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A down-sampled controller to reduce network usage
with guaranteed closed-loop performance

José Araijo, André Teixeira, Erik Henriksson and Karl H. Johansson

Abstract— We propose and evaluate a down-sampled con-
troller which reduces the network usage while providing a
guaranteed desired linear quadratic control performance. This
method is based on fast and slow sampling intervals, as the
closed-system benefits by being brought quickly to steady-state
conditions while behaving satisfactorily when being actuated
at a slow rate once at those conditions. This mechanism is
shown to provide large savings with respect to network usage
when compared to traditional periodic time-triggered control
and other aperiodic controllers proposed in the literature.

I. INTRODUCTION

The decision of when to sample and actuate in a control
system while guaranteeing specific conditions of the closed-
loop system has been the topic of much research since the
early 1960’s. This topic is highly relevant in networked con-
trol systems where communication and computation efforts
at devices operating in large scale networks, possibly battery-
operated, must be efficiently utilized. Particularly in process
control systems, requirements for sampling and actuation
rates have been devised which can range between tens of
milliseconds and tens of seconds, depending of the specific
process and task at hand [1].

Adaptive sampling for control was firstly proposed by [2]
and since then much research has been conducted on topics
ranging from adaptive sampling, multi-rate control, control
under scheduling constraints and event-based control. Multi-
rate control has been proposed due to the need to operate
several processes with different sampling rate requirements,
where the research on this topic focused mainly on the
stability analysis and robust design of such systems [3]. The
scheduling of sampling and control, using both offline and
online optimization techniques has been proposed in [4]-
[6] where the focus has been on scheduling multiple plants
competing in a single processor or a single communication
channel. Since the work in [7], many researchers have
proposed sampling and actuation policies based on events
instead of the classic periodically sampled control sys-
tems [8]. Optimal event-triggered control has been proposed
in, e.g., [7], [9], [10] considering first-order linear systems
and reset actuation inputs, while Lyapunov-based methods
that guarantee stability of the closed-loop system have been
proposed in several works, e.g., [11], [12], [13], [14], [15],
[16]. More recently, model-predictive event-triggered control
has been proposed in [17], [18]. A broad survey of event-
triggered control is found in [19]. However, in all these
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works, no guarantees are given by design that the achieved
trade-off between control performance and transmission rate
is improved with respect to the periodic case. In [20], the
authors proposed a roll-out event-triggered controller which
guarantees better control performance versus transmission
rate trade-off than periodic control and are able to quantify
this gain. However, the method is computationally intensive
and the computation of the best scheduling sequence must
be computed in a receding-horizon manner. A self-triggered
linear quadratic regulator was proposed in [21] which by
design guarantees that the obtained quadratic control cost
does not exceed a specific maximum value. The method
is numerically evaluated and is shown to achieve lower
control costs than periodic control at the same transmission
rate. However, no analytical guarantees are provided that the
transmission rate does not exceed the periodic control rate.

In this paper, we propose a down-sampling control pol-
icy which guarantees the same linear quadratic (LQ) con-
trol performance of any periodically sampled LQ con-
troller at a given period, while reducing the rate of sam-
pling/transmission. The technique is developed considering
the disturbance-free case, as well as when sporadic impulse
disturbances affect the system. The down-sampled control
policy is based on a fast and a slow sampling rate, uti-
lized within specific intervals of time in order to guarantee
the required control performance. The transient period is
performed with fast control updates, while the steady-state
control is performed at a slower rate. It was recently shown
in [22] that the optimal transmission schedule for a linear
system without disturbances and with a limited amount of
transmissions on a finite horizon, is to transmit consecutively
at the beginning of the interval. This is in line with method
we propose in this paper. With the reduction in complexity
over the aforementioned existing methods, we develop a
sampling and transmission scheme which is able to guarantee
by design a specified control performance. Additionally, one
is able to specify the slow rate according to the application
and/or system characteristics. Numerical examples validate
the down-sampled policy where we provide comparisons to
the recent work of [20] and [21] for the deterministic case.

