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a b s t r a c t

In this paper, we consider the peak-covariance stability of Kalman filtering subject to packet losses. The
length of consecutive packet losses is governed by a time-homogeneous finite-state Markov chain. We
establish a sufficient condition for peak-covariance stability and show that this stability check can be
recast as a linear matrix inequality (LMI) feasibility problem. Compared with the literature, the stability
condition given in this paper is invariant with respect to similarity state transformations; moreover, our
condition is proved to be less conservative than the existing results. Numerical examples are provided to
demonstrate the effectiveness of our result.
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1. Introduction

Networked control systems are closed-loop systems, wherein
sensors, controllers and actuators are interconnected through a
communication network. In the last decade, advances of modern
control, micro-electronics, wireless communication and network-
ing technologies have given birth to a considerable number of net-
worked control applications.

In networked control systems, state estimation such as using a
Kalman filter is necessary whenever precise measurement of the
system state cannot be obtained. When a Kalman filter is running
subject to intermittent observations, the stability of the estimation
error is affected by not only the system dynamics but also by
the statistics of the packet loss process. The stability of Kalman
filtering with packet drops has been intensively studied in the
literature. In Sinopoli et al. (2004), Plarre and Bullo (2009), Mo and
Sinopol (2010), Shi, Epstein, and Murray (2010) and Kar, Sinopoli,
andMoura (2012), independently and identically distributed (i.i.d.)
Bernoulli packet losses have been considered. Some other research
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works assume the packet drops, due to the Gilbert–Elliott channel
(Gilbert, 1960; Elliott, 1963), are governed by a time-homogeneous
Markov chain. Huang andDey (2007) introduced the notion of peak
covariance, which describes an upper envelope of the sequence of
error covariancematrices for the case of an unstable scalar system.
They focused on its stability with Markovian packet losses and
gave a sufficient stability condition. The stability condition was
further improved in Xie and Xie (2007) and Xie and Xie (2008).
In Wu, Shi, Anderson, and Johansson (0000), the authors proved
that the peak-covariance stability implies mean-square stability
for general randompacket drop processes, if the systemmatrix has
no defective eigenvalues on the unit circle. In addition to the peak-
covariance stability, the mean-square stability was considered for
some classes of linear systems in Mo and Sinopoli (2012), You,
Fu, and Xie (2011), and weak convergence of the estimation error
covariance was studied in Xie (2012).

In the aforementioned packet lossmodels, the length of consec-
utive packet losses can be infinitely large. In contrast, some works
also considered bounded packet loss model, whereby the length of
consecutive packet losses is restricted to be less than a finite inte-
ger. A real example of bounded packet losses is the WirelessHART
(Wireless Highway Addressable Remote Transducer) protocol, the
state-of-the-art wireless communication solution for process au-
tomation applications. In WirelessHART, there are two types of
time slots: one is the dedicated time slot allocated to a specific
field device for time-divisionmultiple-access (TDMA) based trans-
mission and the other is the shared time slot for contention-based
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communication. A contiguous group of time slots during a con-
stant period of time forms a superframe, within which every node
is guaranteed at least one time slot for data communication. Vari-
ous networked control problemswith bounded packet lossmodels
have been studied, e.g., Wu and Chen (2007) and Xiong and Lam
(2007); while the stability of Kalman filtering for this kind of mod-
els was rarely discussed. In Xiao, Xie, and Fu (2009), the authors
gave a first attempt to the stability issue related to the Kalman fil-
tering with bounded Markovian losses. They provided a sufficient
condition for peak-covariance stability, the stability notion stud-
ied in Huang and Dey (2007), Xie and Xie (2007) and Xie and Xie
(2008). Their result has established a connection between peak-
covariance stability, the dynamics of the underlying system and
the probability transitionmatrix of the underlying packet-loss pro-
cess. In this paper, we consider the same problem as in Xiao et al.
(2009) and improve the stability condition thereof. The main con-
tributions of this work are summarized as follows:

(1) We present a sufficient condition for peak-covariance stability
of the Kalman filtering subjected to boundedMarkovian packet
losses (Theorem1). Different from that of Xiao et al. (2009), this
stability check can be recast as a linear matrix inequality (LMI)
feasibility problem (Proposition 1).

