
Scalable scheduling algorithms for wireless networked control systems

Alessandro D’Innocenzo1,2, Gera Weiss1, Rajeev Alur1, Alf J. Isaksson4, Karl H. Johansson3, George J. Pappas1

Abstract— In this paper, we address the problem of designing
scalable scheduling and routing policies over a time-triggered
multi-hop control network, when closing a considerable number
of control loops on the same network. The key idea is to formally
define by means of regular languages the set of schedules for
each control loop that satisfy a given control specification,
and to exploit operators on regular languages to compute the
set of schedules for the whole system. In order to test our
methodology, we address a mineral floatation control problem
derived from the Boliden (a swedish mining company) mine in
Garpenberg, and propose a scheduling solution that can be im-
plemented on systems compliant with communication protocols
for wireless networks (e.g. the WirelessHART specification).

I. INTRODUCTION

Wireless networked control systems are spatially dis-
tributed control systems where the communication between
sensors, actuators, and computational units is supported by a
shared wireless communication network. The use of wireless
networked control systems in industrial automation results
in flexible architectures and generally reduces installation
and maintenance costs with respect to wired networks.
Wide deployment of wireless industrial automation requires
substantial progress in wireless transmission, networking
and control, in order to provide formal tools to quantify
performance and robustness of a wireless networked control
system. The design of the control system has to take into
account the presence of the network, as it represents the
interconnection between the plant and the controller, and
thus affects the dynamic behavior of the closed loop system.
Using a wireless communication medium, new issues such
as fading and time-varying throughput in communication
channels have to be addressed, and communication delays
and packet losses may occur. Moreover analysis of stability,
performance, and reliability of real implementations of net-
worked control systems requires addressing issues such as
scheduling and routing for real communication protocols.

On this line of research, we proposed in [1] a mathematical
framework inspired by the WirelessHART specification [2],
for modeling and analyzing multi-hop wireless networked
control systems. The framework is designed for systems
consisting of multiple control loops closed over a multi-
hop communication network. In this paper, we address
the problem of designing scalable scheduling and routing
policies when closing a considerable number of control loops
on the same communication network. The key idea is to
formally define by means of regular languages the set of

1University of Pennsylvania, Philadelphia PA. 2University of L’Aquila,
Italy. 3Royal Institute of Technology, Stockholm, Sweden. 4 ABB, Vasterås,
Sweden.

schedules for each control loop that satisfy a given control
specification, and to exploit operators on regular languages
to compute the set of schedules for the whole system.

While our previous work (c.f. [1]) is focused on modeling
the dynamics of the control loops as switched linear systems
and analyzing stability of these systems, in this paper we
propose an approach based on task-graph abstraction [3],
[4], [5]. The main difference between our work and other
studies of task-graph abstractions is that we focus on finding
the set of all schedules that satisfy the task-graph constraints
as a basis for further analysis, while most of the research is
focused on finding individual optimal schedules (see e.g. [3]).

In order to test our methodology, we address a mineral
floatation control problem derived from the Boliden (a
swedish mining industry) mine in Garpenberg, and propose
a scheduling solution that can be implemented on systems
compliant with communication protocols for wireless net-
works (e.g. the WirelessHART specification).

The paper is organized as follows. In Section II we recall
the definition of Networked Control System proposed in [1]
as a mathematical framework for modeling and analysis of
control, topology, routing, and scheduling on multi-hop com-
munication networks, and propose modeling sets of periodic
schedules using Deterministic Finite Automata (DFA) and
regular languages. In Section III we propose an algorithm
for constructing a DFA that accepts the language of admis-
sible schedules for each control loop, and an algorithm for
composing the DFAs that accept the language of admissible
schedules of all control loop, in order to compute a DFA that
accepts the admissible schedules of all loops. In Section IV
we propose a case study on mineral processing to test the
methodology and algorithms developed in Section III, and
illustrate the simulation results in Section V.

II. FORMAL DEFINITION OF NETWORKED CONTROL
SYSTEMS AND SCHEDULING POLICIES

In this section we first recall the definition of Networked
Control System proposed in [1] as a mathematical framework
for modeling and analysis of control, topology, routing, and
scheduling on multi-hop communication networks. Then, we
propose modeling sets of scheduling policies using Deter-
ministic Finite Automata (DFA) and regular languages.

