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Abstract— This paper presents the design and the exper-
imental validation of model predictive control (MPC) of a
hybrid dynamical process based on measurements collected by a
wireless sensor network. The proposed setup is the prototype of
an industrial application in which a remote station controls the
process via wireless network links. The experimental platform
is a laboratory process consisting of four infrared lamps,
controlled in pairs by two on/off switches, and of a transport
belt, where moving parts equipped with wireless sensors are
heated by the lamps. By approximating the stationary heat
spatial distribution as a piecewise affine function of the position
along the belt, the resulting plant model is a hybrid dynamical
system. The control architecture is based on the reference
governor approach: the process is actuated by a local controller,
while a hybrid MPC algorithm running on a remote base
station sends optimal belt velocity set-points and lamp on/off
commands over a network link exploiting the information
received through the wireless network. A discrete-time hybrid
model of the process is used for the hybrid MPC algorithm and
for the state estimator.

I. INTRODUCTION

The society of today is moving towards a wireless com-

munity where large numbers of mobile embedded systems

interact with each other. Common examples are handheld

communication devices exchanging information over cellular

or wireless local area networks, and wireless appliances

interacting in smart houses.

Wireless networks are also involved in a growing number

of applications in industrial automation. There are several

advantages by introducing a wireless medium between a

process and a controller, such as reduced cost due to less

wiring at system commissioning and no need for re-wiring at

system upgrade. Another advantage is in increased flexibility

in positioning sensors and actuators and in the possibility

of moving them during operation. In general, the network

technology enables intelligence to be embedded in more

devices and information to be easily exchanged between

them; hence, wireless technology makes it possible with

more dynamic and adjustable control architectures.
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Fig. 1. Experiment at the Automatic Control Lab, University of Siena.

The usage of wireless technology within feedback control

loops raises, however, new challenges. The network medium

introduces uncertainties on packets loss and transmission

delay, among the others. The impact of these uncertainties,

and the uncertainties variation depend on the network tech-

nology; certain networks guarantee the delivery of a message,

but with high delay variability, while others provide a less

reliable communication, but ensure better delay characteris-

tics. For wireless networks, the packet loss typically varies

heavily with the radio conditions, so that if the environment

is changing or the nodes are mobile, the control system needs

to handle many different network conditions.

Control over wireless networks is a young research area

without mature theory or tools, but with a lot of current

activity. A general view on the need for interaction be-

tween control and communication in the design of wireless

networks was recently introduced [1]. Open research prob-

lems in the area of control using wireless sensors networks

include choice of architectures and modular design and

implementation [2], [3]. A cross-layer framework for the

joint design of wireless networks and distributed controllers

is attempting [4], although care needs to be taken to avoid

undesirable interactions [5].

This paper advocates the use of model predictive control

(MPC) [6] as a tool to tackle control problems in such

uncertain environments arising from wireless sensor and

actuator loops. MPC is widely spread in industry for control

of complex multivariable processes [7]. Given a model of

the process dynamics, constraint specifications on system

variables (input saturations, state bounds, etc.), and desired

performance specifications, at each time step the MPC

control algorithm solves an optimal control problem, which
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depends on the current state as initial condition and on the

current reference signals, over a future prediction horizon.

The result of the optimization is a sequence of future control

moves. Only the first element of the sequence is applied

to the process, the remaining moves are discarded, and the

optimization is repeated at the next time step.

MPC based on hybrid dynamical models [8] has emerged

as a very promising approach to handle switching linear

dynamics, on/off inputs, logic states, as well as logic con-

straints on input and state variables. The associated finite-

horizon optimal control problem can be formulated as a

mixed-integer program (MIP) for which efficient solvers

are available. Extensions of the hybrid MPC formulation

introduced above have been recently proposed for stochastic

hybrid systems [9] that appears to be suitable for application

within a hybrid networked control architecture.