The rest of this paper is organized as follows. Sec. II
presents the system setup and the problem formulation. The
down-sampled controller is presented in Sec. III where its im-
plementation under the absence or presence of disturbances is
proposed and analysed. Finally, numerical examples validate
the proposed mechanism and illustrate its benefits and Sec. V
concludes this paper.
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Fig. 1: Down-sampled controller architecture. The sampler
is responsible for selecting when a sample is taken, which
control law to use and when a control input is sent to the
actuator.

II. PROBLEM FORMULATION

Assume the plant is a continuous-time linear and time-
invariant system,

#(t) = Az(t) + Bu(t), (1)

with a state z(¢) € R™ and input u(t) € R™ given by a state-
feedback law and that the control performance is defined by
the normalized linear quadratic (LQ) cost

J = lim , )

where

T
JoT) _ / 2(0)7Quar(t) + u(t) Rou(t) dt,
0
and where (). > 0, R, > 0 and let (A, B) be controllable.

We deal with the discrete-time counterpart of (1) and (2)
where the sampling of the state and computation of the
control input are performed by embedded devices with a
fixed operating frequency which is governed by a time-
clock. In such systems, the controller design is typically
performed by discretizing the continuous-time system (1) for
a specific period, and optimally designing the control policy
that minimizes the discretized control cost (2) [8].

Sampling (1) with a zero-order-hold for a baseline period
h =1, gives the discrete-time system

z(k+1) = ®12(k) + Tu(k), 3)

where @), = e, T, = foh ¢4 Bds, where for h = 1 we
drop the subscript on ® and I'. Such system is affected
by impulsive disturbances w(k) € R™, occurring at times
dy, k € N, perturbing the state as follows

w(k)
Qx(k) + Tu(k)

if k=d,,
otherwise,

-]

where the time between disturbances d.i 1 — d,c > dq is
unknown, but lower bounded by §;. Moreover, we assume
that the disturbance occurs during the slow sampling interval,
ie., di + g > ts.

Cost J

Periodic
+— LQ controller

Jn

Down-sampled
controller

Rate R

Fig. 2: Problem illustration. The down-sampled controller is
designed to achieve a lower or equal cost at a lower sampling
rate, than that of any periodic LQ controller sampled at a
nominal rate. Solution region represented in red.

A. Scheduling and control

The sampling and control of the system is performed
simultaneously and governed by the sampler as depicted in
Fig. 1. Whenever a new control input is computed, it is
transmitted to the actuator over a communication network
and applied to the plant.

Let q(k) € {qr, qs} represent the current sampling mode,
which is a fast sampling mode g or slow sampling mode
qs and its evolution is governed by the transition map

q(k) = (z(k), q(k — 1)), 4)

to be designed in Sec. III. The time of the next sampling
instant 751 is dependent on the current mode and is given

by
_ T+ 1
THL = 7 + s

if (k) = qr,
if g(k) = gs,

where §s > 1, which defines the sampling and actuation
instants. Hence, the system is either sampled consecutively
or down-sampled with interval dg.

The control input computed at the controller is given by

_ [ Kra(k) if q(k) = qr,
u(k) { ng(k) if q(k) ZqZ,

where K and Kg are the controller gains. Moreover, the
switching instant between sampling modes is denoted by ¢
and the last switching time as ¢ .

(&)

(6)

B. Problem statement

Let the normalized down-sampled controller cost be Jps
and its transmission rate

T
Rps = Tlgl(ljo % Z 1<,
k=0

during the interval of time [0, c0). In the same manner, let
us denote by Jy the normalized cost of an LQ controller
periodically sampled at a nominal period dy, where 1 <
dn < g, and by Ry the average transmission rate of the
nominal controller.
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Problem 1: Given the slow sampling interval g, design
the transition map II in (4), and the state-feedback con-
troller (6) which guarantees that the down-sampled controller
achieves

1) jDS < jN while

2) R Ds < R N-

This problem corresponds to the design of a down-sampled
controller which achieves a control cost lower or equal than
that of any periodic LQ controller sampled with nominal
period dy, while utilizing a lower transmission rate.An
illustration of the problem is given in Fig. 2.