Definition 1: A Networked Control System (NCS) is a
tuple N = 〈D ,G ,O,I,ω,R〉, where:
• D = {Di}p

i=1 = {〈〈Ai,Bi,Ci〉,〈Ãi, B̃i,C̃i〉〉}p
i=1 models the

control loops. Each control loop in D is modeled by
a pair of triplets of matrices. The first triplet in each
pair defines the dynamics of the plant and the second

triplet defines the dynamics of the control algorithm,
both in terms of matrices of Linear Time Invariant (LTI)
systems. The number of columns in Bi must be the same
as the number of rows in C̃i, which is the number of
inputs to the plant. Similarly, the number of rows in Ci
must be the same as the number of columns in B̃i, which
is the number of measurable outputs from the plant. Let
I =∪p

i=1{yi,1. . . . ,yi,ni} be the set of input signals for the
plants, where ni is the number of columns in Bi (rows
in C̃i). Let O = ∪p

i=1{ui,1. . . . ,ui,mi} be the set of output
signals from the plants, where mi is the number of rows
in Ci (columns in B̃i). The matrices of the controller
induce a switched system with two operation modes
by Ãi(Active) := Ãi, B̃i(Active) := B̃i,C̃i(Active) :=
C̃i, Ãi(Idle) := 1 (identity matrix) , B̃i(Idle) := 0 (zero
matrix) and C̃(Idle) := C̃. The Idle mode corresponds
to times when the controller is inactive and the Active
mode models times where the controller applies a
transformation of its state and computes a new control
command.

• G = 〈V,E〉 is a directed graph that models the radio
connectivity of the network, where vertices are nodes
of the network, and an edge from v1 to v2 means that
v2 can receive messages transmitted by v1. We denote
with vc the special node of V that corresponds to the
controller. Let P be the set of simple paths in G that
start or end with the controller;

• ω : I∪O→ V assigns to every input and output sig-
nal the node that implements, respectively, sensing or
actuation;

• R : I∪O→ 2P is a map, which associates to each input
(resp. output) signal a set of allowed simple paths from
(resp. to) the controller. We require that all elements
in R(y) (resp. R(u)) start (resp. end) with ω(y) (resp.
ω(u)) and end (resp. start) with the controller, for all
y ∈ I (resp. u ∈O).

To define the scheduling of this system we construct the
memory slots graph which is obtained by splitting every
node in the connectivity graph, as follows. The nodes of the
memory slots graph are pairs 〈v,s〉 where v ∈ V is a node
in the connectivity graph and s ∈ I∪O is a signal (input
or output). The nodes 〈v1,s1〉 and 〈v2,s2〉 are connected iff
〈v1,v2〉 ∈ E and s1 = s2. This graph models the memory slots
reserved to each signal in every physical node. Edges model
the ability to copy data from a slot to another (when the
physical nodes are communicating).

Definition 2: Given an NCS N = 〈D ,G ,O,I,ω,R〉 we
define a communication and a computation schedule as a
tuple 〈η ,µ〉, where:
• A communication schedule is a function η : N →

2E×(I∪O). The intended meaning of this schedule is that
〈〈v1,v2〉,s〉 ∈ η(t) iff at time t the data related to the
signal s in v1 is copied to the space reserved for the data
related to s in v2. We require that if 〈〈v1,v2〉,s〉 ∈ η(t)
then for every v3 6= v1, 〈〈v3,v2〉,s〉 /∈ η(t). Namely, we
do not allow assignment of two values to the same
memory slot.

• A computation schedule for the ith control loop (corre-
sponding to Di) is a function µi : N→{Idle,Compute}.
The meaning of this function is that µi(t) defines the
mode of the controller at time t.

In order to formally define sets of communication-
computation schedules and apply compositional operators,
we use the formalism of Deterministic Finite Automata and
regular languages. A Deterministic Finite Automaton (DFA)
is a tuple F = 〈Q,Σ,q0,QF ,δ 〉 , where Q is a finite set
of states, Σ is a finite alphabet, q0 ∈ Q is the initial state,
Q f ⊆ Q is the set of final (accepting) states, and δ is the
transition function. A set (language) L ⊆ Σ∗ is called a
regular language if there exists a DFA that accepts all and
only the strings in L . For more details, the reader is referred
to [6].