(2) We compare the proposed condition with that of Xiao et al.
(2009). We show both theoretically and numerically that
the proposed stability condition is invariant with respect
to similarity state transformations, while the one given in
Xiao et al. (2009) may generate opposite conclusions under
different similarity transformations. Moreover, the analysis
also suggests that our condition is less conservative than the
former one.

The remaining part of the paper is organized as follows. Section 2
presents themathematicalmodels of the system and packet losses,
and introduces the preliminaries of Kalman filtering. Section 3
provides the main results. Comparison with Xiao et al. (2009) and
numerical examples are presented in Section 4. Some concluding
remarks are drawn in the end.

Notations. N is the set of positive integers and C is the set of
complex numbers. Sn

+
is the set of n by n positive semi-definite

matrices over the field C. For a matrix X ∈ Cn×n, σ(X) denotes
the spectrum of X , i.e., σ(X) = {λ : det(λI − X) = 0}, and ρ(X)
denotes the spectrum radius of X , X∗, X ′ and X are the Hermitian
conjugate, transpose and complex conjugate of X , respectively. ∥·∥

means the L2-norm on Cn or the matrix norm induced by L2-norm.
The symbol ⊗ represents the Kronecker product operator of two
matrices. For anymatricesA, B, C with compatible dimensions,we
have vec(ABC) = (C ′

⊗ A)vec(B), where vec(·) is the vectorization
of a matrix. Moreover, the indicator function of a subset A ⊂ Ω

is a function 1A : Ω → {0, 1} where 1A(ω) = 1 if ω ∈ A,
otherwise 1A(ω) = 0. The symbolE[·] (resp.,E[·|·]) represents the
expectation (resp., conditional expectation) of a random variable.

2. Problem setup

2.1. System model

Consider the following discrete-time LTI system:

xk+1 = Axk + wk, (1a)
yk = Cxk + vk, (1b)

where A ∈ Rn×n and C ∈ Rm×n, xk ∈ Rn is the process state vector,
yk ∈ Rm is the observation vector, wk ∈ Rn and vk ∈ Rm are zero-
mean Gaussian random vectors with E[wkwj′] = δkjQ (Q ≥ 0),
E[vkvj′] = δkjR (R > 0), E[wkvj′] = 0 ∀j, k. Note that δkj is
the Kronecker delta function with δkj = 1 if k = j and δkj = 0
otherwise. The initial state x0 is a zero-mean Gaussian random
vector that is uncorrelated to wk and vk, with covariance Σ0 ≥ 0.
It can be seen that, by applying a similarity transformation, the
unstable and stable modes of the LTI system can be decoupled.
An open-loop prediction of the stable mode always has a bounded
estimation error covariance, therefore, this mode does not play
any key role in the problem considered below. Without loss of
generality, all eigenvalues ofA are assumed to havemagnitudes not
less than 1. We also assume that (A, C) is observable and (A,Q 1/2)
is controllable. We introduce the definition of the observability
index of (A, C), which is taken from Antsaklis and Michel (2006).

Definition 1. The observability index Io is defined as the smallest
integer such that [C ′, A′C ′, . . . , (AIo−1)′C ′

]
′ has rank n. If Io = 1, the

system (A, C) is called one-step observable.

2.2. Bounded Markovian packet-loss process

In this paper, we consider the estimation scheme, where the
raw measurements {yk}k∈N of the sensor are transmitted to the
estimator over an erasure communication channel: packets may
be randomly dropped or successively received by the estimator.
Denote by a random variable γk ∈ {0, 1} whether or not yk is
received at time k. If γk = 1, it indicates that yk arrives error-free
at the estimator; otherwise γk = 0. Whether γk equals 0 or 1 is
assumed to have been known by the estimator before time k + 1.
In order to introduce the packet loss model, we further define a
sequence of stopping times, the time instants at which packets are
received by the estimator:

t1 , min{k : k ∈ N, γk = 1},
t2 , min{k : k > t1, γk = 1},
... (2)

tj , min{k : k > tj−1, γk = 1}, (3)

where we assume t0 = 0 by convention. The packet-loss process,
τj, is defined as

τj , tj − tj−1 − 1.