C. Preliminaries

We now present a revision of the classic discrete-time LQ
control methods which will be essential to the development
of the methods proposed in this chapter.

Assuming that system (3), sampled with a baseline period
h =1, is controlled periodically with a fixed period §, the
state-feedback control law given by

Ksa(k) if k e K>

k)= 50 7
u(k) { u(k —1) otherwise, ™
where ICE;I’” ={k € N:rem(k,6) =0 N I <k

A

I}, minimizes the normalized control cost function Js

L 77T where
% M

limr o0 TYs

J(go,:r] _ Z

kel
and
.4 B 5 A B
Qs Ns| 0 o "[Q 0] o ol
[NéT Rs| = ; e 0 R, e ds.

Let us denote by .J[">

the infinite-horizon control cost
calculated from time k =1, ] € IC([SI’OO). From [8], it is known
that the infinite-horizon control cost given by (8) under the
optimal control policy (7) is J["> = 2(1)T Psx(l), where
the solution to the infinite-horizon discrete-time Riccati
equation, Ps > 0 and the control gain are given by

P5 = ®; Ps®s + Q5 — (®5 PsT's + Ns)
(F§P5F5 + Ré)il(FgP,;(I)(; + N(ST)
K5 = —(T} PsTs + Rs) (I Ps®s + Ni ). (9
The finite-horizon control cost between time k € [I,1’], for a

system actuated with period § but discretized with baseline
period h =1 as in (3), is

i3 ] [ WG] o

where from now on we drop the subscript in ¢, R and N
for h = 1. Assuming that the controller is given by (7) with
K5 as (9) and that a sampling and control instant takes place

at time k = [ and k = I’, by induction one can show that
the cost (10) is expressed as

JET = gl 1) — ()T Pra(l) — 2 (1) Pra(l).

Note that using the state-feedback controller (7) with K
given by (9) does not minimize (10) and thus yields a sub-
optimal for the finite-horizon problem.

III. DOWN-SAMPLED CONTROLLER: DESIGN AND
ANALYSIS

In this section we propose a down-sampled controller
which solves Problem 1. The design is split between the
case where disturbances are absent and when disturbances
affect the system.

Assumption 1: We assume that §y, s and the baseline
period h = 1 are non-pathologic sampling periods [23],
so that the system remains controllable when sampled with
these sampling periods. Moreover, we assume that .J 1[~9 ool <
J0ol < g0l gy ¢ R, which implies Pp < Py < Ps.

We start by solving Problem 1 in the absence of distur-
bances, i.e., w(k) = 0, Vk.

A. No disturbance case

Without loss of generality, we present the results assuming
that the system is initialized at time k& = 0.

Theorem 1: Consider system (3) initialized at a given
initial condition x(0) with sampling and actuation governed
by (5). When w(k) = 0,Vk the down-sampled controller
transition map is defined by

_ ya ) gs ifx(k)egr
T (z(k), q(k = 1) = qr) = { qr otherwise (11
I (x(k), q(k — 1) = gs) = gs
where
Gr 2 {z(k) e R" | x(k)TApz(k) < or}, (12)

where AF = PS — PF and o = {E(O)T (PN — PF) :L‘(O) If
2(0) # 0 and since no disturbances occur, there is a single
switching between the fast and slow mode which occurs at
the switching time

te =inf{k >0:z(k) ' Apz(k) < or}. (13)

The control input u(k) in (6) has K and Kg given by (9)
for the baseline and slow period dg, respectively. Through
this design, the down-sampled controller achieves:

1) acostno larger than a nominal LQ controller and hence
stability of the closed-loop system, while

2) utilizing a lower number of samples than the nominal
controller.