To handle the unreliability of the communication links

between the base station (where the MPC computations are

performed) and the process, we use the reference governor

approach [10], [11]. Here, the process stability is granted by

a local controller at the plant. The local controller receives its

reference from the remotely executed MPC algorithm, which

aims at obtaining the desired performance. Thus, the compu-

tational power required to solve the optimization problem is

moved away from the plant. The reference governor approach

was first studied in the context of unreliable network links

in [12], where the command sequences computed by the

predictive controller are used to possibly overcome packet

loss and large (possibly unbounded) delays, together with a

synchronization algorithm.

The main contribution of this paper is to present the design

and the experimental validation of hybrid MPC over wireless

links on a new laboratory process built for this purpose at

the University of Siena, see Figure 1. The process consists of

a transport belt where moving parts equipped with wireless

sensors are heated by four infrared lamps. The latter are

commanded in pairs by two on/off switches. The process is

actuated by a local controller, while a hybrid MPC algorithm

running on a remote base station sends optimal belt velocity

set-points and lamp on/off commands. The remote controller

receives information from the sensors through a wireless

network formed by Telos motes [13]. A discrete-time hybrid

model of the process is used for the design of the hybrid

MPC algorithm and a state estimator.

The outline of the paper is as follows. Section II presents

the laboratory process, the communication network, and the

corresponding mathematical models. Section III deals with

the hybrid control system design, and Section IV with the

control architecture implementation. Simulations and exper-

imental results are reported in Section V, and conclusions

and a discussion on future research directions are given in

Section VI.

II. PROCESS DESCRIPTION, MODELING, AND

ARCHITECTURE

This section describes the laboratory process, derives a hy-

brid dynamical model, and discusses how the communication
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Power and

Actuator

Fig. 2. Schematics of the process.

network is modeled in the feedback control system.

A. Physical Plant

The physical plant is shown in Figure 1. The main

components of the plant, whose schematics are shown in

Figure 2, are a belt and four infrared lamps. The belt is

actuated by an electric servo motor. The heating lamps are

placed in a row over the belt, and two on/off switches are

available to actuate them. The first switch controls lamps

1 and 3, the second switch, lamps 2 and 4. The lamps are

grouped to reduce the complexity of the model and of the

control algorithm.

To derive a dynamic model of the process we define as

states the sensor casing temperature T1 ∈ R, the sensor

temperature T2 ∈ R, and the position p ∈ R of the part

that moves along the belt. The system evolution is governed

by the differential equations

Ṫ1 = −α
(
T1 − Tss(p, u1, u2)

)
, (1a)

Ṫ2 = −β
(
T2 − T1), (1b)

ṗ = γ(uc), (1c)

where uc ∈ R and u1, u2 ∈ {0, 1} are control inputs, and

Tss : R
3 → R is a static nonlinearity. The parameters

α, β > 0 are physical constants. The continuous signal γ(uc)
corresponds to the part velocity, which is obtained through

a static nonlinear mapping γ(·) of the control command. As

regards the discrete input signals, u1 = 0 when lamps 1 and

3 are off, u1 = 1 when they are on, and similarly for u2

relatively to lamps 2 and 4. The steady-state temperature of

the sensor casing at position p, when the lamps switches are

(u1, u2), is Tss(p, u1, u2),

Tss(p, u1, u2) = f1(p)u1 + f2(p)u2 + Tamb, (2)

where Tamb ∈ R is the ambient temperature, fi(p) : R → R,

i ∈ {1, 2} describes the increase in steady-state temperature

at position p obtained by turning on the i-th switch.

B. Hybrid Model

We want to approximate the continuous-time model (1)

and the nonlinearity Tss in (2) by a hybrid model.

First, we consider a piecewise affine approximation χ of

(Tss−Tamb): we partition R into ℓ intervals {I1, I2, . . . , Iℓ},

and approximate fi, i = 1, 2, with the piecewise affine
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Fig. 3. Tss − Tamb and its piecewise affine approximation.

functions

χi(p) =

{
Ki

jp + hi
j if ui = 1, p ∈ Ij , j = 1, . . . ℓ

0 otherwise,
(3a)

i = 1, 2,

χ(p) = χ1(p) + χ2(p). (3b)

The effect of Tamb will be introduced later as a measured

disturbance. The nonlinear function and its piecewise affine

approximation are shown in Figure 3.

