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a b s t r a c t

Wireless sensor–actuator networks offer flexibility for control design. One novel elementwhichmay arise
in networks with multiple nodes is that the role of some nodes does not need to be fixed. In particular,
there is no need to pre-allocate which nodes assume controller functions and which ones merely
relay data. We present a flexible architecture for networked control using multiple nodes connected
in series over analog erasure channels without acknowledgments. The control architecture proposed
adapts to changes in network conditions, by allowing the role played by individual nodes to depend
upon transmission outcomes.We adopt stochasticmodels for transmission outcomes and characterize the
distribution of controller location and the covariance of system states. Simulation results illustrate that
the proposed architecture has the potential to give better performance than limiting control calculations
to be carried out at a fixed node.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In a Networked Control System (NCS), sensor, controller and
actuator links are not transparent, but are affected by bit-
rate limitations, packet dropouts and/or delays. This leads to
performance degradation and makes the design of NCSs often
a challenging task (Antsaklis & Baillieul, 2007; Chen, Johansson,
Olariu, Paschalidis, & Stokmenovic, 2011). An interesting aspect
is that, when compared to traditional hard-wired control loops,
wireless NCSs offer architectural flexibility and additional degrees
of freedom. Whilst sensor and actuator functionalities will
generally be pre-allocated, often there is no need to pre-assign in
a static fashion which nodes carry out control calculations, and
which nodes merely relay data. Intuitively, the roles of individual
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nodes should depend on the information available at each time
instant. In the present work, we examine this question for the case
of NCSs with random packet dropouts. Our motivating application
is real-time control in the process industry. Several new standards
have recently been introduced for multi-hop wireless sensor and
actuator networks, e.g., WirelessHART, ISA-100, and this paper
proposes a new adaptive controller placement suitable to be
implemented over these standards. Note that the plant time
constants in process industry are often of the order of seconds or
minutes (or even higher), so we make the reasonable assumption
that network-induced delays can be neglected. As background
to our current work, Goodwin, Quevedo, and Silva (2008) study
performance of three static NCS architectures by adopting an
additive signal-to-noise ratio constrained channel model. The
results in Goodwin et al. (2008) suggest that, in the absence
of coding, placing the controller at the actuator node will give
better performance than placing it at the sensor node. The work
(Robinson & Kumar, 2008) examines NCSs with stochastic packet
dropouts using optimal control techniques. Inter-alia, the work
shows that optimal performance can be achieved if all nodes
aggregate their entire history of received data and relay it to the
controller–actuator. Depending upon the information available at
eachnode, various optimal control problems canbe analyzed.More
recently, Pajic, Sundaram, Pappas, and Mangharam (2011) have
investigated a distributed control strategy wherein the network
itself acts as a controller for a MIMO plant. All nodes (including
the actuator nodes) perform linear combinations of internal state

http://dx.doi.org/10.1016/j.automatica.2013.08.024
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.08.024&domain=pdf
mailto:dquevedo@ieee.org
mailto:kallej@ee.kth.se
mailto:Anders.Ahlen@signal.uu.se
mailto:ijurado@cartuja.us.es
http://dx.doi.org/10.1016/j.automatica.2013.08.024


D.E. Quevedo et al. / Automatica 49 (2013) 3458–3466 3459
Fig. 1. Single-loop control over a wireless sensor–actuator network: forward- and
feedback-links are unreliable.

variables of neighboring nodes. In the case of analog erasure
channels with i.i.d. dropouts (without acknowledgments), in Pajic
et al. (2011) the resulting NCS is then cast, analyzed and designed
as a jump-linear system.

Thepresentwork studies a single-loopNCS topologywhichuses
a series connection of analog erasure channels. We focus on sit-
uations where the wireless nodes have only limited energy and
processing power, precluding long data packets. Further, the nodes
do not provide local transmission acknowledgments. Feedback (or
acknowledgment) is only provided by the actuator node, which
broadcasts the applied plant input value over parallel unreliable
links to the intermediate nodes. This strategy is plausible as the
actuator node is powered, which is a reasonable assumption for
most actuators in process industry. Due to random dropouts, the
actuator node does not have full information on plant outputs. This
constitutes one of themajor difficulties when implementing a con-
troller in such a NCS. We address this issue by using an estimation
and control structure which is distributed across the network. In-
stead of tackling optimal control formulations (which dependupon
networkparameters andmay therefore bedifficult to implement in
practice), we adopt a so-called emulation-based approach, where
the controller has been pre-designed; see, e.g., Antunes, Hespanha,
and Silvestre (2013), Donkers, Heemels, van de Wouw, and Hetel
(2011), Nešić and Teel (2004). To be more specific, we assume that
the control policy consists of a pre-designed state feedback-gain
combined with a state observer, which, in the absence of network
effects, would lead to the desired performance. Within this con-
text, we present a flexible NCS architecture where the role played
by individual nodes depends upon transmission outcomes. While
all nodes calculate local state estimates at all times, with the al-
gorithm proposed, transmission outcomes determine, at each in-
stant, whether the control input will be calculated at the actuator
node, at the sensor node or at one of the intermediate nodes. It
turns out that, if individual dropout processes are i.i.d., then the
controller location has a stationary distribution, which can be eas-
ily characterized. To analyze the performance of the dynamic NCS
architecture in the presence of correlated dropouts, we derive a
jump-linear system model and adopt the network model recently
introduced in Quevedo, Ahlén, and Johansson (2013). This model
encompasses temporal and spatial correlations of packet dropouts
and is therefore of more practical importance than traditional i.i.d.
models. The present paper goes beyond our recent conference con-
tribution (Quevedo, Johansson, Ahlén, & Jurado, 2012), by present-
ing a closed loop model and considering networks with correlated
dropouts. Our approach complements (Quevedo, Johansson et al.,
2012) by focusing on a nominal linear estimator, as opposed to a
time-varying Kalman filter. This opens the possibility to analyze
NCS performance with correlated dropouts using techniques from
jump-linear systems.
Notation: We write N0 for {0, 1, 2, . . .}; R are the real numbers,
whereas R≥0 , [0,∞). The ℓ-th unit row-vector in Euclidean
space is denoted by eℓ, for example, e2 = [0 1 0 · · · 0]; In is
the n×n unit matrix, 0n , 0 · In;⊗ refers to the Kronecker product.
For any set of column vectors, {u1, . . . , un}, col(u1, . . . , un) =
Fig. 2. TDMA transmission schedule. The plant input uk is applied at time kT +Mτ