Proof: We start by deriving the switching conditions,
together with the switching instant ¢5. Note that since there
are no disturbances, no normalization of the costs is required
since J g):goo) and J ][\(,)’oo) both converge to a fixed value. Thus,
one must guarantee that .J105®) < J1°°) in order to provide
a valid solution to Problem 1.
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For 2(0) # 0, the system will always initially be in a fast
mode since Jg(x(0)) > Jn(x(0)). Thus, the control cost of
the down-sampled controller from time k£ = 0 is given by

T = glooe) _ lteoe) o ltaee)
= 2(0)" Ppa(0) — x(ts)" Pra(ts) + x(ts)” Psx(ts),
(14
which has to be guaranteed to be smaller or equal than the
nominal control cost
T = 2(0)T Pya(0). (15)
The region G in (12) as well as the switching instant (13),
are achieved by re-arranging the above terms and setting
the inequality. Hence, there is a single switch from the fast
mode ¢r to the slow mode gs when z(k) reaches region
Gr. After this moment, the system stays in mode gg since
no disturbance affects the system. This defines the switching
condition (11).

The switching condition guarantees by design the stability
of the closed-loop system since the infinite-horizon cost
of the down-sampled controller (14) is guaranteed to be
bounded by a bounded infinite-horizon cost (15).

We now prove the existence of the switching time given
by (13). Due to the fact that the baseline period and §g are
well defined and 65 > dF, it holds that P >~ Pg. Moreover,
z(k) = ®%2(0), where ®p = @ + I'rKr is the closed-
loop system matrix for the baseline period and since ®p is a
Schur matrix since Kr is a stabilizing state-feedback gain.
By taking the limit of the left-hand side of the switching
condition (13) with Ap = Pg — Pr = 0, it holds that

lim z(0)7 @k POk z(0) = 0,

o k—o0

lim z(k)TApx(k)

k—o0

since @y is Schur and Ay > 0. Thus, for ¢, to exist, o, > 0,
which is always true since Py > Pp as 6y > dp.

The number of transmissions performed by the down-
sampled controller over an horizon 7T is E[g’g] = ts +

TJ;;SJ + 1, while for the nominal controller is EE?,’T] =

%J + 1. The rates of both controllers are then given by

Ry = L8 and R = 1507, Since 6y < 4, it
holds that

: .11 ploTl _ .o L0107
pm Ry = Rpg = lim (EN EDS)
11
*Efgm’

guaranteeing that a lower number of samples are transmitted
over the communication network with the down-sampled
controller. [ ]

An illustration of the behavior of the down-sampled con-
troller until time ¢, is given in Fig. 3a. Afterwards, the system
state will remain inside G since no disturbances affect the
system.

\ gp‘*.)rr(m a(dy

q(k) = qr

(a) For time k € [0,¢s) (b) Small disturbance - state re-
mains inside slow region, for

time k € [t5 , dx]

xr1 Ty
w(d) | 20) ) | )
(1) W_ZL;_ L(zs)
//‘ 3 T 4 gF N\\\ X9
R Gs I
q(k) = qs q(k) = qr

(c) Large disturbance, for time (d) Large disturbance - trajec-
ke ty,de) tory after disturbance, for time
k € [dw,ts)

Fig. 3: Illustration of the different behaviors of the down-
sampled controller with and without disturbances. The evo-
lution of the system from its initial condition until the first
mode transition is depicted in a). The disturbance in b) is
not large enough to require fast sampling. The case in c)
depicts when the disturbance takes the state outside of the
slow region, requiring the usage of fast sampling followed
by slow sampling which is depicted in d).

B. Disturbance case

We now introduce the design and analysis of the down-
sampled controller when disturbances affect the system.

Assumption 2: For simplicity of presentation, we assume
that the disturbance occurs synchronously with the nominal
controller sampling instants, i.e., d,, € IC([S\’IOO). The down-
sampled controller without this assumption is given in [24].
For the analysis presented in this section, we only consider
the interval of time between disturbances k € [d,, dx+1), Vk
as the disturbance are impulse disturbances which set the
value of z(k+1) = w(k) for k = d, Vk. Thus, by making
sure that the down-sampled controller solves Problem 1
under each interval k € [dy,dx+1), VK, one guarantees that
the down-sampled controller is a solution to Problem 1 for
the interval k € [0, 00).

