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ABSTRACT

We introduce the family of limited model information control design methods, which construct con-
trollers by accessing the plant’s model in a constrained way, according to a given design graph. We
investigate the closed-loop performance achievable by such control design methods for fully-actuated
discrete-time linear time-invariant systems, under a separable quadratic cost. We restrict our study to
control design methods which produce structured static state feedback controllers, where each sub-
controller can at least access the state measurements of those subsystems that affect its corresponding
subsystem. We compute the optimal control design strategy (in terms of the competitive ratio and domi-
nation metrics) when the control designer has access to the local model information and the global inter-
connection structure of the plant-to-be-controlled. Finally, we study the trade-off between the amount of
model information exploited by a control design method and the best closed-loop performance (in terms
of the competitive ratio) of controllers it can produce.

Large-scale systems
Structural constraints

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many modern control systems, such as aircraft and satellite
formation (Giulietti, Pollini, & Innocenti, 2000; Kapila, Sparks,
Buffington, & Yan, 1999), automated highways and other shared
infrastructure (Negenborn, Lukszo, & Hellendoorn, 2010; Swa-
roop & Hedrick, 1999), flexible structures (Joshi, 1989), and sup-
ply chains (Braun, Rivera, Flores, Carlyle, & Kempf, 2003; Dunbar,
2007), consist of a large number of subsystems coupled through
their performance goals or system dynamics. When regulating
this kind of plant, it is often advantageous to adopt a distributed
control architecture, in which the controller itself is composed of
interconnected subcontrollers, each of which accesses a strict sub-
set of the plant’s output. Several control synthesis methods have
been proposed over the past decades that result in distributed con-
trollers of this form, with various types of closed-loop stability
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and performance guarantees (e.g., Ayres de Castro and Paganini
(1999), Bamieh, Paganini, and Dahleh (2002), Chen and Lall (2003),
Hu (1994), Levine, Johnson, and Athans (1971), Scorletti and Duc
(2001), Soderstrom (1978), Wang and Davison (1973) and Wenk
and Knapp (1980)). Most recently, the tools presented in Rotkowitz
and Lall (2006) and Voulgaris (2003) revealed how to exploit the
specific interconnection of classes of plants (the so-called quadrat-
ically invariant systems) to formulate convex optimization prob-
lems for the design of structured H.,- and H,-optimal controllers.
A common thread in this part of the literature is the assumption
that, even though the controller is structured, its design can be per-
formed in a centralized fashion, with full knowledge of the plant
model. However, in some applications (described in more detail in
the next paragraph), this assumption is not always warranted, as
the design of each subcontroller may need to be carried out by a
different control designer, with no access to the global model of
the plant, although its interconnection structure and the common
closed-loop cost function to be minimized are public knowledge.
This class of problems, which we refer to as “limited model infor-
mation control design problems”, is the main object of interest in
the present paper.

Limited model information control design occurs naturally in
contexts where the subsystems belong to different entities, which
may consider their model information private and may thus be
reluctant to share it with others. In this case, the designers may
have to resort to “communication-less” strategies in which sub-
controller K; depends solely on the description of subsystem i’s
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model. This case is well illustrated by supply chains, where the
economic incentives of competing companies might limit the ex-
change of model information (such as, inventory volume, trans-
portation efficiency, raw material sources, and decision process)
inside a layer of the chain (see Braun et al. (2003), Lee, Padman-
abhan, and Whang (1997), Riddalls, Bennett, and Tipi (2000) and
Sarimveis, Patrinos, Tarantilis, and Kiranoudis (2008) for a detailed
review of modeling and control of supply chains). Another rea-
son for using communication-less strategies in more general de-
sign situations, even when the circulation of plant information is
not restricted a priori, is that the resulting subcontroller K; does
not need to be modified if the characteristics of a particular sub-
system, which is not directly connected to subsystem i, vary. For
instance, consider a chemical plant in the process industry, with
thousands of local controllers. In such a large-scale system, the tun-
ing of each local controller should not require model parameters
from other parts of the system so as to simplify maintenance and
limit controller complexity. Note that engineers often implement
these large-scale systems as a whole using commercially available
pre-designed modules. These modules are designed, in advance,
with no prior knowledge of their possible use or future operat-
ing condition. This lack of availability of the complete model of the
plant, at the time of the design, constrains the designer to only use
its own model parameters in each module’s control design.

