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a b s t r a c t

This paper proposes a novel method for information management of a networked system for the
purpose of efficient state estimation. Data shared between entities is transmitted over a common
communication network. Based on the notion of Value of Information (VoI), we design a prioritizing
scheduler in which systems determine the benefit of sharing their real-time data to improve state
estimation accuracy. The system with the highest VoI is granted a time slot to provide its data. By
using a rollout strategy, feasible algorithms are developed for computing the VoI-based priorities. For
decoupled subsystems, performance certificates of the VoI-based strategy are derived. An automotive
case study evaluates the proposed approach.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCS) can be seen as a compound
of self-contained sensors, controllers, data aggregators, and su-
pervisors exchanging data to achieve a joint objective. NCS com-
monly have two characteristics: (i) real-time data and decision
making are distributed, (ii) data shared among entities is trans-
mitted over a common network. If the communication bandwidth
becomes sparse, then a key challenges is to develop scheduling al-
gorithms that make use of the resource efficiently while ensuring
the successful delivery of important data packets for keeping state
estimates consistent among the entities. What makes such design
difficult is the concurrent satisfaction of real-time requirements
that vary among the subsystems over time. This fact imposes the
necessity of a close interaction of state estimation and commu-
nication while disqualifying the usage of purely static solutions
such as time-trigged schedulers.

Prioritizing data packets based on their impact on the state
estimation accuracy is a promising approach to address the afore-
mentioned challenge. In this work, we design a novel prioritizing
scheduler for distributed state estimation, in which priorities are
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based on the Value of Information (VoI) related to estimation
accuracy.

The idea of using the system state or measurements to de-
termine channel access for NCS has been prevalent for some
time now (Otanez, Moyne, & Tilbury, 2002; Walsh & Ye, 2001;
Yook, Tilbury, & Soparkar, 2002). In Walsh and Ye (2001), the
Try-Once-Discard (TOD) protocol uses Maximum Error First for
prioritization. The focus of the literature on TOD including the
aforementioned works has been predominantly on proving sta-
bility of NCS. Though significant performance improvements are
indicated in these works, there has been no certification that
TOD always outperforms its time-triggered counterpart to the
best knowledge of the authors. Using VoI gives us a systematic
method for: (i) determining priorities similarly as for TOD and (ii)
certification for the case of decoupled systems. The concept of VoI
is well-known in information analysis where it is defined as the
price a decision maker is willing to pay for taking the information
into account (Howard, 1966). It is extensively applied in diverse
areas such as information economics (Arrow, 1984; Bikchan-
dani, Riley, & Hirshleifer, 2013), data fusion (Antunes, Heemels,
Hespanha, & Silvestre, 2012; Gupta, Chung, Hassibi, & Murray,
2006; Krause & Guestrin, 2009) and sensor sampling (Antunes &
Heemels, 2014; Soleymani, Hirche, & Baras, 2016).

Our main contribution is the development of a dynamic prior-
ity scheme for scheduling real-time data over a shared network
for state estimation. The novel feature is the introduction of a
variant of VoI for calculating priorities. In Howard’s original VoI
formulation, it is presumed that the actual target information, of
which the VoI is computed, is not known beforehand (Howard,
1966). Contrary to the literature on VoI, our approach takes
real-time data into account when computing its VoI. Tractable
expressions for the VoI are derived by using a rollout strategy
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Fig. 1. NCS of M systems sharing a communication network.

similarly to Antunes and Heemels (2014). This strategy assumes
that the future sensor schedule is predetermined by a baseline
heuristic (Bertsekas, 1995). For decoupled systems, we show that
the proposed scheduler is identical with the optimal centralized
decision rule based on the rollout strategy. For a time-triggered
scheduler as baseline, we can ensure that our approach outper-
forms the time-triggered scheduler with regard to its estimation
accuracy. An automotive case study finally illustrates the benefits
of the VoI scheduler. Parts of this paper have been presented
in Molin, Esen, and Johansson (2016), Molin, Ramesh, Esen, and
Johansson (2015a). The main innovation of this work is the design
of the VoI-based scheduler for the coupled case. This paper is
organized as follows. Section 2 defines the NCS model. Section 3
develops the VoI-based scheduling scheme, which is divided into
two parts analyzing the coupled and the decoupled system class.
Section 4 gives a comparative study on a platooning use case.

