
vk and has covariance Σ0 ≥ 0. We assume that the pair
(C,A) is observable and (A,

√
Q) controllable. It can be seen

that, by applying a similarity transformation, the unstable
and stable modes of the LTI system are decoupled. An
open-loop prediction of the stable mode ever has a bounded
estimation error covariance, therefore, this mode does not
play any key in the problem considered in the present work.
Without loss of generality, we henceforth assume that all of
the eigenvalues of A have magnitudes not less than 1.

-Process Sensor Estimator- - Erasure

Channel
- -

x̂k|k?wk xk yk
vk γkyk

Fig. 1: Estimation over an erasure channel.

In this work, we consider an estimation scheme where the
raw measurements of the sensor {yk}k∈N+ are transmitted to
the estimator over an unreliable communication channel. The
estimate, generated by the estimator, can be used as an input
of control systems, or in monitoring applications. Although
the leading motivation of the present work is networked sys-
tems with multi sensors and/or actuators pairwise connected

through a specific graph topology, the preliminary of un-
derstanding this problem is to consider a simple framework
illustrated in Fig. 1. We denote by γk ∈ {0, 1} the arrival
of yk at time k: If γk = 1, it indicates that yk successfully
arrives at the estimator; otherwise γk = 0. Motivated by
nonstationary channel fading the communication network
may suffer from, we assume that {γk}k∈N+

is a sequence of
independent but not necessarily identical random variables
with E[γk] , λk ∈ (0, 1), and that {γk}k∈N+ is also
independent of how the system evolves. Although real digital
communication introduces a bunch of other challenges, such
as quantization and data rate, bit errors, and random delays,
we are exclusively devoted to studying the impact of packet
loss process on the estimation performance and therefore
those effects will be ignored.

Define Fk as the filtration generated by all the mea-
surements received by the estimator up to time k, i.e.,
Fk , σ(γtyt, γt; 1 ≤ t ≤ k) . The estimator computes x̂k|k,
the minimum mean-squared error estimate, and x̂k+1|k,
the one-step prediction, according to x̂k|k = E[xk|Fk]
and x̂k+1|k = E[xk+1|Fk]. Let Pk|k and Pk+1|k be the
corresponding estimation and prediction error covariance
matrices, i.e., Pk|k = E[(xk − x̂k|k)(·)′|Fk] and Pk+1|k =
E[(xk+1 − x̂k+1|k)(·)′|Fk], which are computed recursively
via a modified Kalman filter [5]:

Kk = Pk|k−1C
′[CPk|k−1C

′ +R]−1, (3)
x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1), (4)
Pk|k = (I − γkKkC)Pk|k−1, (5)

x̂k+1|k = Ax̂k|k, (6)
Pk+1|k = APk|kA

′ +Q. (7)

It can be seen that x̂k|k and Pk|k now become random
variables of {γt}1≤t≤k. In what follows, we are devoted
to characterizing the impacts of {γk}k∈N+ on Pk+1|k. To
simplify notations in the sequel, let us use a convenient
notation Pk+1 , Pk+1|k, and define the functions h, g, hk

and gk: Sn+ → Sn+ as follows:

h(X) , AXA
′
+Q,

g(X) , AXA′ +Q−AXC
′
(CXC

′
+R)−1CXA′,

hk(X) , h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
k times

(X) and gk(X) ,

g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k times

(X), where ◦ denotes the function

composition. It is well known that, for a standard Kalman
filter, limk→∞ Pk = P in which P is the unique positive
semi-definite solution to g(X) = X (see [17]).

III. MAIN RESULT

In this section, we will provide some results on the
probabilistic convergence of Kalman filtering. Before we
present the main result, let us first recall some preliminary
lemmas.

Lemma 1: Suppose that {pk}k∈N+
is a monotonic se-

quence of real numbers with pk ∈ [0,∞). Then, for any
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n ≥ 2,
∑∞
i=0

∏(i+1)n
k=in+1 pk = ∞ holds if and only if∑∞

k=1(pk)n =∞.
Proof: Without loss of generality, assume that the se-

quence {pk}k∈N+
is monotonically decreasing. For a mono-

tonically increasing sequence, the proof can be presented
similarly. For simplicity, let Bj ,

∑∞
i=1

∏in+j−1
k=(i−1)n+j pk

for j ∈ N+. If B1 = ∞, observing that B1 ≥ B2 ≥
· · · ≥ Bn ≥ Bn+1, and that Bn = B0 −

∏n−1
k=0 pk, we

have Bj =∞, ∀ j ∈ N+. Therefore

n∑
j=1

Bj ≤
∞∑
k=1

(pk)n,

which shows that
∑∞
k=1(pk)n =∞. To prove the sufficient

direction, note that

nB1 ≥
n∑
j=1

Bj ≥
∞∑
k=n

(pk)n.