As for the model of packet losses, we assume that the packet-
loss process {τj}j∈N is modeled by a time-homogeneous ergodic
Markov chain, where S = {0, . . . , s} is the finite-state space of
theMarkov chain with s being themaximum length of consecutive
lost packets allowed. Here the Markov chain is characterized by a
known transition probability matrix 5 , [πij]i,j∈S in which

πij , P(τk+1 = j|τk = i) ≥ 0. (4)

Denote the initial distribution as p , [p0, . . . , ps], where pj =

P(τ1 = j).

2.3. Kalman filtering with packet losses

Sinopoli et al. (2004) shows that, when performed with inter-
mittent observations, the optimal linear estimator is a modified
Kalman filter. The modified Kalman filter is slightly different from
the standard one in that only time update is performed in the pres-
ence of the lost packet. Define the minimum mean-squared error
estimate and the one-step prediction at the estimator respectively
as x̂k|k , E[xk|γ1y1, . . . , γkyk] and x̂k+1|k , E[xk+1|γ1y1, . . . , γkyk].
Let Pk|k and Pk+1|k be the corresponding estimation and prediction
error covariance matrices, i.e.,

Pk|k , E[(xk − x̂k|k)(·)′|γ1y1, . . . , γkyk]

Pk+1|k , E[(xk+1 − x̂k+1|k)(·)
′
|γ1y1, . . . , γkyk].
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These parameters can be computed recursively by a modified
Kalman filter (see Sinopoli et al., 2004 for more details). In partic-
ular,

Pk+1|k = APk|k−1A′
+ Q

− γkAPk|k−1C ′(CPk|k−1C ′
+ R)−1CPk|k−1A′. (5)

To simplify notations, we denote Pk , Pk|k−1 for shorthand and
define the functions h, g , hk and gk: Sn

+
→ Sn

+
as follows:

h(X) , AXA′
+ Q , (6)

g(X) , AXA′
+ Q − AXC ′(CXC ′

+ R)−1CXA′, (7)

hk(X) , h ◦ h ◦ · · · ◦ h  
k times

(X) and gk(X) , g ◦ g ◦ · · · ◦ g  
k times

(X), where ◦

denotes the function composition.

2.4. Problems of interest

To study the stability of Kalman filteringwith packet losses, one
way is to study the asymptotic behavior of the expected prediction
error covariance. In the following we introduce the concept of
peak-covariance stability, which is first studied in Huang and Dey
(2007). To this end, we need the following auxiliary definitions,
which were introduced in Huang and Dey (2007),

α1 , min{k : k ∈ N, γk = 0},
β1 , min{k : k > α1, γk = 1}, (8)
...

αj , min{k : k > βj−1, γk = 0},
βj , min{k : k > αj, γk = 1}, (9)

where β0 = 0 by convention. It is straightforward to verify that
{αj}j∈N and {βj}j∈N are two sequence of stopping times (see Durrett,
2010).

Definition 2. The Kalman filtering system with packet losses is
said to be peak-covariance stable if supj∈N E∥Pβj∥ < ∞.

The above definition ismade regardless of the initial distribution p,
due to the following lemma. For any initial distribution p, let Ep

[·]

denote the expectation conditioned on p. Thanks to the following
lemma, we can omit the superscript from then on.