2. Networked estimation model

An overview of the NCS is given in Fig. 1. We consider a set of
M estimators, indexed by j, 1 ≤ j ≤ M that observe a common
process. The process state evolves by

xk+1 = Axk + wk,

yjk = C jxk + v
j
k

(1)

with state xk ∈ Rn, measurement yjk ∈ Rmj , system matrices
A ∈ Rn×n, C j

∈ Rmj×n and statistical assumptions: x0 ∼ N (x̄0, R0),
R0 ∈ Rn×n, wk ∼ N (0, Rw), Rw ∈ Rn×n, v

j
k ∼ N (0, Rv,j),

Rv,j ∈ Rmj×mj . The initial state x0, the process noise wk and the
measurement noise v

j
k are assumed to be mutually independent.

The sensor fusion architecture consists of local state estimators,
the fusion center and the data management that coordinates the
traffic between subsystems and the infrastructure. In this paper,
we model the uplink channel as a limited resource, which allows
the transmission of at most one data packet at each time step k,
i.e. only one system can transmit its state estimate to the fusion
center at a time. The downlink channel broadcasts the fused
state estimate to all systems at each time step. For simplifying
the analysis, we assume that the estimate x̂jk has fused all data
available at time k. The state estimation procedure of system j
follows the subsequent steps.

(1) Local state prediction
(2) Local state update with measurement yjk
(3) Determining priority according to VoI
(4) Data transmission
(5) Local state update with broadcasted estimate

As the infrastructure broadcasts the state estimate at each time
k, any system has at least as much information as the infras-
tructure. The fused estimate x̂0k at the fusion center and the local
estimate x̂jk transmitted at time k from system j are identical, as
the infrastructure will not provide any new data to be fused. Let
sk ∈ {1, . . . ,M} ∪ {∅} = I be the system transmitting at time k,
where sk = ∅ denotes that no system transmits. Then, we have
x̂0k = x̂skk . Denote x̂jk and P j

k the state estimate and the covariance
at the end of the data fusion procedure. The local state estimate
for system j can then be written as

x̃jk|k−1 = Ax̂jk−1, (2)

x̃jk = x̃jk|k−1 + K j
k(y

j
k − C jx̃jk|k−1), (3)

where we define x̃j0|−1 = x̄0. Given the index sk of the transmitting
system at time k, we fuse the local estimate x̃jk with x̃skk by
using the best linear unbiased estimator (BLUE) according to Bar-
Shalom, Willett, and Tian (2011), Li, Zhu, Wang, and Han (2003),
i.e.,

x̂jk =

{
x̃jk + K sk,j

k (x̃skk − x̃jk) j ̸= sk,

x̃jk j = sk.
(4)

To keep the computation of the covariance matrices tractable, we
introduce the following assumption.

Assumption 1. The random variables sℓ, ℓ < k, are assumed to
be sample-path independent.

The above assumption allows us to resort to first- and second-
order statistics. Assumption 1 can be justified as signaling data sk
contributes only little to the state estimate compared
to the broadcast estimate x̂skk , see Anantharam and Verdu (1996)
and Molin, Sandberg, and Johansson (2015b). Considering As-
sumption 1, the filter gains K j

k and K ij
k , where i = sk can be

computed as in Anderson and Moore (2012), Bar-Shalom et al.
(2011) by

K j
k = P̃ j

k|k−1C
j(C jP̃ j

k|k−1C
jT

+ Rv,j)−1,

K ij
k = (P̃ j

k − P̃ ij
k )(P̃

j
k + P̃ i

k − P̃ ji
k − P̃ ij

k )
−1.

The calculation of the covariances P̃ j
k|k−1, P̃ i

k and the
cross-correlations P̃ ji

k , P̃
ij
k can be found in the Appendix.

3. VoI-based scheduling design

The design of the scheduling variable sk that determines the
information flow is the subject of this section.

3.1. Synthesis of priorities

The priority-based scheduler aims at the minimization of the
expected value of the weighted squared error

J =

N−1∑
k=0

e⃗TkΓke⃗k (5)

over horizon N with Γk ≥ 0 and e⃗Tk = [ e1k
T

· · · eMk
T

],
ejk = xk − x̂jk. The development of the scheduler is based on
two complementary notions aiming at minimizing (5): VoI and
rollout algorithms. The priorities are based on the VoI given the
data at system j. The VoI is defined as the benefit in terms of
decreasing J by taking data of system j at time k into account.
The computation of the VoI in this setting is a difficult task,
as scheduling rules must be determined for the entire horizon
that lead to complex cost-to-go functions. Moreover, dynamic
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programming fails due to the distributed nature of the scheduler.
This motivates us to use the rollout strategy (Bertsekas, 1995) as
an approximation technique that presumes a baseline heuristic
for the future schedule.