Since n is finite, the conclusion follows.
In what follows, in order to make the results below

concise, we need to assume that {λk}k∈N+ is a monotonic
sequence in place. Without this assumption, it is not hard to
verify that similar but complex results still hold.

Remark 1: Suppose that there exists an ε ∈ (0, 0.5) such
that λk ∈ [ε, 1 − ε], ∀ k ∈ N+. Then we can show that∑∞
i=0

∏(i+1)n
k=in+1 λk = ∞ if and only if

∑∞
k=1(λk)n = ∞

for any n ≥ 2. To see this, observe that

∞∑
i=0

(i+1)n∏
k=i n+1

λk ≤
(

1− ε
ε

)n−1 ∞∑
k=1

(λk)n

and
∞∑
i=0

(i+1)n∏
k=i n+1

λk ≥
(

ε

1− ε

)n−1 ∞∑
k=1

(λk)n.

As ε ∈ (0, 0.5), the conclusion follows by the Squeeze
Theorem. The assumption that λk ∈ [ε, 1 − ε], ∀ k ∈ N+,
where ε ∈ (0, 0.5), can replace the assumption of the
monotonicity of {λk}k∈N+

throughout the rest of this paper,
without changing the conclusions.

The following two lemmas are well known, and their
proofs are therefore omitted. For more details, please refer
to [18] and [19], respectively.

Lemma 2: Suppose that {pk}k∈N+
is a sequence of real

numbers with pk ∈ [0, 1). Then
∑∞
k=1 pk =∞ holds if and

only if
∏∞
k=1(1− pk) = 0.

Lemma 3 (Borel-Cantelli Lemma): Let (Ω,F ,P) be a
probability space. Assume that events Ai ∈ F , ∀ i ∈ N+.
If
∑∞
i=1 P(Ai) <∞, then P (Ai, i.o.) = 0, where “Ai, i.o.”

means Ai occurs infinitely often. In addition, assuming that
events Ai are independent, then

∑∞
i=1 P(Ai) = ∞ implies

that P (Ai, i.o.) = 1.
Before we proceed, let us introduce the definition of

observability index which is first introduced in [9]. For an
observable pair (A,C), define the observability index Io ≥ 1

as the smallest integer such that [C ′, A′C ′, . . . , (AIo−1)′C ′]′

is full-ranked. It is evident that Io ≤ n. Define

M0 , (J ′J)−1J ′

H
 Q . . . 0

...
. . .

...
0 . . . Q

H ′

+

 R . . . 0
...

. . .
...

0 . . . R


 J(J ′J)−1,

where J ,
[
(CAIo−1)′, (CAIo−2)′, . . . , C ′

]′
and

H =



C CA . . . . . . CAIo−2 0

0 C
. . .

...
...

...
...

. . . . . .
...

...

0 0 . . . C CA
...

0 0 0 . . . C 0
0 0 0 . . . 0 0


.

Denoted a constant matrix given as M = hIo−1(M0). For Io
and M defined above, we have the following lemma.

Lemma 4: If at time k there are at least Io number of
consecutive measurements {yk−Io+1, . . . , yk} received by
the estimator, then Pk ≤M .

Proof: Observe that
yk
yk−1

...
yk−Io+1

 = Jxk−Io+1+H


wk−1

wk−2

...
wk−Io+1

+


vk
vk−1

...
vk−Io+1

 .
Based on the consecutive measurements {yk−Io+1, . . . , yk}
received by the estimator, one can use the following estimator
to generate a linear estimate of xk:

x̃k = AIo−1(J ′J)−1J ′


yk
yk−1

...
yk−Io+1

 .
The associated estimation error covariance is exactly M .
Since Kalman filter is well known to be the optimal linear
estimator, it implies that Pk ≤M .
Now we are ready to present the following theorem.