Lemma 1. For any initial distributions, p and p∗, of the packet-loss
process {τj}j∈N, supj∈N Ep

∥Pβj∥ < ∞ if and only if supj∈N Ep∗∥Pβj∥ <
∞

Proof. Since Ep
∥Pβj∥ =

s
i=1 piE[∥Pβj∥ |τ1 = i], supj∈N Ep

∥Pβj∥ <
∞ if and only if E[∥Pβj∥ |τ1 = i] < ∞ for any i ∈ S. The result
follows using the same argument for Ep∗∥Pβj∥. �

In the literature, stability of Kalman filtering with Markovian
packet losses (driven by a two-state Gilbert–Elliott packet loss
model) (Huang & Dey, 2007; Xie & Xie, 2008; You et al., 2011)
and with i.i.d. packet losses (Sinopoli et al., 2004; Shi et al.,
2010) has been intensively studied. The main problem of this
work is to study stability of Kalman filtering at packet reception
times subject to bounded Markovian packet-loss process. As the
packet loss is modeled differently, the stability also behaves
differently. Due to the nonlinearity of the Kalman filter, it seems
challenging to find necessary and sufficient stability conditions for
a general LTI system. In Section 3, we manage to give a sufficient
peak-covariance stability condition for general LTI systems with
bounded Markovian packet-loss process. Our result is mainly built
on the prior work (Xiao et al., 2009). Compared with the result
thereof, ours prevails from at least two aspects. We will discuss
in detail later in Section 4.
3. Main result

In the following theorem, we will present a sufficient condition
for peak-covariance stability of Kalman filtering with bounded
Markovian packet-loss process.

Theorem 1. Consider the system described in (1a) and (1b), and the
bounded Markovian packet-loss process described by a probability
transition matrix 5 in (4). If there exists K , [K (1), . . . , K (Io−1)

],
where K (i)’s are matrices with compatible dimensions, such that
ρ(HK ) < 1, where

HK , diag

A ⊗ A, . . . , (A ⊗ A)s

 
P′

⊗ H + Q′
⊗ K


, (10)

P , [πij]i,j∈S/{0} and Q , [πi0π0j]i,j∈S/{0},

H , (A + K (1)C)⊗ (A + K (1)C),

K ,

Io−1
l=2

(π00)
l−2(Al + K (l)C (l))⊗ (Al

+ K (l)C (l))

with

C (i) , [C ′, A′C ′, . . . , (A′)i−1C ′
]
′
; (11)

then the state estimator is peak-covariance stable, i.e., supj∈N
E∥Pβj∥ < ∞.

Before proceeding to the proof, we first give a few supporting
definitions and lemmas.

Consider k compositions of g together. We introduce the
following lemma.

Lemma 2. Consider the operator

φi(K (i), P) , (Ai
+ K (i)C (i))X(·)∗

+ [A(i) K (i)]


Q (i) Q (i)(D(i))′

D(i)(Q (i)) D(i)(Q (i))(D(i))′ + R(i)


[A(i) K (i)]∗,

where i ∈ N, A(i) , [Ai−1, . . . , A, I], D(i) = 0 for i = 1

otherwise D(i) ,


0 0 · · · 0
C 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

CAi−2 CAi−3
· · · 0

, Q (i) , diag(Q , . . . ,Q  
i

),

R(i) , diag(R, . . . , R  
i

), and K (i)’s are of compatible dimensions. For

any X ≥ 0 and K (i), the following statement holds:

g i(X) , min
K (i)

φi(K (i), X) ≤ φi(K (i), X).

Proof. The result is readily established when setting B = I in
Lemmas 2 and 3 in Xiao et al. (2009). For i = 1, The result is well
known as Lemma 1 in Sinopoli et al. (2004). �

The following lemma is about the nonlinearity of g operator: for
k ≥ Io+1, gk(X) is uniformly bounded nomatter what the positive
semidefine matrix X is.

Lemma 3 (Huang & Dey, 2007, Lemma 5). Assume that (A, C) is
observable and (A,Q 1/2) is controllable. Define

Sn
0 , {P : 0 ≤ P ≤ AP0A′

+ Q , for some P0 ≥ 0}.