and broadcast at time (k+ 1)T − τ .

[uT
1, . . . , u

T
n]

T . We adopt the convention
0

j=1 aj = 0, for all
a0, a1 ∈ R. A real random variableµ, which is zero-mean Gaussian
with covariance Γ is denoted by µ ∼ N (0, Γ ).

2. Wireless sensor–actuator network setup

We consider MIMO LTI plant models of the form

xk+1 = Axk + Buk + wk

yk = Cxk + vk, k ∈ N0
(1)

where x0 ∼ N (x̄0, P0), P0 ≻ 0. In (1), uk ∈ Rm is the plant input,
xk ∈ Rn is the state, yk ∈ Rp is the output, andwk ∼ N (0,Q ),Q ≻
0 and vk ∼ N (0, R), R ≻ 0, are driving noise and measurement
noise, respectively. As foreshadowed in the introduction, we focus
on a situation where suitable feedback and estimator gains L ∈
Rm×n and K ∈ Rn×p have been pre-designed for the case where
the controller (K , L) has perfect access to plant outputs and inputs.
Consequently, we assume that if the control inputs

uk = Lx̂nomk , k ∈ N0, with (2)

x̂nomk = Ax̂nomk−1 + Buk−1 + K

yk − C(Ax̂nomk−1 + Buk−1)


, (3)

where x̂nomk denotes an estimate of the state xk, were implemented
at the plant, then satisfactory performance would be attained.
The main theme of the present work is to investigate how to
implement the above nominal controller, when using a wireless
sensor–actuator network with dropouts.

The sensor node measures the plant output yk, whereas the
actuator node manipulates the plant input uk. The loop is closed
over a wireless network, characterized via a (directed) line-graph
havingM nodes; see Fig. 1. Transmissions are in sequential Round-
Robin fashion {1, 2, . . . ,M, 1, 2, . . .} as depicted in Fig. 2. More
precisely, the packet s(i)k is transmitted from node i to node i + 1
at times kT + iτ , where T is the sampling period of (1) and τ ≪
T/(M + 1) refers to the times between transmissions of packets
s(i)k . The input uk is applied at time kT + (M+1)τ . We thus assume
that in-network processing is much faster than the plant dynamics
(1) and neglect delays introduced by the network.

The network introduces stochastic packet dropouts. To study
the situation, we adopt an analog erasure channel model and
introduce the binary success processes

γ
(i)
k ∈ {0, 1}, k ∈ N0, i ∈ {1, 2, . . . ,M − 1},

where γ
(i)
k = 1 indicates that transmission of the packet s(i)k from

node i to node i + 1 at time kT + iτ , is successful, i.e., error-free;
γ

(i)
k = 0 refers to a packet-dropout. Throughout this work, we

assume that transmission outcomes are known at the correspond-
ing receiver sides and that the sensor node i = 1 has direct ac-
cess to plant output measurements. For notational convenience,
we write γ

(0)
k = 1, for all k ∈ N0. To save energy, the wireless

nodes i ∈ {1, 2, . . . ,M − 1} do not provide acknowledgments of
receipt of the packets. The actuator node M provides a feedback
mechanism: At time (k + 1)T − τ , it broadcasts the control value
uk to nodes i ∈ {1, . . . ,M − 1}; see Fig. 1. Due to channel fading,
the feedback links between actuator and sensors are also affected
by dropouts. We denote the associated success processes via

δ
(i)
k ∈ {0, 1}, k ∈ N0, i ∈ {1, 2, . . . ,M − 1}.
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More precisely, if uk is successfully received at node i, then we set
δ

(i)
k = 1; see also Imer, Yüksel, and Başar (2006) for studies on
the importance of acknowledgments in closed loop control.We as-
sume that the actuator node has perfect knowledge of plant inputs,
and thus, write δ

(M)
k = 1,∀k ∈ N0. Since the actuator node will,

in general, have less stringent energy constraints than the other
nodes, we focus our attention on situations where the feedback
links are more reliable than the forward links moving data from
the sensor to the actuator.

Due to packet dropouts, plant output measurements are not al-
ways available at the actuator node. On the other hand, the sen-
sor node will, in general, not have perfect information of previous
plant inputs. This makes the implementation of the nominal con-
troller (2)–(3) a challenging task. In the sequel, we will present an
adaptive controller placement algorithm where the computations
leading to the plant inputs are distributed across the network. We
foresee that our approach will lead to a dynamic assignment of the
role played by the individual network nodes. Aswill become appar-
ent in the sequel, which tasks are carried out by individual nodes
at each time instant, will depend upon transmission outcomes.