Control design based on uncertain plant model information
is a classic topic in the robust control literature (Ball & Cohen,
1987; Doyle, 1982; Zames, 1981; Zhou & Doyle, 1998). However,
designing an optimal controller without a global model is different
from a robust control problem. In optimal control design with
limited model information, subsystems do not have any prior
information about the other subsystems’ model; i.e., there is no
nominal model for the design procedure and there is no bound
on the model uncertainties. There have been some interesting
approaches for tackling this problem. For instance, Ando and
Fisher (1963); Gajtsgori and Pervozvanski (1979); Sethi and Zhang
(1998); Sezer and Siljak (1986) introduced methods for designing
sub-optimal decentralized controllers without a global dynamical
model of the system. In these papers, the authors assume that the
large-scale system to be controlled consists of an interconnection
of weakly coupled subsystems. They design an optimal controller
for each subsystem using only the corresponding local model,
and connect the obtained subcontrollers to construct a global
controller. They show that, when coupling is negligible, this
latter controller is satisfactory in terms of closed-loop stability
and performance. However, as coupling strength increases, even
closed-loop stability guarantees are lost. Other approaches such
as Dunbar (2007) and Negenborn et al. (2010) are based on
receding horizon control and use decomposition methods to solve
each step’s optimization problem in a decentralized manner with
only limited information exchange between subsystems. What is
missing from the literature, however, is a rigorous characterization
of the best closed-loop performance that can be attained through
limited model information design and a study of the trade
off between the closed-loop performance and the amount of
exchanged information. We tackle this question in the present
paper for a particular class of systems (namely, the set of fully-
actuated discrete-time linear time-invariant dynamical systems)
and a particular class of control laws (namely, the set of structured
linear static state feedback controllers where each subcontroller
can at least access the state measurements of those subsystems
that affect its corresponding subsystem).

In this paper, we study the properties of limited model infor-
mation control design methods. We investigate the relationship
between the amount of plant information available to the design-
ers, the nature of the plant interconnection graph, and the qual-
ity (measured by the closed-loop control goal) of controllers that

can be constructed using their knowledge. To do so, we look at
limited model information and communication-less control de-
sign methods as belonging to a special class of maps between the
plant and controller sets, and make use of the competitive ra-
tio and domination metrics introduced in Langbort and Delvenne
(2010) to characterize their intrinsic limitations. To the best of
our knowledge, there are no other metrics specifically tuned to
control design methods. We address much more general classes
of subsystems and of limitations on the model information avail-
able to the designer than is done in Langbort and Delvenne (2010).
Specifically, we consider limited model information structured
static state-feedback control design for interconnections of fully-
actuated (i.e., with invertible B-matrix) discrete-time linear time-
invariant subsystems with quadratic separable (i.e., with block
diagonal Q - and R-matrices) cost function. Our choice of such a cost
function is motivated by our interest in applications such as power
grids (Baughman, Siddiqi, & Zarnikau, 1997; Berger & Schweppe,
1989; Botterud, Ilic, & Wangensteen, 2005; Chao & Peck, 1996) and
(Negenborn et al., 2010, chapters 5, 10), supply chains (Braun et al.,
2003; Dunbar, 2007), and water level control (Negenborn et al.,
2010, chapter 18), which have been shown to be well-modeled by
dynamically-coupled but cost-decoupled interconnected systems.
We show in the last section of the paper that the assumption on
the B-matrix can be partially removed for the sinks (i.e., subsys-
tems that cannot affect any other subsystem) in the plant graph.