Given a NCS N , let Σ = 2E×(I∪O)∪{Idle}: any regular
language over the alphabet Σ defines a set of schedules
for N . Regular languages allow modeling of a large class
of scheduling policies including periodic schedules, which
are mandatory in usual time-triggered protocols such as
WirelessHART (see [7] for more details).

III. ALGORITHMS FOR SCHEDULING DESIGN

Given an NCS N consisting of p control loops, we
propose one algorithm to construct a DFA that accepts the
language of admissible schedules for each control loop, and
one algorithm to compose the DFAs that accept the language
of admissible schedules of each control loop, in order to
define a DFA that accepts the admissible schedules of all
loops.

The first algorithm takes as input an NCS N =
〈D ,G ,O,I,ω,R〉 and generates as output, for each control
loop Di, a deterministic finite automaton Fi that accepts a
regular language of allowed schedules for the control loop
Di, that transmit all sensor data to the controller, and all
control commands to the actuators.

Given a NCS N , the associated routing map R, and any
node v∈V , we define the graph Rv = 〈Vv,Ev〉 which models
the set of all paths that can be used to reach the destination
node v from any other node.

Algorithm 1: Given an NCS N = 〈{Di},G ,O,I,ω,R〉,
we define for each j ∈O∪ I a deterministic finite automaton
F j = 〈Q j,Σ j,q0

j ,Q
F
j ,δ j〉 as follows:

Q j =
{

Vω(j) if j ∈ I
Vc if j ∈O

Σ j =
{

Eω(j)∪{Idle} if j ∈ I
Ec∪{Idle} if j ∈O

q0
j =
{

ω(j) if j ∈O
c if j ∈ I

QF
j =

{
{ω(j)} if j ∈ I
{c} if j ∈O

We define δ j as follows:

∀e = 〈v,v′〉 ∈ Σ j \{Idle},δ j(v,e) = v′,

∀v ∈ Q j,δ j(v, Idle) = v.

Let |O|= m and |I|= n. Given {F j}m+n
j=1 , define a determin-

istic finite automaton F = 〈Q,Σ,q0,QF ,δ 〉 as follows:

Q = Q1×·· ·×Qm+n×{0,1}
Σ = E1∪·· ·∪Em+n

q0 = 〈q0
1, . . . ,q

0
m+n,0〉

QF = QF
1 ×·· ·×QF

m+n×{1}

We remark that given a state q = 〈q1, . . . ,qm+n,qm+n+1〉 ∈
Q we interpret each component as follows. The first m
components correspond to a state q ∈ Q j, with j ∈ O, and
model that the measurement performed by the node ω(j)
is currently stored in node q. The following n components
correspond to a state q ∈ Q j, with j ∈ I, and model that
the control command destined to the node ω(j) is currently
stored in node q. The last component qm+n+1 is 1 if the
control command for the control loop has been computed,
and is 0 otherwise.

For σ ∈ Σ,q = 〈q1, . . . ,qm+n+1〉 ∈ Q, let

δ (q,σ) = 〈δ |1(q1,σ), . . . ,δ |m+n+1(qm+n+1,σ)〉.

where δ is defined as follows.

∀e ∈ Σ\{Idle},

δ | j (q j,e) =


δ j(q j,e) if (0≤ j ≤ m and qm+n+1 = 0)

or
(m+1≤ j ≤ m+n and qm+n+1 = 1)

q j otherwise

δ (〈c, . . . ,c︸ ︷︷ ︸
m+n

,0〉, Idle) = 〈c, . . . ,c︸ ︷︷ ︸
m+n

,1〉

∀q ∈ Q,δ (q, Idle) = q
Iterating the above algorithm for each control loop Di ∈D ,
we generate a set of deterministic finite automata {Si}p

i=1.
Proposition 1: The cardinality of the state space Qi of Si

is upper bounded by
m
∏
j=1
|Q j|+

m+n
∏

j=m+1
|Q j|.

The second algorithm takes as input the set of deterministic
finite automata {Si}p

i=1, and generates as output a deter-
ministic finite automaton S that accepts the set of allowed
schedules for all control loops.