3. Flexible controller placement

To keep communication overheads low, the packets transmit-
ted by each node i have only two fields, namely, output measure-
ments and tentative plant inputs (if available):

s(i)k =

yk, u

(i)
k


. (4)

Plant outputs are transmitted in order to pass on information on
the plant state to the nodes {i + 1, i + 2, . . . ,M}; see Fig. 1. On
the other hand, u(i)

k in (4) is the plant input which is applied at the
plant provided the packet s(i)k is delivered at the actuator node. If
s(i)k is lost, then following the algorithm described below, the plant
input will be provided by one of the later nodes ℓ > i, which
thereby takes on the controller role at time k. In the sequel, we
will refer to the node which calculates the plant input at time k as
ck ∈ {1, 2, . . . ,M}:

uk = Lx̂(ck)
k , k ∈ N0, (5)

where x̂(ck)
k is the local plant state estimate computed at node

ck. Intuitively, good control performance will be achieved if the
estimate used in (5) is accurate. Clearly, due to the multi-hop
nature of the network, nodes which are closer to the sensor will
have access tomore output measurements; see Fig. 1. On the other
hand, one can expect that nodeswhich are physically located closer
to the actuator node will on average receive more plant input
acknowledgments, thus, have better knowledge of plant inputs.

While only the node ck will provide uk, in our formulation all
nodes compute local state estimates, x̂(i)

k , by using the data received
from the actuator node and the preceding node. This serves as safe-
guard for instances when the loop is broken due to dropouts. Moti-
vated by the fact that often feedback links from the actuator to the
intermediate sensors are ‘‘quite reliable’’, we adopt the following
simple procedure: If plant output measurements are available at
node i, then state estimators are of the form (3); at instances when
the plant input is not available, an open loop estimate is used, thus:

x̂(i)
k = Ax̂(i)

k−1 + Bû(i)
k−1 + K (i)

k


yk − C(Ax̂(i)

k−1 + Bû(i)
k−1)


, (6)

where

K (i)
k , Γ

(i)
k K , and Γ

(i)
k ,


j∈{0,1,...,i−1}

γ
(j)
k (7)
is equal to 1 if and only if yk is available at node i at time kT +
(i− 1)τ . In (6), û(i)

k−1 is a local plant input estimate. In particular, if
δ

(i)
k−1 = 1, then û(i)

k−1 = uk−1. At instances where δ
(i)
k−1 = 0, node i

uses u(i)
k−1, the tentative plant input value transmitted in the second

field of the previous packet s(i)k−1 (if non-empty), or otherwise sets
û(i)
k−1 = Lx̂(i)

k−1. More details on the estimator are given in Section 5.

Remark 1. Of course, the above transmission and control strategy
will in general not be optimal. In particular, nodes do not transmit
local state estimates and the control law does not depend upon
network parameters, e.g., dropout probabilities; cf., Chiuso and
Schenato (2011). The aim of the present work is to develop a
simple and practical method, which uses an existing control and
estimation policy for implementation over an unreliable network
and only requires little communication. �

Remark 2. In Quevedo, Johansson et al. (2012), instead of using
(7), the gains K (i)

k were taken as the Kalman filter gains for a
system with intermittent observations; see, e.g., Huang and Dey
(2007), Quevedo, Ahlén, Leong, and Dey (2012); Quevedo, Ahlén,
and Østergaard (2010). Our subsequent analysis up to (22) can be
applied to this structure as well. However, the jump-linear model
derived in Section 5 requires a jump-linear estimationmodel, such
as (7). �

Algorithm 1, run at every node i ∈ {1, 2, . . . ,M}, embodies
the adaptive controller allocation method described above.
Which calculations are carried out at each node, depends upon
transmission outcomes involving the current node (see lines 6, 8,
14, 24 and 37) and also transmission outcomes at previous nodes
(see lines 16, 19 and 24). In particular, node i only calculates a
tentative plant input when no tentative plant input is received
fromnode i−1 andnode ihas successfully receiveduk−1 (see lines 9
and 25). Therefore, preference is given to relay incoming tentative
plant input values. The reason for adopting this decision procedure
lies in that we assume that data sent from the actuator node to
intermediate nodes is often available, whereas transmissions of
packets s(i)k are less reliable. Thus, nodes closer to the sensor node
can be expected to have better state estimates than nodes located
further down the line. In particular, the sensor node i = 1 uses as
input

s(0)k = (yk,∅), γ
(0)
k = 1. (8)

If δ
(1)
k−1 = 1, then the sensor node calculates a tentative con-

trol value and transmits s(1)k = (yk, Lx̂
(1)
k ) to node 2. Subsequent

nodes relay this packet towards the actuator node. If the packet is
dropped along the way, then the next node i where δ

(i)
k−1 = 1, cal-

culates a tentative control u(i)
k = Lx̂(i)

k and transmits s(i)k = (∅, u(i)
k )

to node i+1, etc. On the other hand, if δ(1)
k−1 = 0, then s(0)k is relayed

to subsequent nodes until arriving at some node i where uk−1 was
successfully received. Control calculations are then carried out and
the packet s(i)k obtained is relayed towards the actuator node, etc.
The actuator node implements uk = u(M)

k , the value contained in
the second field of s(M)

k .