Theorem 1: Consider system (1) and (2) with Io ≥ 2,
and an independent packet loss process {γk}k∈N+

of raw
measurements with E[γk] = λk ∈ (0, 1). Suppose that
{λk}k∈N+ is a monotonic sequence. For any Σ0 ≥ 0, if∑∞
k=1(λk)Io = ∞, then P

(
lim inf
k→∞

Tr(Pk) <∞
)

= 1

holds .
Proof: Lemma 4 implies that, at time k, Pk ≤ M as

long as {yk−Io+1, . . . , yk} is received by the estimator. Sup-
posing that

∑∞
k=1(λk)Io =∞ and {λk}k∈N+ is monotonic,

one obtains from Lemma 1 that
∑∞
i=0

∏(i+1)Io
k=iIo+1 λk = ∞.

By Lemma 3, it implies that P
(
Pk ≤M, i.o.

)
= 1. The

proof is complete.
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As a special case, when C has a full column rank in (2),
we have Io = 1. In this case, (A,C) is called to be one-
step observable. And Theorem 1 is still valid even without
the assumption that {λk}k∈N+ is monotonic. Moreover, it
becomes a necessary and sufficient condition. This result is
presented as below.

Corollary 1: Consider system (1) and (2) with Io = 1,
and an independent packet loss process {γk}k∈N+

of raw
measurements with E[γk] = λk ∈ (0, 1). For any Σ0 ≥ 0,

if
∑∞
k=1 λk = ∞, then P

(
lim inf
k→∞

Tr(Pk) <∞
)

= 1; if

otherwise
∑∞
k=1 λk <∞, then P

(
lim inf
k→∞

Tr(Pk) <∞
)

=

0.
Proof: The proof of sufficiency directly follows from

that of Theorem 1. For the necessity, we will show that
if
∑∞
k=1 λk < ∞ then P (lim infk→∞Tr(Pk) <∞) = 0

in the following. In light of Lemma 3, the hypothesis∑∞
k=1 λk < ∞ implies P (γk = 1, i.o.) = 0, which reveals

that, for an ω ∈ {0, 1}N+ , after a sufficient large N(ω),
γk = 0, k ≥ N(ω). Consequently, Pk = h(Pk−1), ∀ k ≥
N(ω). In light of Lemma 7, there exists no M ∈ R such that

lim infk→∞ Tr(Pk) ≤ M , i.e., P
(

lim inf
k→∞

Tr(Pk) <∞
)

=

0.
In the sequel, we will consider the probabilistic conver-

gence of supk≥n Tr(Pk). Let us first define two quantities –
for a given M ≥ Tr(M), define I(M) and I(M) as follow:

I(M) = min{k ≥ 1 : Tr
(
hk(M)

)
> M}, (8)

I(M) = min{k ≥ 1 : Tr
(
hk(P )

)
> M}. (9)

Lemma 5: If A is unstable, for I(M) and I(M) defined
in (8) and (9), it is true that

I(M) ≤ I(M) <∞, ∀ M ≥ Tr(M).

Proof: See Appendix.
Similar definitions primarily appeared in [12]. In that

paper, the two quantities are used to derive the upper and
lower bounds of P

(
Pk|k ≤M

)
, where M denotes a given

positive semi-definite matrix. Different from [12], in this
paper, we will use these two quantities to characterize the
relationship between the boundness of lim supk→∞Tr(Pk)
and the statistical property of {γk}k∈N+

. The following
theorem provides with a counterpart of Theorem 1 for
supk≥n Tr(Pk).

Theorem 2: Consider system (1) and (2), and an indepen-
dent packet loss process {γk}k∈N+

of raw measurements
with E[γk] = λk ∈ (0, 1). Suppose that {λk}k∈N+

is a
monotonic sequence. Then, for a given positive real number

M ≥ Tr(M), P
(

lim sup
k→∞

Tr(Pk) > M

)
= 1 holds for any

Σ0 ≥ 0 if
∑∞
k=1(1− λk)I(M) =∞.

Proof: From the definition in (9), we have that
Tr
(
hI(M)(P )

)
> M . There must exist an ε ∈ (0, 1)

such that Tr
(
hI(M)(P − εP )

)
> M still holds. Since

limk→∞ gk(0) = P , there exists a sufficient large N and
for any t ≥ N we have 0 ≤ P − gt(0) ≤ εP , i.e.,

gt(0) ≥ (1 − ε)P . Note that, for any t ∈ N+, it it evident
that Pt ≥ gt(0) because Σ0 ≥ 0 and g(·) is monotonically
increasing. All the above observations lead to the fact that,
for any t ≥ N , Tr

(
hI(M)(Pt)

)
> M , i.e., Tr

(
hI(M)(Pk)

)
>

M always holds except for finite number of times.
On the other hand, by Lemma 1, the hypothesis implies

that
∑∞
i=0

∏(i+1)I(M)
k=i I(M)+1(1− λk) =∞ holds. Combining all

the above observations, the assertion follows from Lemma 3.