We investigate the best closed-loop performance achievable
by structured static state feedback controllers constructed by
limited model information design strategies. We show that the
result depends crucially on the plant graph and the control
graph. In the case where the plant graph contains no sink
and the control graph is a supergraph of the plant graph, we
extend the fact proven in Langbort and Delvenne (2010) that
the deadbeat strategy is the best communication-less control
design method. However, the deadbeat control design strategy
is dominated when the plant graph has sinks, and we exhibit a
better, undominated, communication-less control design method,
which, although having the same competitive ratio as the deadbeat
control design strategy, takes advantage of the knowledge of the
sinks’ location to achieve a better closed-loop performance in
average. We characterize the amount of model information needed
to achieve better competitive ratio than the deadbeat control
design strategy. This amount of information is expressed in terms
of properties of the design graph; a directed graph which indicates
the dependency of each subsystem'’s controller on different parts
of the global dynamical model.

This paper is organized as follows. After formulating the
problem of interest and defining the performance metrics in
Section 2, we characterize the best communication-less control
design method according to both competitive ratio and domination
metrics in Section 3. In Section 4, we show that achieving a
strictly better competitive ratio than these control design methods
requires a complete design graph when the plant graph is itself
complete. Finally, we end with a discussion on extensions in
Section 5 and the conclusions in Section 6.

1.1. Notation

Sets will be denoted by calligraphic letters, such as & and . If
A is a subset of M then A is the complement of 4 in M, i.e., M\ A.

Matrices are denoted by capital roman letters such as A. A; will
denote the jth row of A. A; denotes a sub-matrix of matrix A, the
dimension and the position of which will be defined in the text.
The entry in the ith row and the jth column of the matrix A is aj.

Let S, (S} ) be the set of symmetric positive definite (positive
semidefinite) matrices in R™*". A > (>)0 means that the symmet-
ric matrix A € R™*" is positive definite (positive semidefinite) and
A > (>)Bmeans that A — B > (>)0.
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A(Y) and A(Y) denote the smallest and the largest eigenvalues
of the matrix Y, respectively. Similarly, o(Y) and o(Y) denote
the smallest and the largest singular values of the matrix Y,
respectively. Vector e; denotes the column-vector with all entries
zero except the ith entry, which is equal to one.

All graphs considered in this paper are directed, possibly with
self-loops, with vertex set {1, ..., q} for some positive integer q.
IfG = ({1,...,q}, E) is adirected graph, we say that i is a sink if
there does not exist j # i such that (i, j) € E. Aloop of length t in
G is a set of distinct vertices {iy, ..., i;} such that (i;, i;) € E and
(ip, ip41) € Eforall 1 < p < t — 1. We will sometimes refer to this
loop as (iy — i, — -+ — iy — iy). The adjacency matrix S of
graph G is the g x g matrix whose entries satisfy

)1 if(G, i) eE

5= 10 otherwise.
Since the set of vertices is fixed here, a subgraph of G is a graph
whose edge set is a subset of the edge set of G and a supergraph of
G is a graph of which G is a subgraph. We use the notation G’ 2 G
to indicate that G’ is a supergraph of G.

2. Control design with limited model information

In this section, we introduce the system model and the problem
under consideration, but first, we present a simple illustrative
example.

2.1. lllustrative example

Consider a discrete-time linear time-invariant dynamical
system composed of three subsystems represented in state-space
form as

x1(k+ 1) an  ap 07 [xk) byiuq (k)
Xpk+1D | =|an an ax3||x®) |+ |bpuk) |,
x3(k+ 1) 0 asx ass][x3(k) bszuz (k)

where, for each subsystem i, x;(k) € R is the state and u;(k) € R
is the control signal. This system, which is illustrated in Fig. 1, is
a simple networked control system. Networked control systems
have several important characteristics. First, they are often dis-
tributed geographically. Therefore, it is natural to assume that a
given subsystem can only influence its neighboring subsystems.
We capture this fact using a directed graph called the plant graph
like the one presented in Fig. 2(a) for this example. This star graph
corresponds to applications like unmanned aerial vehicles forma-
tion, platoon of vehicles, and composite formations of power sys-
tems (Chen & Stankovic, 2005; Zeynelgil, Demiroren, & Sengor,
2002).