Definition 2. A baseline heuristic is a static scheduling sequence
{s̄0, . . . , s̄N−1}, s̄k ∈ I, over horizon N .

The VoI of system j is defined as the difference of the cost-to-
go when no estimate is sent at time k and the cost-to-go when
sending x̃jk. In both cases, a baseline heuristic is used in future
steps. We refer to this assumption as the rollout strategy. The
cost-to-go function is computed based on the data I jk at system
j defined as

I jk+1 = {I jk, y
j
k+1, x̂

sk
k , sk} (6)

with I j0 = {yjk}. The decision rule for data scheduling of the
distributed estimators is defined as

sk = argmax
1≤j≤M

VoIjk, (7)

VoIjk = E[J|I jk, sk = ∅] − E[J|I jk, sk = j]. (8)

where VoIjk denotes the priority of system j at time k. In case,
there are multiple subsystems with the same VoI, an arbitrary
subsystem is selected.

3.2. Scheduling coupled estimators

This section develops a feasible method for approximating the
VoI. First, we reformulate (8) into

VoIjk=
N−1∑
ℓ=k

tr
[
Γℓ

(
E[e⃗ℓe⃗Tℓ |I

j
k, sk =∅]  

≈Q j,0
ℓ

−E[e⃗ℓe⃗Tℓ |I
j
k, sk = j]  

≈Q j,1
ℓ

)]
,

where Q j,0
ℓ and Q j,1

ℓ denote approximations of the error covari-
ances that arise from two assumptions imposed next. Let ∆k =

ẽk− e⃗k with ẽk = [(ẽ1k)
T, . . . , (ẽMk )T]T, ẽjk = xk− x̃jk and ∆

j
k = ẽjk−ejk.

Then,

E[e⃗ke⃗Tk |I
j
k, sk = ∅] = E[ẽkẽTk |I

j
k]

= E[e⃗ke⃗Tk |I
j
k,sk = j] + E[e⃗k∆T

k |I
j
k,sk = j]

+ E[∆ke⃗Tk |I
j
k,sk = j] + E[∆k∆

T
k |I

j
k,sk = j] (9)

To compute this term, we introduce two assumptions.

Assumption 3. Let sk = j. For i ̸= j, assume that

∆i
k ≈ ∆̂i

j,k = E[∆i
k|I

j
k]. (10)

Assumption 4. Assume that

E[e⃗ℓe⃗Tℓ |I
j
k, sk = j] ≈ E[e⃗ℓe⃗Tℓ |sk = j],

E[e⃗ℓ∆̂
T
k |I

j
k, sk = j] ≈ E[e⃗ℓ∆̂

T
k |sk = j].

Regarding Assumption 3, we have ∆
sk
k = 0. To facilitate

computations, we can take the simple estimate ∆̂i
k = Ax̂0k−1 −

x̃jk, as done in Section 4. Assumption 4 holds true in case of a
Kalman filter in the LQG context, but not necessarily for any BLUE,
see Anderson and Moore (2012). Considering Assumptions 3 and
4 for Q j,0

k , we can write

Q j,0
k = E[e⃗ke⃗Tk |sk = j] + E[e⃗k∆̂T

j,k|sk = j]

+ E[∆̂j,ke⃗Tk |sk = j] + ∆̂j,k∆̂
T
j,k = hk(P⃗k−1, j) + ∆̂j,k∆̂

T
j,k

Fig. 2. Remote estimation of decoupled systems.

with the covariance matrix P⃗k = E[e⃗ke⃗Tk] where the ijth block
matrix entry [P⃗k]ij = P ij

k , i ̸= j is the cross-correlation of eik
and ejk and [P⃗k]jj = P j

k the covariance matrix of ejk, and hk(·) is
defined in (A.1). Equality holds due to the orthogonality principle
for BLUE (Kay, 2013). Applying (A.1) onto Q j,0

k and onto Q j,1
k and

by taking into account Assumption 4, we obtain the recursion

Q j,0
ℓ = hℓ(Q

j,0
ℓ−1, s̄ℓ)