For some special systems, such as the system (1) is first-
order or C has a full column rank, a necessary condition for

P
(

lim sup
k→∞

Tr(Pk) > M

)
= 1 can also be provided.

Theorem 3: Consider system (1) and (2) with Io = 1,
and an independent packet loss process {γk}k∈N+

of raw
measurements with E[γk] = λk ∈ (0, 1). Then, for a given

M ≥ M , P
(

lim sup
k→∞

Tr(Pk) > M

)
= 1 holds only if∑∞

k=1(1− λk)I(M) =∞.
Proof: If

∑∞
k=1(1− λk)I(M) <∞, one has that

∞∑
i=1

I(M)+i−1∏
k=i

(1− λk) ≤
∞∑
i=1

I(M)+i−1∑
k=i

(1− λk)I(M)

≤ I(M)

∞∑
k=1

(1− λk)I(M) <∞,

where the first inequality is from that I(M) <∞, and that

I(M)+i−1∏
k=i

(1− λk) ≤ max

{
(1− λk)I(M) :

i ≤ k ≤ I(M) + i− 1

}

≤
I(M)+i−1∑

k=i

(1− λk)I(M).

Therefore it is straightforward to see that
P
(

Tr(Pk) ≥ hI(M)(M), i.o.
)

= 0, which completes
the proof.
For general vector linear systems without full column-ranked
C, it is challenging to give necessary conditions for charac-
terizing whether lim supk→∞ Tr(Pk) is bounded or not. In
what follows, we will provide with a sufficient condition for
the so-called non-degenerate systems, the definition of which
is originated from [13].

Definition 1: Consider a system (A,C) in diagonal
standard form, i.e., A = diag(λ1, . . . , λn) and C =
[C1, . . . , Cn]. An quasi-equiblock of the system defined as a
subsystem (AI , CI), where I , {l1, . . . , li} ⊂ {1. . . . , n},
such that AI = diag(λl1 , . . . , λli) with |λl1 | = · · · = |λli |
and CI = [Cl1 , . . . , Cli ].

Definition 2: A diagonalizable system (A,C) is non-
degenerate if every quasi-equiblock of the system is one-step
observable. Conversely, it is degenerate if it has at least one
quasi-equiblock that is not one-step observable.
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Theorem 4: Consider system (1) and (2), and an inde-
pendent packet loss process {γk}k∈N+

with a sequence
of means {λk}k∈N+ monotonic. If the system is non-
degenerate and there exists an I ∈ N+ such that

∑∞
k=1(1−

λk)I < ∞, then there exists a constant M(I) such that

P
(

lim sup
k→∞

Tr(Pk) < M(I)
)

= 1 holds for any Σ0 ≥ 0.

Proof: We first introduce a sequence of stopping time
{tj}j∈N+

as a sequence of consecutive packet arrival times
in the following:

t0 , 0,

t1 , min{k : k ≥ 1, γk = 1},
...

tj , min{k : k > tj−1, γk = 1}.

If max{j : tj ≤ k and tj+1 > k} ≥ n, it means that the
estimator has received more than n packets from the sensor
up to time k. If so, we define that

τ1 , k − ti where i = max{j : tj ≤ k and tj+1 > k},
τj , ti−j+2 − ti−j+1 for 2 ≤ j ≤ n,
τj , ∞ for j ≥ n+ 1.

To get the desired result, we need the following lemma

Lemma 6: Consider a linear system described by (1)
and (2). If max{j : tj ≤ k and tj+1 > k} ≥ n and
the system is non-degenerate, then the following inequality
holds:

Pk ≤ α
n∏
j=1

(|λ1|+ ε)2τj ,

where α is a constant independent of τj and ε can be
arbitrarily small.

Proof: It is straightforward from Theorem 4 in [13]
and the fact that |λ1| ≥ · · · ≥ |λn|.