The continuous-time model of the physical plant is sam-

pled with sampling period Ts = 250 ms using a zero-order

hold. We obtain the following discrete-time system

x(t + 1) =





a11 0 0
a21 a22 0
0 0 1





︸ ︷︷ ︸

Φ

x(t) +





b11 0
b21 0
0 b32





︸ ︷︷ ︸

Γ

(
χ(t)
vc(t)

)

,

(4a)

y(t) =

(
0 1 0
0 0 1

)

︸ ︷︷ ︸

C

x(t), (4b)

where x = (T1, T2, p)T , and the belt velocity vc = γ(uc) is

used as system input. The motor command can be recovered

by the inversion uc(t) = γ−1(vc(t)).
In order to apply hybrid model predictive control, the

system is formulated as a mixed logical dynamical (MLD)

system [8]

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t), (5a)

y(t) = Cx(t), (5b)

E2δ(t) + E3z(k) 6 E1u(k) + E4x(k) + E5, (5c)

where u = (vc, u1, u2)
T is the input vector, and z(t) ∈ R

22

and δ(t) ∈ {0, 1}10 are the continuous and binary auxiliary

variables, respectively. The auxiliary variables describe the

piecewise affine dynamics (3).

C. Communication Network

We introduce a simple model for the communication links

between the remote controller and the plant, see Figure 4.

Let u and y denote the plant input and output, respectively,

and û and ŷ denote the signals after transmission. We have

that û(t) = u(t) and ŷ(t) = y(t) if the corresponding

packets at time t are received. Hence, we suppose that the

communication delays are negligible compared to the plant

dynamics. Moreover, we suppose that the receivers can detect

if a packet is lost, and that the detection is instantaneous. We

denote a lost packet by ǫ, so that if the command packet was

lost at time t, û(t) = ǫ.

III. CONTROL SYSTEM DESIGN

The overall control strategy uses a hybrid MPC algorithm

as a reference governor, as described in [10], [11]. We use the

Hybrid MPC implemented in the Hybrid Toolbox for MAT-

LAB [14], where the optimization problem is solved on-line

in real time using the mixed-integer quadratic programming

solver CPLEX [15].

A. Wireless Control Architecture

The control architecture we consider is a cascade con-

troller. The inner controller is placed at the plant location,

hence it is referred as local controller. The outer controller

is placed remotely with respect to the plant site, hence it is

referred as remote controller. The remote controller exploits

network links to exchange information with the plant and

the local controller. While the terms “local” and “remote”

characterize the controllers basing on their locations, the

terms “inner” and “outer” characterize them from a hierar-

chical point of view. The inner (local) controller receives

high level commands (setpoints) from the outer (remote)

controller, and regulates the process accordingly, ensuring

stability and tracking. The outer controller generates the

setpoints based on the simplified system model which results

from the plant in closed-loop with the local controller. A

simplified model makes easier the long term planning, which

is computationally intensive, while stability and tracking

need to be enforced by a local controller to avoid delays and

data losses. From an implementation point of view the local

controller must be fast, but does not need large computational

effort. A simple linear controller can in general accomplish

these tasks. On the other hand the remote controller can

run slower, but needs larger computational effort to generate

optimal plans. We implement the remote controller by hybrid

MPC.

The purpose of the network medium is to delocalize the

outer controller from the plant site. In this way it can be

placed remotely, in a powerful computer, which could not be

located in the proximity of the plant. Two network channels

are used to transmit the process measurements from the

plant to the remote controller and to transmit the setpoints

from the remote controller to the local one, respectively. The

physical channels can be the same, hence the behavior of the

packets sent in one direction is related to the behavior of the

packets sent in the opposite direction, or different, hence

the communications in different directions do not interfere

with each other. The communications can also run different

protocol enabling a large set of possible design choices.
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The controller architecture implementation is described in

Section IV.