Q j,1
ℓ = hℓ(Q

j,1
ℓ−1, s̄ℓ)

k < ℓ ≤ N − 1, (11)

with Q j,1
k = hk(P⃗k−1, j). Eventually, this gives us an approximation

of VoIjk that can be expressed as

V̂oI
j
k =

N−1∑
ℓ=k

tr
[
Γℓ

(
Q j,0

ℓ − Q j,1
ℓ

)]
. (12)

3.3. Scheduling decoupled estimators

This section analyzes the important special case, in which
M decoupled systems need to be monitored over the shared
network, see Fig. 2. In this system class, we establish a link
between the VoI-based approach and the optimal law minimizing
the mean of J in (5). This highlights the benefits of the rollout
strategy, as we can compute the VoI explicitly and it allows us to
obtain performance guarantees related to the baseline schedule.
What makes this system class amenable to analysis is the decou-
pling of each local estimate that constitutes to be the minimum
mean-square estimator (MMSE) eliminating the need for further
assumptions.

3.3.1. Decoupled systems model
Consider M isolated systems as depicted in Fig. 2. Related

to (1) with partitioned state xk = [x1k, . . . , x
M
k ]xjk ∈ Rnj , and cost

(5), the system is restricted to

A = diag[A1, . . . , AM
] Rw = diag[R1

w, . . . , RM
w ],

Γk = diag[Γ 1
k , . . . , Γ M

k ] C j
= [0, . . , 0, C̃ j, 0, . . , 0].

(13)

With slight abuse of notation, we assume that x̂jk ∈ Rnj is the local
state estimate of xjk. Then, the cost J in (5) is

J =

M∑
j=1

N−1∑
k=0

ejk
T
Γ

j
ke

j
k (14)

with ejk = xjk − x̂jk. At the local observer j, the Kalman estimate is
computed by the recursion

x̃jk = x̃jk|k−1 + K j
k(y

j
k − C̃ jx̃jk|k−1) (15)
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P j
k = (I − K j

kC
j)P j

k|k−1 (16)

x̃jk+1|k = Ajx̃jk|k−1 (17)

P j
k+1|k = AjP j

k(A
j)T + Rw,j (18)

where K j
k = P j

k|k−1(C̃
j)T(C̃ jP j

k|k−1(C̃
j)T + Rv,j)−1 and x̃0|−1 = x̄0,

P j
0|−1 = Rj

0. To circumvent Assumption 1, we apply a result
from Ramesh, Sandberg, and Johansson (2013) by restricting the
admissible VoIjk’s to be symmetric in the discrepancy of local
and remote estimate. Then, Ramesh et al. (2013) shows that the
MMSE at the fusion center for system j is

x̂jk =

{
x̃jk sk = j

x̂jk|k−1 sk ̸= j
(19)

where x̂j0|−1 = x̄0, x̂
j
k|k−1 = Ajx̂jk−1 and define ejk|k−1 = xjk − x̂jk|k−1.

We shall see in the next section that the derived VoIjk is indeed
satisfying the above restriction.

3.3.2. Computation of priorities
Since the systems are decoupled, we omit the broadcast infor-

mation x̂jk, i.e. the information available for computing priorities
is Ĩ jk+1 = {Ĩ jk, y

j
k+1, sk}. As data from system j is not beneficial for

state estimation in the other systems i ̸= j, we obtain a simplified
expression for (8).

VoIjk=
N−1∑
ℓ=k

[
E[ejℓ

T
Γ

j
ℓe

j
ℓ|Ĩ

j
k, sk ̸=j]−E[ejℓ

T
Γ

j
ℓe

j
ℓ|Ĩ

j
k, sk=j]

]
. (20)

Note that we implicitly assume that the baseline {s̄k+1, . . . , s̄N−1}

takes over in the future for system j. For the running cost, the first
term can be written as

E[ejk
T
Γ

j
ke

j
k|Ĩ

j
k, sk ̸= j] = tr

[
Γ

j
kE[ejk|k−1e

j
k|k−1

T
|Ĩ jk]

]
.