Algorithm 2: Given a NCS N = 〈{Di}p
i=1,G ,O,I,ω,R〉,

and a set of deterministic finite automata {Si}p
i=1,Si =

〈Qi,Σi,q0
i ,Q

F
i ,δi〉 generated by Algorithm 1, define a deter-

ministic finite automaton S = 〈Q,Σ,q0,QF ,δ 〉 as follows:

Q = Q1×·· ·Qp

Σ = E ∪{Idle}
q0 = 〈q0

1, . . . ,q
0
p〉

QF = QF
1 ×·· ·×QF

p

For any σ ∈ Σ and q = 〈q1, . . . ,qp〉 ∈ Q, we define δ as
follows:

δ (q,σ) = 〈δ1(q1,σ), . . . ,δp(qp,σ)〉.

Proposition 2: The cardinality of the state space Q of S

is upper bounded by
p

∏
i=1
|Qi|=

p
∏
i=1

(
m
∏
j=1
|Q j|+

m+n
∏

j=m+1
|Q j|

)
.

IV. MINERAL FLOATATION CONTROL PROBLEM

In this section, we propose a case study on mineral pro-
cessing to test the methodology and algorithms developed in
the previous section. Mineral processing of ores is performed
to recover minerals or metal from the extracted raw ore.
Processes have to be optimized to yield the an acceptable
purity of the recovered mineral or metal. The main steps
involved in mineral and metal recovery from the ore are
size reduction, concentration of the pulp and de-watering.
Fore more details on mineral processing we refer to [8], [9]
and references therein. The general approach in the mineral
processing is to use several consecutive flotation cells to form
a flotation bank. As illustrated in Figure 1, the flotation cell

Fig. 1. Diagram of froth flotation cell [8].

is a tank with a pulp feed, an outlet, and froth launders
to recover the concentrate. The separation of minerals in
froth flotation depends primarily on the differences in the
hydrophobicity of the particles, as they must selectively
attached to air bubbles to be floated. Some minerals can be
directly floated, but in most cases reagents have to be added
to make the flotation process possible.

The process plant of the Boliden mine in Garpenberg is
designed to produce four concentrates: zinc, copper, lead and
precious metals. In this paper we consider the zinc flotation
process, as the zinc is the most important metal extracted
from the Garpenberg mine.

The controlled variables are listed in Table I, where Ts is
the sampling interval. Each controlled variable represents a
control loop, i.e. the number of control loops is equal to the
number of controlled variables. In this work, we will only
consider the main control loops, i.e. air flow, pulp level and
reagent. We abstract each control loop by a time constraint,
which specifies the maximum delay between sensing and
actuation. For each control loop illustrated in Table I, we
will set this constraint equal to the corresponding sampling
interval Ts. In the following section, we will propose a
scalable methodology to design scheduling policies that
allows data transmission from the sensors to the controller

TABLE I
CONTROLLED VARIABLES FOR THE GARPENBERG PLANT (FROM [10]).

LOOP CATEGORY Number of loops Loop name Ts
AIR FLOW 9 FA301 FC1 2

FA302 FC1 2
FA303 FC1 2
FA304 FC1 2
FA305 FC1 2
FA101 FC1 2
FA102 FC1 2
FA103 FC1 2
FA104 FC1 2

PULP LEVEL 6 FA302 LC1 2
FA303 LC1 1
FA305 LC1 8
FA102 LC1 8
FA103 LC1 8
FA104 LC1 8

REAGENTS 2 BL031 FC1 2
FA300 FC2 1

and from the controller to the actuators for each control loop,
within the corresponding sampling interval Ts. The main
novelty of our approach is that we focus on finding the set
of all schedules that satisfy the constraints for one control
loop (e.g. the sampling interval Ts) as a basis for on-line or
off-line admission of further control loops, instead of finding
individual (optimal) schedules.

V. A MATHEMATICA NOTEBOOK FOR SCHEDULING THE
MINERAL FLOATATION NETWORKED CONTROL SYSTEM

To experiment with the algorithms developed in Sec-
tion III, we extended the Mathematica based tool described
in [1]. With the extension, the tool supports specifications
of the form “the data from all sensors has to be sent to
the controller, then a computation of the control signals is
carried, and after that all the control signals are sent to the
actuators”. This requirement needs to be satisfied in each
period of the schedule, and the designer can also specify an
upper time bound for the round trip to complete.