Remark 3. An advantage of allowing the control calculations to be
located arbitrarily and in a time-varying fashion, is that it makes
more difficult for someone to attack the NCS. The development of
secure control strategies based on Algorithm 1 presented remains
a topic of future research. �
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Algorithm 1 Adaptive Controller Placement

1: k← 0, x̂(i)
0 ← 0, j← 0

2: while t ≥ 0 do ◃ t ∈ R≥0 is actual time
3: while t ≤ kT + (i− 1)τ do ◃wait-loop
4: j← j+ 1
5: end while
6: if γ

(i−1)
k = 0 then ◃ s(i−1)k is dropped

7: û(i)
k ← Lx̂(i)

k

8: if δ
(i)
k−1 = 1 then

9: s(i)k ←

∅, û(i)

k


◃ a tentative input

10: else
11: s(i)k ←


∅,∅


12: end if
13: end if
14: if γ

(i−1)
k = 1 then ◃ s(i−1)k is received

15: (y, u)← s(i−1)k
16: if y ≠ ∅ then ◃ yk is available
17: x̂(i)

k ← x̂(i)
k + K


y− Cx̂(i)

k


18: end if
19: if u ≠ ∅ then
20: u(i)

k = u
21: else
22: u(i)

k ← Lx̂(i)
k

23: end if
24: if u = ∅ ∧ δ

(i)
k−1 = 1 then

25: s(i)k ←

y, u(i)

k


◃ a tentative input

26: else
27: s(i)k ← (y, u) ◃ s(i−1)k is forwarded
28: end if
29: end if
30: while t < kT + iτ do ◃wait-loop
31: j← j+ 1
32: end while
33: transmit s(i)k
34: while t ≤ (k+ 1)T − τ do ◃wait-loop
35: j← j+ 1
36: end while
37: if δ

(i)
k = 1 then ◃ uk is available

38: x̂(i)
k+1 ← Ax̂(i)

k + Buk

39: else ◃ the value in s(i)k is used
40: x̂(i)

k+1 ← Ax̂(i)
k + Bu(i)

k
41: end if
42: k← k+ 1
43: end while

4. Dynamic controller location

With Algorithm 1, which of the nodes calculates the plant
input uk, depends upon the transmission outcomes. For further
reference, we shall denote the set of nodes which calculate a
tentative control input (see lines 9 and 25 of Algorithm 1) via
Ck ⊂ {1, 2, . . . ,M}. It is convenient to introduce the processes
µ

(i)
k


, and


c(i)
k


, where i ∈ {0, 1, . . . ,M} and

µ
(i)
k ,


0 if the second field of s(i)k is empty,
1 otherwise,

c(i)
k , µ

(i)
k max(Ck ∩ {1, 2, . . . , i}).

(9)

Note that µ
(1)
k = δ

(1)
k−1,∀k ∈ N. If c(i)

k > 0, then c(i)
k denotes the

node where the second field of s(i)k was calculated. It is easy to see
that, with the algorithm proposed and since the packets s(i)k are
communicated sequentially, see Fig. 2, we have c(1)
k = δ

(1)
k−1, for

all k ∈ N0, whereas

c(i)
k =


iδ(i)

k−1 if c(i−1)
k = 0 ∨ γ

(i−1)
k = 0,

c(i−1)
k if c(i−1)

k > 0 ∧ γ
(i−1)
k = 1,

(10)

for i ∈ {2, . . . ,M}, k ∈ N0. The ‘‘controller node at time k’’, i.e., the
node where uk was calculated is given by

ck , c(M)
k = max(Ck), ∀k ∈ N0; (11)

see (5). To derive our results, we introduce the aggregated trans-
mission outcome process {βk}, k ∈ N0, where

βk ,

M−1
i=1


2M−1γ

(i)
k+1 + δ

(i)
k


2i−1, k ∈ N0. (12)

Note that βk−1 ∈ I , {0, 1, . . . , 22M−2
− 1} collects the out-

comes of all transmissions which occur during the time-interval
[kT − τ , kT + Mτ ]; see Fig. 2. Thus, βk−1 determines Ck and ck,
i.e., the controller location will dynamically adapt to the network
conditions. To further elucidate the situation, in the sequel we will
regard {βk}, k ∈ N0 as a stochastic process. We will first assume
that the transmission processes are Bernoulli distributed.

Assumption 4. The link transmission processes are independent
and identically distributed (i.i.d.) with a common success proba-
bility p ∈ [0, 1]:

Pr

γ

(i)
k = 1


= p, ∀i ∈ {1, 2, . . . ,M − 1}. (13)

The feedback link success processes are i.i.d., with

Pr

δ

(i)
k = 1


= qi, ∀i ∈ {1, 2, . . . ,M − 1}, (14)

for given success probabilities q1, q2, . . . , qM−1 ∈ [0, 1]. �

Note that while the above assumption imposes that transmission
processes are i.i.d., it does take into account the fact that radio
connectivity from the actuator node to the other nodes will be
distance dependent. It also does not impose that the processes
µ

(i)
k


, k ∈ N0 for different nodes i are independent. However,

the assumption made does imply stationarity, as apparent from
Proposition 5 given below.

Proposition 5. Suppose that Assumption 4 holds. Then

Pr

µ

(i)
k = 1


= qi +

i−1
j=1

pjqi−j
j−1
ℓ=0

(1− qi−ℓ) (15)

Pr{i ∈ Ck} = qi

1− pPr


µ

(i−1)
k = 1


(16)

Pr{ck = i} = pM−iPr{i ∈ Ck}, (17)

for all k ∈ N0 and i ∈ {1, 2, . . . ,M}, and where qM = 1.