B. The Hybrid MPC algorithm

The hybrid MPC algorithm [8] is based on the solution at
each time step t of the optimization problem

min
{u(k),δ(k|t),z(k|t)}N−1

k=0

J({u(k), δ(k|t), z(k|t)}N−1
0 , x(t)) ,

q(Qρ, ρ) + q(QxN , x(N |t) − xr) +

N−1∑

k=1

q(Qx, x(k) − xr) +

+

N−1∑

k=0

(

q(Qu, u(k) − ur) + q(Qz, z(k|t) − zr) +

+ q(Qy, y(k|t) − yr)
)

(6a)

s.t.






x(0|t) = x(t)
x(k + 1|t) = Ax(k|t) + B1u(k) + B2δ(k|t) + B3z(k|t)
y(k|t) = Cx(k|t) + D1u(k) + D2δ(k|t) + D3z(k|t)
E2δ(k|t) + E3z(k|t) 6 E1u(k) + E4x(k|t) + E5

umin − 1uρ 6 u(k) 6 umax + 1uρ, k = 0, 1, ..., N − 1
xmin − 1xρ 6 x(k|t) 6 xmax + 1xρ, k = 1, ..., N
ymin − 1yρ 6 y(k|t) 6 ymax + 1yρ, k = 0, ..., N − 1

(6b)

where N is the prediction horizon, {x(k|t)}N
k=1

is the se-

quence of predicted states at time t+k, obtained when the in-

put sequence {u(k)}N−1

k=0
is applied at time instants t+k, k =

0, . . . , N − 1 from initial state x(0|t) = x(t); {y(k|t)}N−1

k=0

is the corresponding output sequence. The matrices Qx,

Qu, Qy , Qz , QN , are weights on state, input, output,

auxiliary variable and terminal state vectors, respectively,

and q(Q,x) = xT Qx. The vectors xr, yr, ur, zr, are given

references on state, output, input and auxiliary variable vec-

tors, respectively, while umin, umax, xmin, xmax, ymin, ymax

are lower and upper bounds on inputs, states and outputs,

respectively. The variable ρ is a scalar non-negative slack

variable and 1u,1x,1y,1h are vectors of proper dimensions

composed of ones. The use of ρ allows violation of the

constraints by “softening” them, thus guaranteeing feasibility

of the optimization problem. The violation of the constraints

is penalized by the weight matrix Qρ, that is usually at least

two orders of magnitude larger than the other weights.

The reference choice and the weight function tuning are

performed by the control objectives. The acceleration and

the velocity of the belt should be low, in order to reduce

power consumption and to avoid wild dynamics, that can

cause excessive wear. We want to track a position reference

and a temperature reference and we also want the state to

remain in a predefined “safe” set, that excludes high and low

temperatures and excessive velocities. In order to enforce

these, we apply references on the output variables, on the

continuous input variables, and we impose constraints on

states. The continuous input reference is set to 0, favoring

light actuation of the belt. The output reference profile yr

defines the desired behavior of the system. The length of the

horizon N affects the performance of the controller. A longer

horizon gives a smoother behavior, a shorter one gives a more

aggressive controller. Furthermore, the longer the horizon the

more complex the optimization problem, hence the prediction

horizon N is chosen by trading off between the performance

and the available computational power.

The original sampled model needs to be extended by

two additional states. The first one is the ambient temper-

ature Tamb in (2). Such a state remains constant in the

prediction model and represents a measured disturbance. The

second additional state is the “input memory” state xu, which

is used to constrain the acceleration of the belt, not explicitly

modeled in (4). The dynamics of xu are defined by

xu(t + 1) = vc(t). (7)

The acceleration at time t for a given input vc(t) can be

computed by backward Euler approximation from xu(t)
and vc(t) as

(
vc(t) − xu(t)

)
/Ts, so that constraints on the

acceleration can be expressed as state constraints. The system

model becomes

x(t + 1) =









a11 0 0 1 0
a21 a22 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0









x(t) +









b11χ(t)
b11χ(t)
b32vc(t)

0
vc(t)









,

(8a)

y(t) =

(
0 1 0 0 0
0 0 1 0 0

)

x(t), (8b)

where x = (T1, T2, p, Tamb, xu)T .