Then there exists a constant L > 0 such that

(i) for any X ∈ Sn
0, g

k(X) ≤ LI for all k ≥ Io;
(ii) for any X ∈ Sn

+
, gk+1(X) ≤ LI for all k ≥ Io.
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According to the definitions of αj and βj, we can further define
the sojourn times at the state 1 and 0 respectively as follows:

α∗

j , αj − βj−1 ∈ N,

β∗

j , βj − αj ∈ {1, . . . , s}.

The distributions of the sojourn times α∗

j and β∗

j are given in the
following lemma.

Lemma 4 (Xiao et al., 2009, lemma 4). Denote the joint distribution
of α∗

j and β∗

j by

π(l) , P

α∗

1 = a1, β∗

1 = b1, . . . , α∗

l = al, β∗

l = bl

,

for any αj ∈ N and βj ∈ {1, . . . , s}. Then it holds that

π(1) =


pb1 , if a1 = 1;
p0(π00)

a1−2π0b1 , if a1 ≥ 2,

π(l + 1) =


πblbl+1π(l), if al+1 = 1;
πbl0(π00)

al+1−2π0bl+1π(l), if al+1 ≥ 2.

Proof of Theorem 1. Compute E[Pβ1 ] as follows:

E[Pβ1 ] =

∞
a1=1

s
b1=1

Pβ1π(1)

=

s
b1=1

pb1h
b1 ◦ g(Σ0)

+

Io
a1=2

s
b1=1

p0(π00)
a1−2π0b1h

b1 ◦ ga1(Σ0)

+

∞
a1=Io+1

s
b1=1

p0(π00)
a1−2π0b1h

b1 ◦ ga1(Σ0)

≤

s
b1=1

pb1A
b1(A + K (1)C)Σ0(A + K (1)C)∗(Ab1)′

+

s
b1=1

Ab1


Io

a1=2

p0(π00)
a1−2 π0b1

× (Aa1 + K (a1)C (a1))Σ0( · )
∗


(Ab1)′

+

s
b1=1

pb1A
b1

[A K (1)]J1[A K (1)]∗


(Ab1)′

+

s
b1=1

Io
a1=2

p0(π00)
a1−2π0b1

× Ab1

[Aa1 K (a1)]Ja1 [A

a1 K (a1)]∗

(Ab1)′

+

s
b1=1


Io

a1=2

p0(π00)
a1−2π0b1 + pb1


b1−1
i=0

AiQ (Ai)′

+

∞
a1=Io+1

s
b1=1

p0(π00)
a1−2π0b1h

b1(LI)

,Λ1 +Λ2 +Λ3 +Λ4 +Λ5 +Λ6, (12)

where Ji ,


Q (i) Q (i)(D(i))′

D(i)(Q (i)) D(i)(Q (i))(D(i))′ + R(i)


, the partition ofΛ1 toΛ6

is based on whether or not gk+1(X) ≤ LI has a uniform bound
when k ≥ Io or k ≤ Io − 1 by Lemma 3 and the distribution
of π(1) given in Lemma 4, and the inequality is from Lemmas 2
and 3. One can verify that Λ3, Λ4, Λ5 and Λ6 are all bounded
matrices. ThenU , Λ3+Λ4+Λ5+Λ6 is also bounded. To facilitate
the analysis in the following, we will impose (12) to take equality.
Without loss of generality, the conclusions in this paper still hold
without imposing equality as (12) renders us an upper bound of
E[Pβ1 ]. Next we vectorize both sides of (12).

E[vec(Pβ1)] =

s
b1=1

(A ⊗ A)b1

pb1(A + K (1)C)⊗ (A + K (1)C)

+

Io
a1=2

p0(π00)
a1−2π0b1(Aa1 + K (a1)C (a1))

⊗ (Aa1 + K (a1)C (a1))

vec(Σ0)+ vec(U)

= TΨ vec(Σ0)+ vec(U), (13)

where

T = [1, . . . , 1  
s numbers

] ⊗ In2×n2

and Ψ = [ψ ′

1, . . . , ψ
′
s]

′
∈ Csn2×n2 with

ψi = (A ⊗ A)i

p1(A + K (1)C)⊗ (A + K (1)C)