Second, any communication medium that we use to transmit
the sensor measurements and actuation signals in networked
control systems brings some limitations. For instance, every
communication network has band-limited channels. Therefore,
when designing subcontrollers, it might not make sense to assume
that it can instantaneously access full state measurements of the
plant. The state measurement availability in this example is

uy (k) kiv ki 07 [xi(k)
U (k) | = | ka1 koo kas || %2(k) | .
us (k) 0  ksp ka3l |xs(k)

We use a control graph to characterize the controller structure.
Control graph Gy in Fig. 2(b) represents the state-measurement
availability in this example. It corresponds to the case where
neighboring subsystems transmit their state-measurements to
each other, which is common for unmanned aerial vehicles
formation, autonomous ground vehicles platoons, and biological
system of particles (Giulietti et al., 2000; Jadbabaie, Lin, & Morse,

2003; Kapila et al, 1999; Vicsek, Czirék, Ben-Jacob, Cohen, &
Shochet, 1995).

Finally, in large-scale dynamical systems, it might be extremely
difficult (if not impossible) to identify all system parameters
and update them globally. One can only hope that the designer
has access to the local parameter variations and update the
corresponding subcontroller based on them. Therefore, it makes
sense to assume that each local controller only has access to model
information from its corresponding subsystem; i.e., designer of
subcontroller i uses only {a;;, a2, a;3} in the design procedure

[kiv ki ksl = I3 ([an ap as], by) ,

where I} R® x R — R> is the control design map.
Note that assuming subcontroller i has access to the state-
measurements of those subsystems that can affect subsystem i,
it can identify parameters {a;, aj;, a;3}. However, identifying
parameters {ay;, ay;, as;} might not be possible since subcontroller
i may not have access to the state-measurements of all the
subsystems that it can influence. The block-diagram in Fig. 1 does
not specify I'. We will use a directed graph called the design
graph to capture structural properties of I". Fig. 2(c’) represents the
plant model information availability in this example. This totally
disconnected graph corresponds to applications such as supply
chain management (Braun et al., 2003; Lee et al., 1997) or vehicle
platooning (Hedrick, Tomizuka, & Varaiya, 1994; Raza & Ioannou,
1996), where subsystems potentially belong to different entities
and privacy concerns might restrict plant model information
circulation. In the rest of this section, we formalize the above
notions for more general design problems.

2.2. Plant model

Let a graph G, = ({1,...,q}, E») be given, with adjacency
matrix Sp € {0, 1}7°9, We define the following set of matrices
associated with Sp:

A(SW) = {A € Rnxn |AU — O I Rnixnj
forall 1 <1i,j < qsuch that (sp); = 0}, (1)

where for each 1 < i < q, integer number n; is the dimension
of subsystem i. Implicit in these definitions is the fact that > 7, n;
= n. Also, for a given scalar € > 0, we let

58(6) = {B c R™ |Q(B) > GvBij — 0 e R"X%
forall1 <i#j<q}. 2)

The set B(¢) defined in (2) is made of invertible block-diagonal
square matrices since o (B) > € > 0 for each matrix B € B(e) C
R™" With these definitions, we can introduce the set & of plants
of interest as the space of all discrete-time linear time-invariant
dynamical systems of the form

x(k + 1) = Ax(k) + Bu(k); x(0) = xq, (3)

withA € A(Sp), B € B(¢), and xo € R". Clearly & is isomorph
to A(Sp) X B(€) x R™ and, slightly abusing notation, we will thus
identify a plant P € & with the corresponding triple (A, B, Xo).