The objective function is

J({u(k), δ(k|t), z(k|t)}N−1

0
, x(t)) ,

N−1∑

k=0

(

qvc
vc(k)2 + qz

(
1

Ts

)2
(
vc(k) − xu(k|t)

)2
+

+‖Qy(y(k|t) − yr)‖2

)

+ qρρ
2 (9a)

N = 4, qρ = 103, qvc
= 2, qz = 1,

Qy =

(
0.01 0
0 0.6

)

,

and the state and input constraints are





15
15
0



 6





T1(k|t)
T2(k|t)
p(k|t)



 6





80
80
1.2



 , (9b)

−0.1 6 vc(k|t) 6 0.1, (9c)

u1(k|t), u2(k|t) ∈ {0, 1}. (9d)
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C. Observer

In the considered process, not all of the states are measur-

able. Thus, we design an observer to estimate the unmeasured

states. The simplest applicable observer is the reduced order

nonlinear Luenberger observer

x̂(t + 1|t + 1) =Φx̂(t|t) + ξ(t)

+ K
[
ŷ(t + 1) − C

(
Φx̂(t | t) + ξ(t)

)]
, (10a)

ξ(t) =





b11χ(t|t)
b21χ(t|t)
Tsvc(t)



 , K =





k11 k12

1 0
0 1



 , (10b)

where Ts = 250 ms is the sampling period, and k11 = 5,

k22 = 0.

As referred in Section II-C, the wireless network links in-

troduce packet losses. In fact, the observer uses the received

signal ŷ, instead of the locally measured signal y. When

packets containing measurements are lost a simple estimation

method is to let the estimation evolve in open loop [16],

which means that if no measurements are received, the sys-

tem is assumed to evolve according to the hybrid prediction

model. Note that in our control problem, the packets can be

lost also in the link that connects the controller to the plant,

even if, being a TCP/IP wireless link, this is supposed to be

more reliable. When packets containing commands are lost,

the local controller keeps the previous reference, which is

considered to be the best guess of what would have been

received, and it is safe. This induces additional estimation

errors, which are currently under investigation.

IV. CONTROL ARCHITECTURE IMPLEMENTATION

The control architecture can be divided into five indepen-

dent blocks, according to Figure 4. The entire control loop

runs with 4 Hz sampling frequency.

The controller infrastructure is implemented through

Mathworks xPC-Target [17]. A remote computer, called Host

runs the MPC algorithm and solves problem (6). The com-

puted optimal action is sent via a WLAN 802.11g wireless

link to the Target computer, which is physically connected

to the belt motor and to the lamps switches by a DAQ board.

The Target, together with a servo controller that reduces the

nonlinearities of the belt motor, works as a local controller

and actuates the commands, providing the software/hardware

interface. The actions taken to overcome packet losses and

to estimate unmeasurable system states (the position of the

part) also take places at the Host.

The loop is closed by the wireless sensor network. We use

the Berkeley motes Tmote Sky from Moteiv corporation [13]

for simulating the parts to be processed on the belt. These

motes are equipped with temperature, humidity, and light

sensors, a low-power 8 MHz 16 bit microprocessor, and

2.4 GHz IEEE 802.15.4 radio communication capabilities.

The on-board temperature sensor is used for feedback, via

a wireless sensor network (WSN) which is composed by a

varying number of motes. The sensor on the belt takes tem-

perature measurements and transmits them, possibly crossing

other motes that act as intermediate nodes, to a mote acting

as base station. The base station mote is connected to

the Host computer via a USB port, hence providing the

required measurements. The information obtained from the

temperature sensor is used to update the system state, for the

next MPC iteration.