The above result shows how the distributions of µ(i)
k , Ck, and of

ck depend upon the communication success probabilities; i.e., the
distribution of βk, here modeled as i.i.d.

Example 6. Suppose that Assumption 4 holds and that the
feedback links are always available, that is, qi = 1, for all i ∈ {1,
. . . ,M}. Expression (15) then provides that Pr{µ(i)

k = 1} = 1, for
all i ∈ {1, . . . ,M}. Since, by (8), Pr{µ(0)

k = 1} = 0, Proposition 5
gives that

Pr

i ∈ Ck


=


1 if i = 1
1− p if i ∈ {2, . . . ,M}
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Table 1
Set Ck (with location ck in bold-face) for M = 3; see Example 7.

δ
(1)
k−1 γ

(1)
k δ

(2)
k−1 γ

(2)
k Ck, ck Pr

1 1 Any 1 {1} q1p2
1 1 Any 0 {1, 3} q1p(1− p)
1 0 1 1 {1, 2} q1(1− p)q2p
1 0 1 0 {1, 2, 3} q1(1−p)q2(1−p)
1 0 0 Any {1, 3} q1(1−p)(1−q2)
0 Any 1 1 {2} (1− q1)q2p
0 Any 1 0 {2, 3} (1−q1)q2(1−p)
0 Any 0 Any {3} (1− q1)(1− q2)

and the controller location sequence has the following geometric-
like distribution

Pr{ck = i} =

pM−1 if i = 1
(1− p)pM−i if i ∈ {2, 3, . . . ,M}.

(18)

On the other hand, if the actuator does not broadcast the plant
input values at all (qi = 0,∀i ≠ M), then, ∀k ∈ N0

Pr{µ(i)
k = 1} = 0, ∀i ∈ {1, . . . ,M − 1},

Pr{ck = M} = Pr{M ∈ Ck} = 1,

and the controller is collocated with the actuator (with probability
one). This essentially corresponds to the conclusions made by
the previous works (Goodwin et al., 2008; Robinson & Kumar,
2008) for alternative NCS configurations without feedback of plant
inputs. �

Example 7. ConsiderM = 3 and suppose that Assumption4holds.
In this case, Proposition 5 establishes that

Pr{ck = i} =

q1p2 if i = 1,
pq2(1− pq1) if i = 2,
1− pq2 − p2q1 + p2q1q2 if i = 3.

Note that, sinceM is small, this result can alternatively be obtained
by examining the probabilities of all possible transmission out-
comes. This is illustrated in Table 1. Of course, for a large number of
nodes, such a procedure is non-practical and use of Proposition 5
is preferable. �

5. Closed loop model

The algorithmproposed embodies a network driven distributed
state estimation and control architecture. Closed loop dynamics
depend upon transmission outcomes, the plant model (1) and
nominal controller/estimator dynamics; see (2)–(3). To derive a
compact model, it is convenient to introduce the aggregated state
estimation vector x̂k , col


x̂(1)
k , x̂(2)

k , . . . x̂(M)
k


∈ RMn. We also

denote the ‘‘backup value’’ for uk used at node i as

ν
(i)
k =


Lx̂(i)

k if µ(i)
k = 0,

Lx̂(j)
k , j = c(i)

k if µ(i)
k = 1,

see (9) and note that ν(1)
k = Lx̂(1)

k , for all k ∈ N0. In view of (10), we
have

ν
(i)
k = b(i)

k x̂k, (19)

where b(1)
k , e1 ⊗ L ∈ Rm×Mn, whereas for i ≥ 2,

b(i)
k , eℓ ⊗ L ∈ Rm×Mn

ℓ =


i if c(i−1)

k = 0 ∨ γ
(i−1)
k = 0,

c(i−1)
k if c(i−1)

k > 0 ∧ γ
(i−1)
k = 1,

(20)

depends on the realization of βk−1; see (12).
Since the algorithm gives uk = ν
(M)
k , the plant input estimates

used by the state estimators satisfy:

û(i)
k =


ν

(M)
k if δ(i)

k = 1,
ν

(i)
k if δ(i)

k = 0

=

δ

(i)
k (eM ⊗ Im)+


1− δ

(i)
k


(ei ⊗ Im)


νk, (21)

where νk , col

ν

(1)
k , ν

(2)
k , . . . , ν

(M)
k


∈ RMm forms part of the

internal variables used by theM state estimators.
Now, the plant model can be written as

xk+1 = Axk + Bν(M)
k + wk (22)

and (22), (6) and (21) then provide:

x̂(i)
k+1 =


In − K (i)

k+1C

Ax̂(i)

k + Bû(i)
k


+ K (i)

k+1


CAxk + CBν(M)

k + Cwk + vk+1


= K (i)
k+1CAxk +


In − K (i)

k+1C

(ei ⊗ A)x̂k

+ d(i)
k νk + K (i)

k+1


Cwk + vk+1


,

d(i)
k ,


1− δ

(i)
k


In − K (i)

k+1C

(ei ⊗ B)

+

1− δ

(i)
k


K (i)
k+1C + δ

(i)
k In


(eM ⊗ B).

(23)

If we now introduce

Θk , col

xk, x̂k, νk


, nk , col(wk, vk+1), (24)

and use (7), then (23) becomes

x̂(i)
k+1 = D (i)(βk)Θk + E (i)(βk)nk,

D (i)(βk) ,

Γ

(i)
k+1KCA


In − Γ

(i)
k+1KC


(ei ⊗ A) d(i)

k


E (i)(βk) , Γ

(i)
k+1K


C Ip


.