A plant P € £ can be thought of as the interconnection of
q subsystems, with the structure of the interconnection specified
by the graph G5 (i.e., subsystem j's output feeds into subsystem i
only if (j, i) € E»). As a consequence, we refer to G, as the “plant
graph”. We will denote the ordered set of state indices pertaining
to subsystemias 4;;i.e., 4; = (1+ Z};i nj, ..., N+ Z]';} n;). For
subsystem i, state vector and input vector are defined as

T T
ini] , Ue,,i]

&i:[xﬁl”' gi:[uzl...
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Al%.).c.l D Aszxs
S Appxys e
A/ ;
P Agax, P Apzxs o
<4 <4 A

» »

Ay x Agpx
A a7 A 3272 A
Ul I*1 u,| | x, us| | x5
\ 4
X2 X1 X3 X2,

Fig. 1. Physical interconnection between different subsystems and controllers
corresponding to G and Gy in Fig. 2(a) and (b), respectively.

(a) G, b) Gy (c) G, 6)
(@) G, " Gy (c)G'

@@%@

Fig.2. Gy and G}, are examples of plant graphs, Gy and G/ are examples of control
graphs, and Ge and G|, are examples of design graphs.

where the ordered set of indices (£1,...,£,) =
dynamics is specified by

J;, and its

q

xi(k+1) =Y Ax;(k) + By (k).

=1
According to the specific structure of B(e) given in (2), each
subsystem is fully-actuated, with as many input as states, and
controllable in one time-step. Possible generalization of the results
to a (restricted) family of under-actuated systems is discussed in
Section 5.

Fig. 2(a) shows an example of a plant graph G». Each node
represents a subsystem of the system. For instance, the second
subsystem in this example may affect the first subsystem and the
third subsystem; i.e., sub-matrices A1, and A3, can be nonzero. The
self-loop for the second subsystem shows that A;; may be non-
zero. The plant graph G, in Fig. 2(a) does not contain any sink. In
contrast, the first subsystem of the plant graph G, in Fig. 2(a’) is a
sink. The control graph Gy is introduced in the next subsection.

2.3. Controller model

Let a control graph Gy be given, with adjacency matrix Sy. The
control laws of interest in this paper are linear static state-feedback
control laws of the form

u(k) = Kx(k),
where
Ke X(Sx) ={Ke RV"Kj =0 e R"™"Y
forall 1 <i,j < gsuchthat (sx); = 0}. (4)

In particular, when Gy is a complete graph, K (Sx) = R™*", while,
if G4 is totally disconnected with self-loops, X (S ) represents the
set of fully-decentralized controllers. When adjacency matrix S is
not relevant or can be deduced from context, we refer to the set of
controllers as X.

An example of a control graph Gy is given in Fig. 2(b). Each
node represents a subsystem-controller pair of the overall system.
For instance, Fig. 2(b) shows that the first subsystem’s controller
can use state measurements of the second subsystem besides

its own state measurements. Fig. 2(b") shows a complete graph,
which indicates that each subsystem has access to full state
measurements of all other subsystems; i.e., K (Sy) = R™".

2.4. Linear state feedback control design methods

A control design method I" is a map from the set of plants
& to the set of controllers X. Just like plants and controllers, a
control design method can exhibit structure which, in turn, can
be captured by a design graph. Let a control design method I" be
partitioned according to subsystems dimensions as

Iy - I
r=\|: - (5)
]"q1 qu

and agraph Ge = ({1, ..., q}, E¢) be given, with adjacency matrix
Se. Each block I represents a map 4(Sp) X B(e) — RN,
Control design method I" can be further partitioned in the form

Yuu o Vin
r=|:
Vn1 ot Vmn

where each y;; is a map A(Sp) x B(e) — R. We say that I" has
structure Ge if, for all i, the map [I3; - -+ ITg] is only a function of