The Host runs on a 1.2 GHz Pentium-M laptop, equipped

with 632 MB RAM, MATLAB 7.1, the Hybrid Tool-

box v1.1.0, and CPLEX 9.0. The Target is implemented on

a Pentium 133 MHz, running the Mathworks xPC-Target

the real time kernel, programmable using SIMULINK. A

National Instruments PCI-6024E DAQ-board interfaces the

Target with the process.

The Hybrid MPC algorithm is implemented within the

Hybrid Toolbox for MATLAB [14]. System model (8) is

written in HYSDEL [18] and automatically converted by

the associated compiler into the MLD system (5). The

optimal control problem (6) is formulated using the Hybrid

Toolbox [14], and included into a SIMULINK model, as an

S-function. The resulting optimization problem consists of

141 optimization variables, 93 continuous and 48 binary,

respectively, and 585 mixed-integer linear inequalities. The

average time required to solve the optimization problem

using CPLEX is 17ms, with a worst-case computation time

of around 125ms, which further motivates the choice of the

sampling time.

After the control action has been computed, it is sent to the

Target computer via the wireless TCP/IP link. The local con-

troller implemented on the Target provides a simple interface

towards the DAQ and the process. The operations performed

by the Target include computing the motor command ûc(t)
from the commanded belt velocity received through the net-

work v̂c(t) by performing the inversion ûc(t) = γ−1
(
v̂c(t)

)
,

and turning on and off the lamps. Another important function

of the local controller is to hold the last received input. This

functionality handles the recovery action for the packet losses

that occur in the link from the Host to the Target.

V. EXPERIMENTAL RESULTS

The hybrid MPC controller (9) is first tuned in simulation,

also taking into account the packet loss model of Section II-

C. We set yr = (35, 0.7)T , giving temperature and position

references. First, the nominal step response (no packet loss,

perfect modeling) is simulated. The results show a small

steady state error, due to the input quantization and to the

absence of integral action. Then, a lossy feedback channel is

simulated, with packet loss profile obtained from a real sen-

sor network. The simulation results are shown in Figure 5(a),

where the dashed lines indicate the nominal response and the

solid line indicate the response of the model with packet

losses simulated from real data. The deviation from the

nominal behavior that occurs around t = 150 s is due to a

massive packet drop burst. During such an interval, the lamps

are commanded off, but the temperature keeps increasing.

Hence, the packets containing the current commands are

being dropped and an older command is being applied.

The experimental results are shown in Figure 5(b). Other

than by the packet losses, the errors are now introduced
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(a) Simulations. Nominal behavior (dashed line) and behavior with feed-
back packet losses simulated from real packet loss profile (solid line).
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(b) Experimental behavior (solid line) and nominal simulated behavior
(dashed line).

Fig. 5. Simulations and experiments on the process shown in Figure 2.

by external noise and modeling imperfections. In particular,

due to the piecewise affine approximation of (2) the input

behavior is more aggressive. However, the experimental

results (solid lines) are still close to the simulation of the

nominal model (reported as dashed lines for comparison).

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper has presented a hybrid MPC design and an

experimental demonstration of remote control over wire-

less networks. Data packets dropped in both forward and

feedback communication links can be handled with very

good results using standard techniques. The hybrid MPC

design has several advantages in comparison with traditional

controllers. The most obvious advantage is that it offers the

possibility to handle process nonlinearities and on/off inputs,

and to enforce constraints on states, inputs and outputs in

a simple and direct way. The setup has been also proven

easy to tune. The only drawback is that hybrid MPC can be

computationally intense, although it is fast enough for the

application at hand, and the worst-case computation period

can be bounded a priori by imposing time constraints on the

optimization solver.

The authors are currently working on an implementation

of a stochastic hybrid MPC controller [9] where the statistical

properties of the communication channel will be estimated

and used to adaptively constrain the working set of the

controller to ensure robustness.
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