State estimators, thus, follow the dynamic relation

x̂k+1 = D(βk)Θk + E(βk)nk (25)

D(βk) ,

D (1)(βk)
...

D (M)(βk)

 , E(βk) ,

E (1)(βk)
...

E (M)(βk)

 .

On the other hand, (19) provides

νk+1 = F (βk)Θk + G(βk)nk, (26)

F (βk) ,

b(1)
k+1D(βk)

...

b(M)
k+1D(βk)

 , G(βk) ,

b(1)
k+1E(βk)

...

b(M)
k+1E(βk)

 .

Expressions (22), (25) and (26) lead to the jump-linear model

Θk+1 = A(βk)Θk +B(βk)nk, (27)

A(βk) ,


A 0Mn eM ⊗ B


D(βk)
F (βk)

 , B(βk) ,


In 0


E(βk)
G(βk)

 .

Example 8. Consider M = 2, in which case βk = 2γ (1)
k+1 + δ

(1)
k

and I = {0, 1, 2, 3}; see (12). Since c(1)
k = δ

(1)
k−1, δ

(2)
k−1 = 1 and

b(1)
k+1 = e1 ⊗ L for all k ∈ N0, (20) yields:

b(2)
k+1 =


e2 ⊗ L if βk < 3,
e1 ⊗ L if βk = 3.
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In this case, the matrices in (25) are given by

D(βk) =


KCA


In − KC


(e1 ⊗ A) d(1)

k
γ

(1)
k+1KCA


In − γ

(1)
k+1KC


(e2 ⊗ A) e2 ⊗ B


E(βk) =


KC K

γ
(1)
k+1KC γ

(1)
k+1K


,

d(1)
k =


In − KC


B KCB


if βk ∈ {0, 2},

e2 ⊗ B if βk ∈ {1, 3}

thereby, characterizing the model (27). �

6. Performance analysis

To analyze the NCS via (27), we will adopt the stochastic mod-
eling framework of Quevedo et al. (2013). Transmission outcome
distributions depend upon the fading radio environment. To al-
low for temporal and spatial correlations of the radio environment
(and possibly also for power and bit-rate control), in Quevedo et al.
(2013) we used a Markovian network state, {Ξk}, k ∈ N0, which
takes values in a finite set, sayB. Each element ofB corresponds to a
possible configuration of the physical environment, e.g., position of
mobile objects. Dropout probabilities of individual channels,when
conditioned on the network state, are considered independent. In the
particular instance where B has only one element, the model de-
scribes a situation with independent Bernoulli channels. For the
present purposes, the model can be summarized via the following.

Assumption 9. The process {Ξk}, k ∈ N0 is an aperiodic homoge-
neous Markov Chain with transition probabilities pij = Pr{Ξk+1 =

j | Ξk = i}, i, j ∈ B and stationary distribution πi = limk→∞
Pr{Ξk = i}, i ∈ B. The aggregated transmission outcome process
{βk} in (12) is conditionally independent given the network state
{Ξk}, i.e., φij , Pr{βk = i | Ξk = j}, for all (i, j) ∈ I× B. �

It is worth noting that, with the abovemodel, the process βk is cor-
related, but not necessarily Markovian. However, the augmented
jump process (βk, Ξk), k ∈ N0 forms a finite Markov Chain. Thus,
under Assumption 9, (27) belongs to the class of Markov jump-
linear systems, as studied for example in Costa, Fragoso, and Mar-
ques (2005), Lee and Dullerud (2007). In particular, Theorems 3.9
and 3.33 of Costa et al. (2005) establish necessary and sufficient
conditions for mean-square stability (MSS) which can be stated
in terms of feasibility of a linear-matrix inequality. The follow-
ing result characterizes closed loop performance of the flexible
networked control systems architecture of interest in the present
work. It is tailored directly to the model in Assumption 9 without
needing to resort to the augmented jump process (βk, Ξk).

Theorem 10. Suppose that Assumption 9 holds, that the system
(27) is MSS and define W , diag(Q , R),

Aj , E

A(βk) | Ξk = j


=


i∈I

φijA(i), j ∈ B,

B j , E

B(βk) | Ξk = j


=


i∈I

φijB(i), j ∈ B.
(28)

Then

lim
k→∞

E{ΘkΘ
T
k } =


i∈B

Hi, (29)

where Hi, i ∈ B satisfy the linear system of equations:

Hi =

j∈B

pjiAiHj(Ai)
T
+ πiB iW (B i)

T . (30)

In view of (24) and the fact that uk = ν
(M)
k , our result can be

used to evaluate the plant state and input covariances.
Fig. 3. Histogramof ck for an i.i.d. networkwith success probabilities p = 0.9, q1 =
· · · = q4 = 0.88, and q5 = · · · = q9 = 0.9.

Remark 11. By using Lancaster (1970, Section 5), Hi in (30) can be
written in terms of the solution to a system of linear equations. �

7. Simulation studies

We consider an NCS with M = 10 nodes. In addition to the
implementation of the controller via Algorithm 1, we also examine
two baseline NCS architectures. In the first one, the controller and
the estimator are fixed at the actuator node:

xk+1 = Axk + BLx̂ak + wk,

x̂ak = Ax̂ak−1 + Buk−1 + Γ
(10)
k K


yk − C(Ax̂ak−1 + Buk−1)


,

(31)

where Γ
(10)
k is as in (7). In the second scheme, the controller and

the estimator are implemented at the sensor node. If the controller
output is lost, then the previous plant input is held:

xk+1 = Axk + Γ
(10)
k BLx̂sk + (1− Γ

(10)
k )Buk−1 + wk,

x̂sk = Ax̂sk−1 + Bûs
k−1 + K


yk − C(Ax̂sk−1 + Bûs

k−1)

,

(32)

where Γ
(10)
k is as in (7) and

ûs
k−1 =


uk−1 if δ(1)

k−1 = 1,
Lx̂sk−1 if δ(1)

k−1 = 0.