We now introduce the following lemma which will be used
for the derivation of the down-sampled controller.

Lemma 1: Since the disturbance interval is lower bounded

by d4, there exists an € > 0 such that
Ty < eo(d)Te(dy), (16)

where x(d,;) is the state at the last disturbance instant. The
value of € is given by

€ = Amas (%PN@N) . (17)
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Proof: The nominal cost at time d,; + &4 is given by
) = (dy)TOR Py D na(dy),

From [25],
, it holds that

~ 5
where Oy = $<I>N - I‘NKN)ﬁ. and since

(drz+6 700) dy 700)
JN d Z JN +1
Jir1o0) o gldntdance) (&)EPNéN) (de) 2 (dy)

Thus, one can define ¢ as (17) and bound (16). This
completes the proof. [ ]
1) Switching condition: Next we give the main result
of the chapter, which characterizes the transition map (4)

illustrated in Fig. 3.
Theorem 2: Assume the system (3) is initialized at a given
initial condition x(0) with sampling and actuation governed

by (5) and t; = 0 at starting time. The transition map is
defined as

_ s | gs ifx(k) €GF
e atk ~ 1) =) 2 { 9 B0 1s)

if x(k) € Gs Nk =dx, VK
I (z(k),q(k — 1) = gs) é{ Z;T othe(rw)ise ’
(19

where

Gr 2 {a(k) € R" | a(k)" Ara(k) < or

T
Gs 2 {x(k) eR"™ | {x(lk)} As {x(lk)} > as},
and the region parameters are given by
Ar = Ps — P,

or =a(t;)" (Pn — Pr —el) a(ty),

Ps—Pn+el O
0 0

(20)

if rem(k —t;,0s) =0,
As =

T
Pr = I;N tel EG ] otherwise,
o5 = J][?”*I’k] _ Jl[:;lgflvk]’

2D
where F', E and G are given in the Appendix by (29).
The switching instant ¢, under sporadic impulsive distur-
bances w(k) is given by:

. { inf{k > ¢ : I (2(k), q(k — 1) = qr) = g5}

inf{k >t : I (2(k),q(k — 1) = gs) = qr}

The control input u(k) is defined by (6) with Kz and Kg
given by (9) for the baseline period and dg, respectively.

Through this design, the down-sampled controller achieves
a normalized cost smaller or equal to that of the nominal
controller, i.e., Jpg < Jn.

Proof: The goal of the down-sampled controller is to
achieve Jpg < Jy under sporadic impulse disturbances
w(k). In this case, after entering the slow mode, the state
may only be brought to a fast mode by a disturbance and
thus a re-switching from slow to fast mode must only occur
at the time a disturbance occurs, i.e., k = d,.

Consider the transition map (18) and (19). When the
system 1is in fast sampling mode, its state will be brought
to the region Gr enabling a switch to the slow sampling
mode (see Fig. 3a). When the system is in the slow sampling

(22)

mode, a disturbance must be large enough to bring the system
state outside of Gg, as depicted in Figs. 3c and 3d. If the
disturbance is not large enough, the system will remain in a
slow sampling mode (see Fig. 3b).

The region Gr and transition map (18) is derived in the
same manner of the switching condition in Proposition 1.
Rewriting (14) for the interval [d,;, d.41] we have that

I < g

_ Jgs’m) + JA[S)’:S’OO) _ Jng+1>w).
(23)
Given Lemma 1 and (23), we can derive the following

inequalities

) < ) e ),

Ty > gl ep(dy) T (d,).

Thus, to guarantee that J[d*"d"“) < J[d“’d”“), one can
require that J[d“’oo) Jts’oo) + J[ts’oo) < JJ[\L;“’OO) —
ex(d,{)Tx(d,{), which is enforced by QF in (20) with pa-
rameters given by (21).