Define ej,k = xjk − x̃jk and ẽj,k = x̃jk − x̂jk|k−1. Then,

E[ejk|k−1e
j
k|k−1

T
|Ĩ jk] = E[ej,keTj,k|Ĩ

j
k] + ẽj,kẽTj,k. (21)

Equality holds as the Kalman estimate x̃jk is identical to the
conditional mean of xjk given Ĩ jk and the fact that ẽj,k is measurable
with respect to Ĩ jk given by

ẽj,k =

k∑
n=τj,k+1

(Aj)k−nK j
nỹ

j
n, (22)

τj,k = max{ℓ | sℓ = j ∧ ℓ < k}. (23)

where ỹjn = yjn − C̃ jx̃jn|n−1 and τj,k is the last transmission time.

For the term ejk
T
Γ

j
ℓe

j
k of the second expectation in (20), we have

E[ejk
T
Γ

j
ke

j
k|Ĩ

j
k, sk = j]

= tr
[
Γ

j
kE[(xjk − x̃jk)(x

j
k − x̃jk)

T
|Ĩ jk]

]
= tr

[
Γ

j
kP

j
k

]
,

where the last equality arises from the invariance of the error
covariance matrix of the Kalman filter with regard to its own
observations (Anderson & Moore, 2012). In the remainder of this
section, we are concerned with the future terms at k+1, . . . ,N−1
of the cost-to-go function in (20). Because of (19), the evolution
of the observer estimate x̂jℓ will be independent of previous
scheduling choices, once a transmission is performed at future
time ℓ. Define the first transmission time after k of the baseline
schedule as

τ̄j,k = min{ℓ | s̄k = j ∧ k < ℓ ≤ N − 1}, (24)

where we define τ̄j,k = N − 1 if no transmission will occur in
the future based on the baseline schedule. Based on our previous
statement, we only need to consider cost terms until τ̄j,k in our
VoI calculations, as the predicted estimate at the observer, x̂jℓ,
τ̄j,k ≤ ℓ ≤ N − 1, will be the same for the case sk ̸= j and for
the case sk = j. Therefore, the VoI can be computed as

VoIjk = tr[
τ̄j,k−1∑
ℓ=k

Γ
j
ℓ Q̃

j
ℓ], (25)

where Q̃ j
ℓ can be computed recursively by

Q̃ j
k = ẽj,kẽTj,k,

Q̃ j
ℓ+1 = AjQ̃ j

ℓA
jT (26)

for k ≤ ℓ < τ̄j,k with ẽj,k be given by (22).

3.3.3. Performance guarantee
Our goal of this section is to give a performance guarantee

that relates the cost of the VoI strategy to the cost of the baseline
schedule. For that reason, we introduce a centralized decision rule
for sk that chooses the control system according to the complete
information Ik = {I1,k, . . . , IM,k}. Though this scheme violates
the imposed restrictions in the information structure to compute
priorities, it enables us to bridge the gap between the cost J in
(14) resulting from a baseline schedule and the VoI-based priority
assignment.

Definition 5. Suppose a given deterministic baseline sched-
ule {s̄1, . . . , s̄N−1}. The optimal centralized rollout strategy for
finding sk at time k is defined as

J∗ = min
sk

E[

M∑
j=1

N−1∑
ℓ=k

ejℓ
T
Γ

j
ℓe

j
ℓ|Ik, sk+1 = s̄k+1, . . .], (27)

where sk is a function of the global information Ik.

Using Definition 5, we obtain the subsequent result.

Lemma 6. Let the system be defined as in (13)with estimators (15)–
(18), (19), and the cost as in (14). Then, the VoI-based scheduler (7)
leads to the same minimal cost J∗ as the optimal centralized rollout
strategy.

Proof. As the systems are decoupled and we are using a deter-
ministic baseline strategy, measurements i ̸= j are independent
of variables appearing in system j.

Therefore, the cost given in (27) decomposes into
M∑
j=1

E[

N−1∑
ℓ=k

ejℓ
T
Γ

j
ℓe

j
ℓ|Ĩ

j
k].

This implies that each system j can evaluate its cost
E[

∑N−1
ℓ=k ejℓ

T
Γ

j
ℓe

j
ℓ|Ĩ

j
k] independently for the case either measure-

ments {yjτj,k+1, . . . , y
j
k} are used (sk = j) or are not used (sk ̸= j) for

state estimation at the controller. By taking the state estimation
update that yields the greatest benefit reflected by the difference
of these cost terms, we obtain the optimal decision rule minimiz-
ing the cost (14). This rule coincides with the VoI-based priority
assignment defined in (20). As the event in which the VoIs are
identical among different systems occurs with probability zero,
we can conclude our proof.