Independent and identically distributed dropouts. We first consider
i.i.d. transmission processes as per Assumption 4. Fig. 3 illustrates
a histogram of ck, obtained by running the algorithm for 1000 steps
with dropout probabilities as indicated. Whilst (18) shows that for
small p, control calculations are at most times, carried out at the
actuator node, Fig. 3 illustrates that if links are more reliable, then
the controller will be placed at the sensor node at most time steps.

We first consider a noiseless unstable plant model (1), where

A =

1.87 −0.86
1 0


, B =


1
0


,

C =

0.048 0.045

 (33)

with Gaussian initial state having mean x̄0 = [5 5]T and
covariance P0 = 0.1 × I2. Controller and estimator gains L and K
correspond to the steady state LQG/LQR controller with stage cost
∥xk∥2 + ∥uk∥

2/10. All nodes use as initial state estimates, x̂(i)
0 =

[0 0]T . The network has i.i.d. dropouts with success probabilities
p = 0.9 and q1 = · · · = q9 = 1.

The baseline NCS (32) failed to stabilize the present system.
Fig. 4 compares a typical plant output trajectory obtained by using
the proposed algorithm (solid line) with that provided by the
baselineNCS (31) (dashed line). As can be appreciated, the adaptive
controller allocation algorithm presented reacts more quickly to
plant outputs. It thereby recovers more quickly from the very bad
local initial state estimates and provides control actions leading
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Fig. 4. Output trajectory of the plant model (33) for an i.i.d. network with success
probabilities p = 0.9, q1 = · · · = q9 = 1.

Table 2
Performance indices J when controlling the system (35) over an i.i.d. network with
q1 = · · · = q4 = 0.99, q5 = · · · = q9 = 0.995.

p NCS (5)–(6) NCS (31) NCS (32)

0.95 33.5 38.5 (unstable)
0.97 33.2 37.6 56.1
0.99 33.1 34.7 34.1

to faster convergence to the origin. If we adopt the empirical
performance measure

J ,

1000
k=1

y2k, (34)

then, with the dynamic architecture, we obtain J ≈ 3, whereas for
the baseline NCS described by (31), J ≈ 11.

We next consider a plant model with an integrator, where

A =

1.8 −0.8
1 0


, Q = 0.01× I2, R = 0.01 (35)

and B and C as in (33). The initial state has mean x̄0 = [10 10]T .
Table 2 illustrates how the performance gained by using the
proposed method depends upon the network reliability. For the
situation examined, larger performance gains are obtained with
smaller p. For larger p, the performance gains become less relevant.
This finding is intuitive, since for p ≈ 1 the network becomes
transparent and overall performance is dominated by the nominal
design (1)–(3).
Network with moving obstacle. We now focus on a network with an
obstacle (e.g., a robot or crane) moving between four different po-
sitions; see Fig. 5. Wemodel this as in Section 6, using the network
state processΞk ∈ B = {1, 2, 3, 4}. The transition probabilities for
Ξk are given by:

[pij] =

 0.99 0.01 0 0
0.003 0.99 0.007 0

0 0.003 0.99 0.007
0.007 0 0.003 0.99

 .

The individual link reliabilities depend on the position of the obsta-
cle. Nodes which are not blocked benefit from high success prob-
abilities r ∈ [0.88, 1]. Due to the obstacle, some of the success
probabilities will, at times, be lowered to 60%:

Pr{γ (i)
k = 1 | Ξk = j} =


0.6 if i ∈ {2j− 1, 2j, 2j+ 1}
r in all other cases

Pr{δ(i)
k−1 = 1 | Ξk = j} =


0.6 if i ∈ {2j, 2j+ 1}
r in all other cases.

(36)
Fig. 5. Sensor–actuator network with moving obstacle.

Fig. 6. Network state trajectory, Ξk .

Fig. 7. Controller location ck for the network in Fig. 5.

For r = 0.99, Figs. 6 and 7 illustrate how using Algorithm 1 the
controller location depends upon the network stateΞk. It turns out
that, in the present case, the plant input is always provided by one
of the nodes located between the sensor node and the node imme-
diately following the blocked ones. This behavior can be explained
by noting that, in absence of the obstacle, the network is very reli-
able. In fact, if none of the nodes were blocked, then the algorithm
would (almost) always locate the controller at the sensor node.

For (35) and with r = 0.99, use of the dynamic architecture
proposed, gave J = 51.6. In contrast, if the controller is fixed at
the actuator node, see (31), then J = 68.5 was obtained. This
amounts to a performance loss of 33%. In the situations examined,
positioning the baseline NCS (32) failed to stabilize the plant
model. Fig. 8, obtained using Theorem 10, illustrates how the trace
of the covariance of the plant state (35) depends on the network
parameter r in (36). In this figure, the solid line corresponds to the
dynamic controller placement method, whereas the dashed line
refers to the baseline controller (31). Our results clearly indicate
that, without the need for controller re-design, the algorithm
proposed in the present work has the potential to give significant
performance gains when compared to earlier NCS configurations
where node functionalities are fixed.
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Fig. 8. Trace of the stationary covariance of the plant state xk in (35) as a function
of the success probability r; see (36).