The transition map for the slow sampling mode is based
on the requirement that the slow rate is used from the time
the disturbance occurs at time k = d,, onwards, if and only
if, the total cost (current cost until time & plus the cost to-go
until the next disturbance time d,1) is kept lower than that
of the nominal controller. The above condition is formulated
as

Jgh 17 ]+J[d dra+1) < J[dm 1d~]+J[d»mdh+l) vK: (24)

Recall the sampler unit keeps in memor ]y the cost history of

both controllers: J,[:L,i" Uk and J[d“ Lk Using bound (16)
from assumption 1, mequality (24) is guaranteed if

B R
where J gk,m) is given by (30). Enforcing this inequality in
the form of the region Gg, we arrive to the transition map
in (19) with parameters Ag and og given by (21).

The switching instant ¢5 in (22) follows directly from
the definitions of the transition map in (18) and (19). This
switching condition guarantees by design the stability of
the closed-loop system since the normalized cost of the
down-sampled controller is guaranteed to be bounded by the
normalized nominal cost at each disturbance interval. This
completes the proof. [ ]

The down-sampled controller designed in Proposition 2
does not give any guarantees w.r.t. the rate of transmission
since it is solely designed to guarantee that the performance
of the down-sampled controller is no worse than the perfor-
mance of the nominal controller. We analyze this issue next
by providing a minimum allowed disturbance interval which
guarantees the fulfillment of the above property.

2) Minimum allowed disturbance interval §7": We
now propose a worst-case analysis which finds the minimum
allowed disturbance interval 63“1“ so that for dy1 — d,;, >
Smin the rate of transmission of the down-sampled controller
is lower than the nominal controller, i.e., Rps < Rx.

) — (k)T (k), k= ds,
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Hence, the down-sampled controller proposed in Propo-
sition 2 is a solution to Problem 1 under sporadic impulse
disturbances.

In order to perform this analysis we require the knowledge
of the largest value (worst-case) of the switching time ¢,
for any initial condition of the state. Such value provides
the case where the largest amount of samples/transmissions
are utilized by the down-sampled controller and is achieved

through the following result.

Lemma 2: Let the switching instant be given by (22) with
q(0) = ¢r and ds and Oy be fixed. The down-sampled
controller has the maximum switching instant ¢, for a given
system (3), for any initial condition z(0), defined by:

f, —inf {k >0 Amas (ékTAFciﬁ — Py + Pp + d) < o},

(25)
where ® = ® + 'K is the closed-loop system matrix for
the fast period.

Proof: The proof follows from the switching condition
and the fact that 7 Zz < 0,Yz € R", if and only
if, Mnaz(Z) < 0 for any symmetric matrix Z = Z7
(see [25]). |

We can finally characterize the minimum allowed distur-
bance interval.

Proposition 1: Let 6y and dg be fixed. The minimum
allowed disturbance period 85" which guarantees a solution
to Problem 1 for the down-sampled controller designed in
Proposition 2 is

min ymin
6:1nin d
B 5min _ { 6min
to s+ | 4— 2| 41< |4
’ - { os J+ { oN J

where , is given by (25) in Lemma 2, with e defined in (17)
smin

d

with (i)N = ((I)N — FNKN)W.
Proof: The constraint comes directly from the require-
ment that during the interval of length 7™,

min min
6(1 5(1

Y < XN

min min
6{1 6(1

= R5s <Ry
smin _ smin_g_ smin
where Sy = (£ + [ [41) + 1, and £ =

Vg’N J -+ 1. An extra transmission is added to the down-

sampled controller since due to a disturbance, this controller
will switch to the fast period and perform a new actuation.
The number of transmissions of the nominal controller is
kept the same since this controller does not alter its behavior
when a disturbance affects the system. [ ]