The tool translates the requirement to an automaton based
on the algorithms described in Section III. Once the set
of schedules is specified by an automaton, one can extract
schedules that satisfy the requirement (corresponding to
paths from the initial state to a final state). The main
advantage of using automata to represent sets of schedules is
that this representation allows operation such as intersection,
concatenations and union. For example, we can intersect the
requirements of one control loop with the requirements of
another loop. Automata based representations can be used
to analyze combinations of constraints including timing (as
studied in this paper), stability (as studied in [11]), and
periodic requirements (as discussed in [1]).

We continue with a more technical description of the tool
extension we developed for this study.

We propose to use symbolic representation of automata
because direct explicit application of Algorithm 1 and Algo-
rithm 2 have potential scalability limitations. Specifically, as
stated in Proposition 2, the number of states in the product
automaton grows exponentially with the number of control
loops. For example, with the seventeen loops present in the
Mineral Flotation Control case study, the computation of the

product automaton is not practical with direct application of
current versions of tools such as GOAL [12], JFLAP [13],
and SPIN [14].

Symbolic algorithms avoid building the automaton ex-
plicitly; instead, they maintain a compact representation of
its transition relation. For example, we use the NuSMV
symbolic model checker [15] which combines Binary De-
cision Diagrams (BDDs) [16] and SAT based model check-
ing [17]. The tool allows verification of Temporal Logic [18]
properties of a transition system expressed in the SMV
input language [15]. Specifically, for each control loop,
we use Algorithm 1 to generate a module in the SMV
modeling language representing the transition relation of the
automaton F described in Section III. Then, we apply the
compositional semantics of the SMV modeling language to
combine the modules according to the semantics described
in Algorithm 2.

A. Example
Before we discuss the case-study itself, let us begin with

a simple example that shows how the tool is used and
demonstrates the translation. For this example, consider the
topology depicted in Figure 2. The SMV code generated for
this example is listed in Figure 3.

Plant 1

Plant 2

1

2

3

4

5

6 7

Controller

Fig. 2. An example of a multi-hop control network. Circles represent nodes
with wireless communication capabilities, solid lines represent radio con-
nectivity and dashed lines represent actuation/sensing. Specifically, node 1
is both a sensor and an actuator of Plant 1, node 2 is a sensor of Plant 1
and of Plant 2 and node 3 is an actuator of Plant 2.

The code consists of three sections, as follows. The
first section corresponds to the constraints imposed by the
second control loop (Plant 2), the second section models the
constraints imposed by the first control loop (Plant 1), and
the last section contains the main module defining the shared
variables and the temporal logic property that SMV is asked
to dispute. A more detailed look into this code follows.

Looking more closely into the first section of the code,
one can see that it specifies a partial order of assignment to
the shared variable bus. More specifically, the flag done
can only be positive if there are times t5 ≥ t4 ≥ t3 > t2 ≥ t1
such that bus=e2to5 at time t1, bus=e5toc at time
t2, bus=ecto7 at time t4, bus=e7to6 at time t5, and
bus=e6to3 at time t6. The idea is that an assignment of the
form bus=eito j at time t models that the bus is scheduled
to send a message from node i to node j at the tth slot of the
schedule. In particular, all sequences of assignments to the
variable bus that are consistent with the first module (called

MODULE loop2(bus)
VAR

cnt:0..6;
ASSIGN

init(cnt):=0;
next(cnt):=case

bus=e2to5 & cnt=0 : 1;
bus=e5toc & cnt=1 : 2;
bus=bus & cnt=2 : 3;
bus=ecto7 & cnt=3 : 4;
bus=e7to6 & cnt=4 : 5;
bus=e6to3 & cnt=5 : 6;
1:cnt;

esac;
DEFINE

done := cnt=6;

MODULE loop1(bus)
VAR

in1:0..2;
in2:0..2;
out1:0..3;

ASSIGN
init(in1):=0;
init(in2):=0;
init(out1):=0;

next(in1):=case
bus=e1to4 & in1=0 : 1;
bus=e4toc & in1=1 : 2;
1:in1;

esac;

next(in2):=case
bus=e2to5 & in2=0 : 1;
bus=e5toc & in2=1 : 2;
1:in2;

esac;

next(out1):=case
bus=bus & allin & out1= 0 : 1;
bus=ecto4 & allin & out1= 1 : 2;
bus=e4to1 & allin & out1= 2 : 3;
1 : out1;

esac;
DEFINE

allin := in1=2 & in2=2;
done := out1=3;