Using Lemma 6, a performance guarantee for the VoI-based strat-
egy is obtained in the subsequent theorem whose proof can be
found in the appendix.
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Fig. 3. Platooning case study.

Theorem 7. Assume the system as in Lemma 6 and let {s̄0, . . . ,
s̄N−1} be a baseline heuristic with cost J̄ . Then, J̄ is an upper bound
for the cost resulting from the priority assignment based on VoIjk
defined in (25) using the rollout strategy with baseline heuris-
tic {s̄0, . . . , s̄N−1}.

3.4. Computational complexity

This section discusses the numerical effort to compute VoI
priorities. The numerically intensive part for the coupled case is
given by the computation of the covariance matrices Q j,0

ℓ and
Q j,1

ℓ . In the time-variant case with time-dependent predictor hk(·),
the numerical complexity is O((Mn)3N), see Golub and Van Loan
(2012). For the time-invariant case, the complexity reduces to
O((Mn)3) by pre-computing the matrices of the predictor map.
Hence by using a receding horizon approach together with a
stationary estimator, the numerical complexity can be reduced
significantly, when N is large. It follows from (25)–(26) for the
decoupled case that VoIjk is a quadratic function in ẽj,k. What
makes the method numerically attractive is the fact that we only
need k − τ̄j,k prediction steps to compute the VoI reducing the
complexity to O((nj)2τ̄max

j ), (Golub & Van Loan, 2012), where τ̄max
j

is the maximum inter-sampling interval of the baseline schedule.
This implies that the approach can deal with a large horizon N .

4. Numerical case study

One of the elementary operations for automated driving is
distance keeping, that is addressed in the following platooning
use case of a group of M vehicles coordinated by the infrastruc-
ture. The architecture, see Fig. 3, is an extension of the estimation
architecture defined in Section 2, in which subsystems employ
the local state estimate for control purposes. We compare our
VoI-based approach with time-triggered scheduling, in which
vehicles send their estimate successively at a pre-given order.

The dynamic vehicle model for the longitudinal control has
been adopted from Molin et al. (2016). Consider a sampling time
of TS = 100ms and a platoon of M = 6 vehicles with j = 1 as
lead. The model is defined as

v1
k = a0v1

k + b0u1
kw

1
k , (28)

djk = djk + λ(vj−1
k − v

j
k) + b1(u

j−1
k − uj

k) + w
j,d
k , (29)

v
j
k = a0v

j
k + b0u

j
k + w

j,v
k , j = 2, . . . , 6, (30)

in which u1
k controls the vehicle to a desired reference velocity

vref
k while uj

k is designed to keep a desired reference distance drefk

Fig. 4. Inter-vehicle distances.

to the preceding vehicle. The vehicle parameters are a0 = 0.98
and λ = 0.1, b0 = 1.0 × 10−3, b1 = 0.05 × 10−3. Each vehicle
implements an integral state that accumulates the reference error
v1
k − vref

k for the lead vehicle and djk − drefk for the followers.
Suppose a standard deviation for the process noise σ

v
j
k

= 0.05,
σvrefk

= 0.05 and σdjk
= 0.001, σijk

= 0.001. Each vehicle j
measures its velocity with standard deviation σv = 0.01, while
the followers j > 1 measure also distances to its preceding vehicle
with σd = 0.01. An LQR controller is employed whose linear gains
are taken fromMolin et al. (2016), which also yields the values for
weighting matrix Γk. The controller and VoI-based scheduler are
operated in a receding horizon fashion. Hence, the time-invariant
control gain obtained for k = 0 is used, while VoIjk is determined
using a periodic base-line schedule.

Fig. 4 illustrates the behavior of a platoon when the lead vehi-
cle brakes at time 100 s ±1 s, implying that the reference velocity
vref
k drops from 14 to 5m/s. The timing behavior is illustrated

in the table above of Fig. 4. The VoI-based scheduler detects
the emergency brake in all trials causing a timely broadcast of
vehicle 1. For the time-triggered scheduler, the same behavior
is only observed, if the braking event coincides with the trans-
mission slot of V1 (best-case), while in the worst-case a delay
of 5 time slots occurs until the braking event is broadcast. By
running Monte Carlo simulations with 10 000 trials, none of the
sample paths led to a vehicle collision for the VoI-based approach,
while collisions occurred in 19.7% of the cases for time-triggered
scheduling.