IV. EXAMPLES

We now provide an evaluation of the proposed down-
sampled controller. We start by analysing the performance
of the down-sampled controller when compared to other
two methods proposed in the literature [20] for the case
when no disturbances affect the system, as in these works
no disturbances are considered. Afterwards, we analyse the
performance of the down-sampled controller under sporadic
impulse disturbances. The evaluation is performed for two

L6 4 O Periodic
° Down-sampled
- . o STC LQR
15 o 3.5 RO ETC
o o
% 14 o 2 3 o
8 o z
= o = °
FRE] o g o
512 & 0 s 2 Q
% O Z o
9% 9 o
11 %{) L5 o,
0, o & %,
9999 9 o f %van@ o9

1
1072 1071 10702 10712 1071 10792 10°
Sampling rate

(a) Two-mass and spring (b) Double integrator

Fig. 4: Comparison among different aperiodic control algo-
rithms and the traditional periodic controller in the absence
of disturbances.

different plants, a two-mass and spring system from [20],
and a classic double-integrator system [8].

Two-mass and spring: The two-mass and spring system
from [26] is modelled as a 4M-order continuous-time Sys-
tem (1) with parameters

0 0 10 0
0 0 01 0
A= —2r2 272 0 Of’ B= 10’
272 272 0 0 0
and with initial condition z(0) = [-1 1 0 O}T and

control cost matrices Q. = diag(1,1,0,0) and R. = 0.1.
Double integrator: The double integrator [8] is modelled
as a 2" —order continuous-time system (1) with parameters

-3 [

and control cost matrices @), = diag(1,1) and R, = 1.

A. No disturbance case

Under this formulation, we compare the down-sampled
controller to the traditional periodic controller, the roll-
out event-triggered controller (RO-ETC) proposed in [20]
and the self-triggered linear quadratic regulator (STC LQR)
proposed in [21]

Consider the two-mass and spring system. Fig. 4a presents
the results of the control performance of the two-mass
and spring system for different average sampling periods,
under a traditional periodic controller, the down-sampled
controller, the STC LQR [21] and the RO ETC (using the
same algorithm parameters as [20]). The control performance
for all cases is normalized on the continuous-time control
performance which is the lowest possible cost under the
given Q., R, and x(0). The displayed down-sampled con-
troller cost is the minimum achievable cost for a nominal
period dn €]h,d] and the corresponding ds was chosen as
the minimum period ensuring an average period of § over
the horizon 7. In this case, we set T' = 1150s and varied
d € [0.02,0.48]s. As for the STC LQR, we varied the
algorithm’s tuning parameter 5 € {1.05,1.1,...,1.25}. The
cost achieved by the down-sampled controller is lower than
the other methods.
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Consider now the double integrator system. Fig. 4b
presents the results of the control performance for this system
under the different average sampling periods and controller
implementations. In this case, the control cost is averaged
over 20 different initial conditions 2:(0) equally spaced in the
unit disk. Moreover, T' = 350s, § € [0.25,5] s and baseline
period h = 0.25s. As for the STC LQR, we varied again
the algorithm’s tuning parameter 8 € {1.05,1.1,...,1.5}. As
in the previous case, the down-sampled controller has a cost
smaller than the other algorithms.

In summary, the down-sampled controller has an advan-
tage over the STC LQR in the fact that, not only a lower
control cost is achieved for the same average sampling
period, but we can guarantee a specific cost for a selected
average sampling period. This is not achieved in the STC
LQR since for a specific 3 value there is no guarantee what
the sampling period will be. As expected, the cost difference
to the RO ETC is not as large as to the STC LQR since
the RO ETC method is based on a roll-out strategy which is
known for being efficient on solving combinatorial optimiza-
tion problems. Nevertheless, the down-sampled controller
requires a very low computational effort and is based on
simple switching rules, as opposed to the computationally
demanding roll-out method proposed in [20].