MODULE main
VAR

bus:{e1to4, e2to5, e4to1, e4toc, e5toc, e6to3,
e7to6, ecto4, ecto7, Idle};

l1:loop1(bus);
l2:loop2(bus);

SPEC
AG !(l1.done & l2.done);

Fig. 3. SMV code generated for the system depicted in Figure 2.

loop2) correspond to schedules in which data is sent from
node 2 (the only sensor of Plant 2) to node 5 and later on
from node 5 to the controller and so on. Note that t3 must
be strictly grater than t2 because we want to allow time for
the computation of the feedback signal. This corresponds to
the line bus=bus & cnt=2 : 3; in the SMV code.

The second section of the code is similar in nature to
the first one. However, we have to be more careful because
Plant 1 has two sensors. In the case of multiple sensors, we
have to make sure that all inputs are sent to the controller
before the computation of feedback signal is carried (more
than one step before starting to send messages towards the
actuator). This is achieved by defining the flag allin which
becomes positive only after both inputs are sent to the

controller and conditioning the run of the counter out1 on
that. This assures that the flag done becomes positive only
if the schedule contains a sequence of messages that allows
an update of the actuator based on data from both sensors.

Note that each module in the SMV code corresponds to
the automaton F described in Section III. Specifically, the
state of the automaton F j, capturing the node that contains
the recent value of the signal j, is modeled by the variables
in1,. . . ,inn and out1,. . . ,outm that count how much of
the routing path of the signal is executed (e.g. the state of
Fy1 is the in1’th element of routing[y1]) .

The last section of the code defines the shared variable
bus. As mentioned above, sequences of assignments to
this variable correspond to schedules. Instantiating copies
of loop1 and of loop2, with this variable passed as a
parameter, guarantees that only schedules that are consistent
with the constraints posed by the two control loops are
possible. Then, we ask NuSMV to refute the temporal logic
property AG !(l1.done & l2.done) which says that
no schedule can be consistent with the constraints posed
by both loops. In the case of the example that we are
considering, since there are schedules that are consistent
with both loops, NuSMV spits a counter example which
is a sequence of assignments to bus. This sequence of
assignments can be interpreted as a schedule that allows,
in every cycle, to collect data from all sensors, carry the
computations, and send commands to all actuators.

B. Case Study

We continue by summarizing our experience with appli-
cation of the technique, demonstrated by the above example,
to the mineral floatation networked control system.

The input to the tool is a textual description of the graph
depicted in Figure 4. As illustrated in the figure, the network
has three layers. Each node in each layer is connected to
all the nodes in the layer below it. Only the nodes in
the third layer can communicate with the controller. All
communication links in this case-study are bidirectional.
Each wireless node is both a sensor and an actuator of a
single-input-single-output plant.

Given a description of the above topology, the tool can
generate an SMV code similar to the one shown in Figure 3.
Note that, in principle, we also need to specify a routing path
for each signal. In practice however, if a routing path is not
explicitly specified, the tool automatically selects a minimal
path from the sensor to the controller (for input signals) or
from the controller to the actuator (for output signals).

The SMV code for the case-study contains seventeen
modules, one for each control loop, and a main module.
Since each control loop has one input and one output, all
seventeen modules are similar to the module called loop2
in the listing depicted in Figure 3. It takes NuSMV about
two minutes (on 2 GHz Intel Core Duo with 1 GB of RAM
memory MacBook 1.1) to dispute the claim that there is
no schedule that is compatible with all seventeen loops and
to produce a counter example from which a valid schedule
can be extracted. If we want to look for the shortest period

R1 R2

Controller

PL1 PL2 PL3 PL4 PL5 PL6

AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9

Fig. 4. Topology of wireless nodes. R is a shorthand for REAGENTS, PL
is a shorthand for PULP LEVEL, and AF is a shorthand for AIR FLOW.
Each node is both an actuator and a sensor of the respective plant. Plants
are not drawn to avoid cluttering.

with this property, we can add a counter in the main module
that counts the length of the schedule. Once such a counter
is defined, we can add the requirement that the schedule
is smaller than a constant. Starting with the length of the
original schedule, we can use binary search to find the
minimal such constant. This gives us the shortest admissible
schedule. A similar procedure can also be used to optimize
other properties of the schedule.