+

Io
a1=2

p0(π00)
a1−2π01(Aa1 + K (a1)C (a1))

⊗(Aa1 + K (a1)C (a1))


for i ∈ {1, . . . , s}.
Similarly, for any l ≥ 1, E[Pβl+1 ] can be calculated as

E[Pβl+1 ] =

∞
a1=1

s
b1=1

· · ·

∞
al+1=1

s
bl+1=1

Pβl+1π(l + 1)

=

∞
a1=1

s
b1=1

· · ·

∞
al+1=Io

s
bl+1=1

Pβj+1π(l + 1)

+

∞
a1=1

s
b1=1

· · ·

Io−1
al+1=2

s
bl+1=1

πbl0(π00)
al+1−2π0bl+1

· hbl+1 ◦ gal+1

Pβl

π(l)

+

∞
a1=1

s
b1=1

· · ·

s
bl=1

s
bl+1=1

πblbl+1h
bl+1 ◦ g


Pβl

π(l)

,Γ1 + Γ2 + Γ3.

Next wewill analyze the boundedness ofΓ1,Γ2 andΓ3 one by one.

Γ1 ≤

∞
a1=1

s
b1=1

· · ·

∞
al+1=Io

s
bl+1=1

hbl+1(LI)π(l + 1) , W1, (14)

where the inequality is derived from Lemma3 andW1 is a bounded
matrix.

Γ2 ≤

∞
a1=1

s
b1=1

· · ·

Io−1
al+1=2

s
bl+1=1

πbl0(π00)
al+1−2π0bl+1h

bl+1

◦ φal+1


K (al+1), Pβl


π(l)

=

∞
a1=1

s
b1=1

· · ·

Io−1
al+1=2

s
bl+1=1

πbl0(π00)
al+1−2π0bl+1

× Abl+1(Aal+1 + K (al+1)Cal+1)Pβl( · )
∗(Abl+1)′π(l)

+

∞
a1=1

s
b1=1

· · ·

Io−2
al+1=2

s
bl+1=1

πbl0(π00)
al+1−2π0bl+1



36 J. Wu et al. / Automatica 62 (2015) 32–38
×

bl+1−1
i=0

AiQ (Ai)′π(l)

+

∞
a1=1

s
b1=1

· · ·

Io−1
al+1=2

s
bl+1=1

πbl0(π00)
al+1−2π0bl+1

× Abl+1

[Aal+1 K (al+1)]Jal+1 [ · ]

∗

(Abl+1)′π(l)

,Γ ′

2 + W2 + W3.

It is straightforward to verify thatW2 and W3 is bounded.

Γ3 ≤

∞
a1=1

s
b1=1

· · ·

s
bl+1=1

πblbl+1h
bl+1 ◦ φ1


K (1), Pβl


π(l)

=

∞
a1=1

s
b1=1

· · ·

s
bl+1=1

πblbl+1

× Abl+1(A + K (1)C)Pβl( · )
∗(Abl+1)′π(l)

+

∞
a1=1

s
b1=1

· · ·

s
bl+1=1

πblbl+1

bl+1−1
i=0

AiQ (Ai)′π(l)

+

∞
a1=1

s
b1=1

· · ·

s
bl+1=1

πbl0πblbl+1

× Abl+1

[A K (1)] J1 [A K (1)]∗


(Abl+1)′π(l)

,Γ ′

3 + W4 + W5,

where W4 and W5 can be readily shown to be bounded. In
summary,

E[Pl+1] ≤ Γ ′

2 + Γ ′

3 + V , for j ≥ 1, (15)

whereV , W1+W2+W3+W4+W5. By a similar argument,we im-
pose (15) to take equality and take vectorization. By (13) and (15),
we calculate E[vec(Pβl+1)] and convert it to the following form:

E[vec(Pβl+1)] =T (HK )
lΨ vec(Σ0)+ T (HK )

lvec(Θl)