B. Disturbance case

The performance of the down-sampled controller under
sporadic impulse disturbances is now analyzed on the double
integrator system with baseline period h = 0.1s, dy = 10
and dg = 50, during a T = 140 s simulation interval. The
initial condition is set to z(0) = [10 1O]T and the distur-
bance occurs three times at {dy,ds,ds} = {20,60,100}s
with values

(o wia} = { o33] - [035] [ 753]
Using Proposition 1 we obtain that the minimum distur-
bance interval to guarantee that the down-sampled controller
utilizes less transmissions than the nominal controller is
Smin = 500 = 50s.

Fig. 5 depicts the time-response of the state and control
input of the system under the dual-rate controller (solid
line) and nominal controller (dashed line) as well as the
sampling instants performed by the dual-rate controller. The
normalized control cost of both controllers for the same
experiment w.r.t. the continuous-time control cost without
disturbances is also depicted in this figure. One can ob-
serve that for both controllers the system is stable and that
the down-sampled controller cost is always lower or equal
than the nominal controller. Moreover, the total number of
transmissions during the experiment was > pg = 68 and
Yy = 141. As expected, the obtained 6;“1“ is conservative
since it is computed for the worst-case scenario as defined in
Sec. III. We notice that 9 fast sample and actuation instants
occur after the experiment is initialized and at the moment
of the first disturbance. No fast sample is required when the
second disturbance occurs. This is due to the fact that the
disturbance value is small and the down-sampled controller
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Fig. 5: Time-responses for the down-sampled controller
(solid line) and the nominal controller (dashed line) under
non-zero disturbances. Sampling intervals are shown for the
DS controller, where a cross represents the transmission
instant and its height the time since last transmission. Dashed
vertical lines denote the instant where a disturbance occurs.

cost is guaranteed to be below the nominal controller cost
by the current slow sampling action. When the last and large
disturbance affects the system, 22 fast sample and actuation
instants are required.

V. CONCLUSION

In this paper, we have introduced a down-sampled con-
troller which reduces network usage while guaranteeing a
specified LQ performance under sporadic impulse distur-
bances. This method is based on fast and slow sampling
intervals with the intuition that the closed-system benefits by
being brought quickly to steady-state conditions, while be-
having satisfactory when being actuated at a slow rate once at
those conditions. Through simulations, we demonstrated the
benefits of using the down-sampled policy instead of a fixed-
rate one. Moreover, we show that this simple mechanism
provides large savings with respect to network usage when
compared to the traditional periodic time-triggered controller
and state-of-the-art aperiodic controller mechanisms.
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APPENDIX
A. Derivation of J g,m)
The infinite-horizon cost-to-go for the down-sampled con-
troller for ¢(k) = qg from time k =1, J[Sl’oo) is defined as

DT Psx(l) if l—t;,05)=0
Jg,m) :{ x%l)oo sz(l) i fem(' 51 05) (26)
s otherwise

for the case a slow transmission occurs at time & = [ or not,
respectively, where cost .J[“>) is given by

2[l,00) 1]

! @7)

Allnt —
= Jg’ s 4+ z(nh)T Psx(nd)
where n*s' is the next sampling instant of the down-sampled
controller after time k£ = [, and given by ng =1 +

(V;;:J + 1) ds. [l,nd—1]

Note that .J 5
iterated from time k € [[,n — 1] where the control input
is the last computed control input which we denote by u. If

no switching occurred between time k = [n& — g, (], then
+

is given by (10)

u = u(nf — dg), otherwise 4 = u(t; ). Thus, Ji[gl’nsil] is
given by
. ng+17l
JEmT = ST a(i)TQa(i) + 22(:) " Nu + a” Ra. (28)
=0

We can then substitute (28) in (27) and rewriting (27) as a
function of x(l) arriving to

-] [ 1)

ng+1-1

(29)

and ®(n) = ®” and I'(n) = Z;:Ol ®’T. Finally, we can
rewrite (26) as

{x(l)er {’J(Z)] if rem(l — ¢ ,05) =0

o) _ 1 1
s «O]" . [z
{ 1 } M2|: 1 ] otherwise
(30)
where

Ps 0 F—Ps ET
N IR
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