C. Input Language

As discussed above, the SMV code is generated automati-
cally. For this paper, we developed a Mathematica notebook
that takes a description of the wireless control network and
produces the SMV code. For example, the input from which
the SMV code in Figure 3 is generated is displayed in
Figure 5. The specification consists of: (1) A specification of
the nodes that act as sensors and actuators to the loop; (2)
A description of the connectivity graph; (4) An assignment
of routing paths to the input and output signals. Note that
the routing paths are modeled as lists of lists because, in
general, we may allow more than one possible routing per
signal. Multiple paths are not used in the example nor in the
case-study, but are supported by the tool. One way to use
this feature is to allow all paths in the graph and let SMV
choose the best combination of routing paths automatically.

REFERENCES

[1] R. Alur, A. D’Innocenzo, K. Johansson, G. Pappas, and G. Weiss,
“Modeling and analysis of multi-hop control networks,” in Real-Time
and Embedded Technology and Applications Symposium, RTAS09,
2009.

[2] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, and
W. Pratt, “Wirelesshart: Applying wireless technology in real-time
industrial process control,” in 14th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2007.

[3] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, “Optimal
scheduling strategies in a multiprocessor system,” IEEE Transactions
on Computers, vol. 21, no. 2, pp. 137–146, 1972.

numOfLoops = 2;

sensors[1] = {1,2};
actuators[1] = {1};
sensors[2] = {2};
actuators[2] = {3};

G = sym[{1→ 4,4→ 8,8→ c,2→ 5,5→ c,3→ 6,6→ 7,7→ c}];

routing [y1,1] :={{1,4,c}};
routing [y1,2] :={{2,5,c}};
routing [y2,1] :={{2,5,c}};
routing [u1,1] :={{c,4,1}};
routing [u1,2] :={{c,7,6,3}};

Fig. 5. Formal description of the wireless control network depicted in
Figure 2. This text is used as an input to a Mathematica based tool that
automatically generated the SMV code listed in Figure 3 from it.

[4] Y. K. Kwok and I. Ahmad, “Benchmarking the task graph scheduling
algorithms,” in Parallel Processing Symposium, 1998. IPPS/SPDP
1998. Proceedings of the First Merged International... and Symposium
on Parallel and Distributed Processing 1998, pp. 531–537.

[5] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract
task graph: a methodology for architecture-independent programming
of networked sensor systems,” in EESR ’05: Proceedings of the 2005
workshop on End-to-end, sense-and-respond systems, applications and
services. Berkeley, CA, USA: USENIX Association, 2005, pp. 19–24.

[6] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[7] “Tdma data link layer,” HART Communication Foundation,
HCF SPEC-075 Revision 1.0, 2007.

[8] H. Lindvall, “Flotation modelling at the garpenberg concentrator using
modelica/dymola,” Ph.D. dissertation, Uppsala University, 2007.

[9] M. De Biasi, “Simulation of process control with wirelesshart net-
works subject to packet losses,” Master’s thesis, ABB Corporate
Research, Royal Institute of Technology, 2008.

[10] V. Ercoli and G. Fiore, “Scheduling for wireless control in a wire-
lesshart network,” Master’s thesis, University of L’Aquila, Royal
Institute of Technology, ABB Corporate Research, 2009.

[11] G. Weiss and R. Alur, “Automata based interfaces for control and
scheduling,” in Hybrid Systems: Computation and Control, HSCC,
2007, pp. 601–613.

[12] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, W.-C. Chan, and C.-J. Luo, “Goal
extended: Towards a research tool for omega automata and temporal
logic,” in TACAS, 2008, pp. 346–350.

[13] S. Rodger, Jflap-an Interactive Formal Languages and Automata
Package. Boston: Jones and Bartlett, 2006.

[14] G. J. Holzmann, The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, September 2003.

[15] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), ser.
LNCS, vol. 2404. Copenhagen, Denmark: Springer, July 2002.

[16] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, no. 3, pp. 293–
318, 1992.

[17] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” in Formal Methods in System Design.
Kluwer Academic Publishers, 2001, p. 2001.

[18] A. Pnueli and Z. Manna, The Temporal Logic of Reactive and
Concurrent Systems: Specification: 001, 1st ed. Springer-Verlag
Gmbh, December 1991.