+ T (HK )
l−1vec(Θl−1)+ · · · + vec(Θ0),

whereΘ0, . . . ,Θl are the functions of Q , A, K (i)’s and are bounded.
Similar toU and V ,Θ0, . . . ,Θl can be readily shown to be bounded
in a similar way. Therefore, supk≤l E[vec(Pβk)] is bounded as l →

∞ if ρ(HK ) < 1. By some basic algebraic manipulations, one ob-
tains thatE∥Pβl+1∥ is uniformly bounded ifρ(HK ) < 1,which com-
pletes the proof. �

The stability condition in Theorem 1 is difficult to test.
In the following proposition, we provide an equivalent condi-
tion. The proof has been omitted for the sake of limited space
and can be found in the extended version of this work (see
http://arxiv.org/abs/1501.05469). In view of this result, Theorem 1
can be recast as an LMI feasibility problem. As for the conversion
to LMIs using Schur complements, we refer readers to Boyd, El
Ghaoui, and Feron (1994) for details.

Proposition 1. The following statements are equivalent:

(i) There exists K , [K (1), . . . , K (Io−1)
], where K (i)’s are matrices

with compatible dimensions, such that ρ(HK ) < 1, where HK is
defined in (10);

(ii) There exist X1 > 0, . . . , Xs > 0 and K1, . . . , KIo−1 such that
s

i=1

πijAj∆1Xi∆
∗

1(A
j)′ +

s
i=1

πi0π0j

Io−1
l=2

(π00)
l−2Aj∆lXi∆

∗

l (A
j)′

< Xj

for all j ∈ S/{0}, where∆l = Al
+KlC (l) with C (l) defined in (11).
It is worth noting the one-step observable (A, C) system, see
Definition 1. In this case, we can find K1 such that A + K1C = 0. By
Proposition 1, any X > 0 will automatically satisfy condition (ii),
thereby implying that the Kalman filtering system with bounded
Markovian packet losses is always peak-covariance stable. This
observation is consistent with Xiao et al. (2009, Theorem 3.1).

4. Comparison with Xiao et al. (2009)

In this part, we compare our result with that of Xiao et al. (2009)
and show the advantages of ours. Recall that the sufficient stability
condition in Xiao et al. (2009) is ρ(Φ) < 1 where

Φ ,


d(1)1 P +

Io−1
l=2

(π00)
l−1d(1)l Q


diag


∥A∥

2, . . . , ∥As
∥
2 ,

with P, Q being defined in (10) and d(1)l , minK (l) ∥A
(l)

+K (l)C (l)∥2.

4.1. Invariance with respect to similarity transformations

Theoretically, a state variable transformation (i.e., a similarity
transformation from a linear system (A, B, C,D) to (S−1AS, S−1B,
CS,D) through the nonsingular matrix S) does not change the
stability considered in this work. However, different state variable
transformations may generate opposite conclusions from the
stability condition given in Xiao et al. (2009). The invariance of
stability behavior with respect to state variable transformations
can be reflectedwell from the stability conditions presented by this
work.

Proposition 2. Let S ∈ Cn×n be nonsingular. Suppose there exists
K , [K (1), . . . , K (Io−1)

], where K (i)’s are matrices with compatible
dimensions, such that ρ(HK ) < 1, where HK is defined in (10) for
(A, C). Then, there always exists K̃ , S−1

[K (1), . . . , K (Io−1)
] such

that ρ(H̃K̃ ) < 1, where H̃K̃ is defined for (Ã, C̃) , (S−1AS, CS) in
accordance with (10).

The proof follows fromProposition 1 and direct calculation.Weuse
the following example to illustrate this idea.

Example 1. Consider the system

A =


1.3 0.3
0 1.2


, C = [ 1 1 ].

Q = I2×2 and R = 1, and the bounded Markovian packet-loss
process with transition probability matrix given by

5 =

0.6 0.2 0.2
0.8 0.1 0.1
0.8 0.1 0.1


. (16)

From Xiao et al. (2009), we have d(1)1 = 1.2200 and ρ(Φ) =

0.7352 < 1. Let

S =


1 5
0 1


.