5. Summary

In this paper, we have developed a methodology for data
scheduling of a system of networked estimators that employs
the Value of Information to determine the urgency to transmit
data over the shared communication network. The benefits of
our approach have been approved theoretically for decoupled
remote estimators by yielding a performance certificate. The nu-
merical case study have unveiled significant improvement of
our proposed strategy with regard to reactivity to unpredicted
events.
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Appendix A. Calculation of error (cross-) covariances

The error evolution at different stages is given by

ẽjk|k−1 = Aejk−1 + wk (after prediction)

ẽjk = (I − K j
kC

j)ẽjk|k−1 − K j
kv

j
k, (after yjk update)

ejk = (I − Kmj
k )ẽjk +Kmj

k ẽmk (after fusion)

assuming system m ̸= j broadcast x̃mk while emk = ẽmk for j = m.
Based on Assumption 1 and assuming that system m is transmit-
ting at time k, the error covariances and cross-correlations have
the relations

P̃ j
k|k−1 = E[ẽjk|k−1(ẽ

j
k|k−1)

T
] = AP j

k−1A
T
+ Rw

P̃ ij
k|k−1 = E[ẽik|k−1(ẽ

j
k|k−1)

T
] = AP ij

k−1A
T
+ Rw

P̃ j
0|−1 = R0, P̃ ij

0|−1 = R0.

P̃ j
k = E[ẽjk(ẽ

j
k)

T
] = (I − K j

kC
j)P̃ j

k|k−1(I − K j
kC

j)T

+ K j
kRv,j(K

j
k)

T

P̃ ij
k = E[ẽik|k−1ẽ

j T
k|k−1] = (I − K i

kC
i)P̃ ij

k|k−1(I − K j
kC

j)T.

P j
k = E[ejke

j
k
T
] = (I−Kmj)P̃ j

k(I−Kmj
k )T+ (I−Kmj

k )×

× P̃ jm
k KmjT

+ Kmj
k P̃mj

k (I − Kmj
k )T + Kmj

k P̃m
k Kmj

k
T
,

P ij
k = E[eike

j
k
T
] = (I−Kmi

k )P̃ ij
k (I−Kmj)T+ (I−Kmi

k )×

× P̃ im
k Kmj

k
T
+ Kmi

k P̃mj
k (I − Kmj)T + Kmi

k P̃m
k Kmj

k
T
.

By concatenating the above update equations, we can determine
the recursive update map hk for P⃗k defined as

P⃗k+1 = hk(P⃗k,m). (A.1)

Appendix B. Proof of Theorem 7

Proof. Let yk = {y1k+1, . . . , y
M
k+1}. Then, the centralized informa-

tion structure follows the recursion

Ik+1 = {Ik, yk, sk}. (B.1)

Let sk = πRO
k (Ik) be the rollout strategy based on the heuris-

tic {s̄0, . . . , s̄N−1}, 0 ≤ k ≤ N − 1. Let the running cost at time
k be defined as

ck(Ik, sk) = E[

M∑
j=1

ejk
T
Γ

j
ke

j
k|Ik, sk]. (B.2)

Let JROk (Ik), J̄k(Ik) be the cost-to-go of the rollout strategy and of
the heuristic at time k. We prove inductively that JROk (Ik) ≤ J̄k(Ik)
at each time k. For k = N , we have JRON (IN ) = J̄N (IN ) = 0 as there is
no terminal cost in J , see (14). Assume that JROk+1(Ik+1) ≤ J̄k+1(Ik+1)
for all Ik+1. Then, we have from (27)

JROk (Ik)

= E[ck(Ik, πRO
k (Ik)) + JROk+1({Ik, yk+1, π

RO
k (Ik)})|Ik]

≤ E[ck(Ik, πRO
k (Ik)) + J̄k+1({Ik, yk+1, π

RO
k (Ik)})|Ik]

≤ E[ck(Ik, s̄k) + J̄k+1({Ik, yk+1, s̄k})|Ik] = J̄k(Ik)

The first and the last equalities state the definition of the cost-
to-go of the rollout and baseline scheduler, respectively. The first
inequality is due to the induction hypothesis, while the second
arises from the fact that πRO

k (Ik) solves (27). This completes the
induction.

By Lemma 6, the centralized rule πk(Ik) is identical to using
scheduling with the VoI-based priority assignment given by (20).
With this, we can conclude the proof.
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