If there exists an I ∈ N+ such that
∑∞
k=0(1− λk)I <∞,

then we can find a sufficient large positive number M(I)
satisfying

M(I) > α|λ1|n+I−2,

which gives,

M(I) > α

n∏
j=1

(|λ1|+ ε)2τj

for a small ε and any
∑n
j=1 τj ≤ n + I − 2. Given a time

index k ≥ n+ I− 2, we can compute that

P
(

Tr(Pk) > M(I)
)

≤ P
(

Tr(Pk) > α

n∏
j=1

(|λ1|+ ε)2τj

)
,∀

n∑
j=1

τj ≤ n+ I− 2

≤ P
(

less than n packets received between

time k − n− I + 2 and k
)

≤
n−1∑
j=0

(
n+ I− 1

j

)
max{λk−n−I+2, λk}j

(1−min{λk−n−I+2, λk})n+I−j−1

≤
n−1∑
j=0

(
n+ I− 1

j

)
(1−min{λk−n−I+2, λk})I ,

where the second last inequality is from the monotonicity of
{λk}k∈N+ . Thus,

∞∑
k=1

P (Tr(Pk) > M(I)) ≤
n+I−2∑
k=1

P (Tr(Pk) > M(I))

+

n−1∑
j=0

(
n+ I− 1

j

) ∞∑
k=1

(1− λk)I <∞.

By Lemma 3, its holds that P (Tr(Pk) > M(I), i.o.) = 0
even the set of events {Tr(Pk) > M(I)}k∈N+

are not
independent. The proof is complete.

Remark 2: If there exists an I ∈ N+ such that
∑∞
k=1(1−

λk)I < ∞ as assumed in Theorem 4, then we have
Tr (E[Pk]). We can argue as follows. A necessary condition
for
∑∞
k=1(1 − λk)I < ∞ is limk→∞ λk = 1. Consequntly,

there exists a sufficient large integer N such that, for any
k ≥ N , λk > λc, where λc is a critical value such that
E[Pk] ≤MΣ0 for λc < λ ≤ 1 and ∀Σ0 ≥ 0 [5].

IV. CONCLUSION

In this paper, we investigate the probabilistic convergence
of Kalman filtering with nonstationary packet losses that
are modeled by a sequence of independent, but not nec-
essarily identical Bernoulli random variables. We provide
some results on how the convergence of the prediction error
covariance matrix depends on the statistical property of the
nonstationary packet dropout process. Future work includes
the expectation bounds, weak convergence and ergodicity
properties of discrete-time Kalman filtering with nonstation-
ary random packet losses.

APPENDIX

Proof of Lemma 5: According to the fact P ≤ M that
is derived from the definition of M , one can directly verify
that I(M) ≤ I(M). To show that I(M) and I(M) are both
finite for any M ≥ M , it suffices to show that there exists
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an integer k ∈ N+ satisfying Tr
(
hk(P )

)
> M . Before

proceeding, we introduce the following lemma
Lemma 7: Suppose the system is given by (1) and (2).

Then, for any matrix X ∈ Sn+, it holds that Tr
(
hk(X)

)
≥

α|λ1(A)|2k, where α > 0 is a constant.
Proof: According to the controllability of (A,

√
Q) we

assume, one has that V , hn(0) > 0. Suppose that there
exists a real number α0 > 0 so that V ≥ α0I . Then, for
any k > n, hk(0) ≥ α0A

k−n(A′)k−n holds. Let us denote
the Schur’s unitary triangularization of A as A = UTU∗

where U is a unitary matrix matrix and T = [tij ] is an
upper triangular with tii = λi(A), i = 1, . . . , n. Since
Ak−n(A′)k−n is symmetric and positive semi-definite, one
obtains that λ1

(
Ak−n(A′)k−n

)
is real and that

λ1

(
Ak−n(A′)k−n

)
= λ1

(
T k−n(T ∗)k−n

)
= ‖T k−n‖22

= ‖

 λ1(Ak−n) ∗ ∗

0
. . . ∗

0 0 λn(Ak−n)

 ‖22
≥ |λ1(A)|2(k−n).

Therefore, we obtain that Tr
(
hk(0)

)
≥ αn|λ1(A)|2k for any

k ≥ n where αn , α0|λ1(A)|−2n. As for k = 1, . . . , n− 1,
we can take a sequence of positive real numbers, denoted by
{αk}1≤k≤n−1, such that Tr

(
hk(0)

)
≥ αk|λ1(A)|2k holds.

Taking α = min{αk : k = 1, . . . , n} > 0, we can conclude
that Tr

(
hk(X)

)
≥ Tr

(
hk(0)

)
≥ α|λ1(A)|2k, which is the

desired result.
From Lemma 7, there always exists an α > 0 such that

Tr
(
hk(X)

)
≥ α|λ1(A)|2k. Therefore, as long as we take

k ≥ d logM−logα
2 log |λ1(A)| e+ 1, the equality α|λ1(A)|2k > M holds,

and the desired result follows. �
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