For the system (Ã, C̃) , (S−1AS, CS), we have d̃(1)1 = 1.3632 and
ρ(Φ̃) = 1.5202 > 1.

4.2. Conservativity comparison

The stability condition given in this work is less conservative
compared with that in Xiao et al. (2009), since the latter condition

http://arxiv.org/abs/1501.05469
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implies the former one. To show this, we need the following
proposition.

Proposition 3. Define

ΦK ,


d1P +

Io−1
l=2

(π00)
l−1dlQ


diag


∥A∥

2, . . . , ∥As
∥
2 ,

where P and Q are defined in (10) and dl , ∥A(l) + K (l)C (l)∥2, and
K , [K (1), . . . , K (Io−1)

] with K (l)’s of compatible dimensions. If there
exists K such that ρ(ΦK ) < 1, then ρ(HK ) < 1.

Proof. If treating a scalar as the Kronecker product of two other
scalars, similar to Proposition 1, the condition ρ(ΦK

′) < 1 is
equivalent to that there exists a vector

x , [x1, . . . , xs],

where xj > 0 for all j ∈ S/{0}, such that

s
i=1

πi0π0j

Io−1
l=2

(π00)
l−2dl∥Aj

∥
2xi +

s
i=1

πijd1∥Aj
∥
2xi < xj.

The submultiplicativity and subadditivity of a matrix norm result
in the following inequality: s

i=1

πi0π0j

Io−1
l=2

(π00)
l−1xiAj(Al

+ K (l)C (l))(·)∗(Aj)′

+

s
i=1

πijxiAj(A + K (1)C)(A + K (1)C)∗(Aj)′
 < xj (17)

for all j ∈ S/{0}. Let Xj = xjIn×n. Then we obtain from (17) that

s
i=1

πi0π0j

Io−1
l=2

(π00)
l−2Aj(Al

+ K (l)C (l))Xj(·)
∗(Aj)′

+

s
i=1

πijAj(A + K (1)C)Xi(A + K (1)C)∗(Aj)′ < Xj.

Therefore ρ(HK ) < 1, which completes the proof. �

In virtue of Proposition 3, it is evident that ρ(Φ) < 1 implies
ρ(HK⋆) < 1, where K ⋆ , [K ⋆1 , . . . , K

⋆
Io−1] with K ⋆i ,

argminK (i) ∥A
(i)

+ K (i)C (i)∥2.

Example 1 (Cont’d). We continue to consider Example 1 with an
alternative transition probability matrix

51 =

0.6 0.2 0.2
0.6 0.2 0.2
0.6 0.2 0.2


.

FromXiao et al. (2009, Theorem2), we obtain ρ(Φ) = 1.4704 > 1.
By solving an LMI feasibility problem using the cvx in Matlab, we
see that the condition in Theorem 1 still holds with a group of
feasible matrices

X1 = X2 =


0.1081 0.0243
0.0243 0.1042


and K =


−0.8079
−0.5914


.

If we consider the transition probability matrix, which only
allows the maximum length of consecutive packet losses to be 1,
i.e.,

52 =


0.6 0.4
0.8 0.2


,

then ρ(Φ) = 0.49 < 1 and the condition in our Theorem 1
holds. When we increase π11 in 52 from 0.2 to 0.5, one can verify
numerically that ρ(Φ) > 1 while the condition in Theorem 1 still
holds.
5. Conclusion

We have considered the bounded Markovian packet-loss
process model and the notion of the peak-covariance stability for
the Kalman filtering. A sufficient stability condition with bounded
Markovian packet losses was established. Different from that of
Xiao et al. (2009), this stability check can be recast as an LMI
feasibility problem. Then we compared the proposed condition
with that of Xiao et al. (2009), showing that our condition prevails
from at least two aspects: (1) Our stability condition is invariant
with respect to similarity state transformations, while the previous
result is not; (2) Our condition is proved to be less conservative
than the previous one. Numerical examples were provided to
demonstrate the effectiveness of our result compared with the
literature.
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