8. Conclusions

We have presented a flexible architecture for the implementa-
tion of a linear control law over a wireless sensor–actuator net-
work using analog erasure channels without acknowledgments.
With the algorithm provided, the role played by individual nodes
depends on transmission outcomes. In particular, the controller lo-
cation is adapted to the availability of past plant input values and
transmission outcomes. By deriving a Markovian jump-linear sys-
tem model, we established a closed form expression for the sta-
tionary covariance of the system state in the presence of correlated
dropout processes. Future work may include extending the ideas
to multiple-loops, to general network topologies, and to controller
design.

Appendix A. Proof of Proposition 5

With Assumption 4, Pr{µ(1)
k = 1} = Pr{δ(1)

k−1 = 1} = q1. It is
easy to see from lines 11 and 27 of Algorithm 1 that

i ∈ Ck ⇐⇒ δ
(i)
k−1 = 1

∧

γ

(i−1)
k = 0 ∨


γ

(i−1)
k = 1 ∧ µ

(i−1)
k = 0


⇐⇒ δ

(i)
k−1 = 1 ∧


γ

(i−1)
k = 0 ∨ µ

(i−1)
k = 0


(A.1)

and that, similarly

µ
(i)
k = 0 ⇐⇒


γ

(i−1)
k = 0 ∧ δ

(i)
k−1 = 0


∨


γ

(i−1)
k = 1 ∧ µ

(i−1)
k = 0 ∧ δ

(i)
k−1 = 0


⇐⇒ δ

(i)
k−1 = 0

∧

γ

(i−1)
k = 0 ∨


γ

(i−1)
k = 1 ∧ µ

(i−1)
k = 0


⇐⇒ δ

(i)
k−1 = 0 ∧


γ

(i−1)
k = 0 ∨ µ

(i−1)
k = 0


(A.2)

for all i ∈ {1, 2, . . . ,M}. (A.2) provides the recursion

Pr

µ

(i)
k = 1


= 1− Pr


δ

(i)
k−1 = 0


Pr


µ

(i−1)
k = 0 ∨ γ

(i−1)
k = 0


= 1− (1− qi)


1− Pr


µ

(i−1)
k = 1 ∧ γ

(i−1)
k = 1


= 1− (1− qi)


1− pPr


µ

(i−1)
k = 1


= qi + p(1− qi)Pr


µ

(i−1)
k = 1


,

having explicit solution (15). On the other hand, (A.1) gives

Pr{i ∈ Ck} = Pr

δ

(i)
k−1 = 1


1− Pr


γ

(i−1)
k = 1


× Pr


µ

(i−1)
k = 1


,

thus establishing (16). By (11) we obtain
Pr{ck = i} = Pr{max(Ck) = i}

= Pr{i ∈ Ck ∧ γ i
k = γ i+1

k = · · · = γ M−1
= 1}

for i ∈ {1, . . . ,M − 1}, whereas for the actuator node, we have
Pr{ck = M} = Pr{M ∈ Ck}. This proves (17). �
Appendix B. Proof of Theorem 10

By the law of total expectation, we have

E{Θk+1Θ
T
k+1} =


i∈B

Hk+1,i, (B.1)

where

Hk+1,i , E{Θk+1Θ
T
k+1 | Ξk = i}Pr{Ξk = i}. (B.2)

Now, the system Eq. (27) together with the network fading model
in Assumption 9 allow one to write

E{Θk+1Θ
T
k+1 | Ξk = i} = E


A(βk)Θk +B(βk)nk


×


A(βk)Θk +B(βk)nk

T
| Ξk = i


= E


A(βk)ΘkΘ

T
k A(βk)

T
| Ξk = i


+ E


B(βk)nknT

kB(βk)
T
| Ξk = i


= E


A(βk)ΘkΘ

T
k A(βk)

T
| Ξk = i


+B iW (B i)

T (B.3)

since {nk} is zero-mean i.i.d. The rule of total expectation, Bayes’
rule and the Markovian property of (27) give that

E

A(βk)ΘkΘ

T
k A(βk)

T
| Ξk = i


=


j∈B

E

A(βk)ΘkΘ

T
k A(βk)

T
| Ξk = i, Ξk−1 = j


× Pr{Ξk−1 = j | Ξk = i}

=


j∈B

E

A(βk)ΘkΘ

T
k A(βk)

T
| Ξk = i, Ξk−1 = j


× Pr{Ξk = i | Ξk−1 = j}Pr{Ξk−1 = j}/Pr{Ξk = i}

=


j∈B

pjiAiE

ΘkΘ

T
k | Ξk−1 = j


(Ai)

T Pr{Ξk−1 = j}
Pr{Ξk = i}

. (B.4)

Substitution of (B.4) into (B.3) and then into (B.2) provides

Hk+1,i =

j∈B

pjiAiE

ΘkΘ

T
k | Ξk−1 = j


(Ai)

T

× Pr{Ξk−1 = j} +B iW (B i)
TPr{Ξk = i}

=


j∈B

pjiAiHk,j(Ai)
T
+B iW (B i)

TPr{Ξk = i}. (B.5)

Since the NCS is assumed MSS, it is asymptotically wide-sense
stationary (Costa et al., 2005, Theorem 3.33). If we define Hi ,
limk→∞ Hk,i, i ∈ B, and recall that {Ξk} is aperiodic, then (B.5)
becomes (30), and (B.1) establishes (29). �
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