{[Aj] e qu] s Bjj | (S@)ij 75 0} . (6)
In words, a control design method has structure Ge if and only
if, for all i, the subcontroller of subsystem i is constructed with
knowledge of the plant model of only those subsystems j such that
(j, i) € Ee. The set of all control design methods with structure Ge
will be denoted by C. In the particular case where G is the totally
disconnected graph with self-loops (meaning that every node in
the graph has a self-loop; i.e,, Se¢ = I;), we say that a control
design method in € is “communication-less”, so as to capture
the fact that subsystem i's subcontroller is constructed with no
information coming from (and, hence, no communication with)
any other subsystem j, j # i. Therefore, the design graph indicates
knowledge (or lack thereof) of entire block rows in the aggregate
system matrix. When Ge is not a complete graph, wereferto I" € €
as being “a limited model information control design method”.

Note that € can be considered as a subset of the set of functions
from A(Sp) x B(e) to K (Sx), since a design method with
structure G is not a function of initial state xo. Hence, when I" € €
we will write I" (A, B) instead of I" (P) for plant P = (A, B, xo) € &.

An example of a design graph G is given in Fig. 2(c). Each node
represents a subsystem-controller pair of the overall system. For
instance, Ge shows that the third subsystem’s model is available to
the designer of the second subsystem’s controller but not the first
subsystem’s model. Fig. 2(c’) shows a fully disconnected design
graph with self-loops Gj. A local designer in this case can only
rely on the model of its corresponding subsystem; i.e., the design
strategy is communication-less.

2.5. Performance metrics

The goal of this paper is to investigate the influence of the plant
and design graph on the properties of controllers constructed by
limited model information control design methods. To this end,
we will use two performance metrics for control design methods.
These performance metrics are adapted from the notions of com-
petitive ratio and domination introduced in Langbort and Delvenne
(2010), so as to take plant, controller, and control design structures
into account. Following the approach in Langbort and Delvenne
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(2010), we start by associating a closed-loop performance crite-
rion to each plant P = (A, B,xp) € & and controller K € X.
As explained in the introduction, we are particularly interested
in dynamically-coupled but cost-decoupled systems in this paper,
hence, we use a cost of the form

Jp() = Y x0T Qu(k) + Y uk) Ru(k), (7)
k=0

k=1

whereQ € S} andR € S are block diagonal matrices, with each
diagonal block entry belonging to 5'1 . Note that the summation in
the first term on the right-hand side of (7) starts from k = 1. This
is without loss of generality as the removed term x(0)7 Qx(0) is not
a function of the controller. We make the following two standing
assumptions:

Assumption2.1. Q =R =1.

This is without loss of generality because the change of variables
(%, 1) = (Q'2x, R'?u) transforms the performance criterion and
state space representation into

) =Y xRk + Yo (k). (8)
k=0

k=1

and

x(k+ 1) = Q2407 "%x(k) + Q/>BR™?ui(k)
= Ax(k) + Bu(k),

respectively, without affecting the plant, control, or design graph
(due to the block diagonal structure of Q and R).

Assumption 2.2. The set of matrices B(¢) is replaced with the set
of diagonal matrices with diagonal entries greater than or equal
toe.

This assumption is without loss of generality. Indeed, consider
aplant P = (A, B,xy) € &.Every sub-system’s B; matrix has a
singular value decomposition B;; = UiiZiiVilT with Xy > €lpxn;-
Combining these singular value decompositions together results
in a singular value decomposition for matrix B = UXVT where
U = diag(Un, Uy, ..., qu), Y = diag(Z‘n, X2, qu), and
V = diag(Vi1, Va2, . .., Vyq). Defining x(k) = UTx(k) and i1(k) =
VTu(k) results in

x(k+ 1) = UTAUx(k) + UTBVii(k),

where UTBV is diagonal. Because of the block diagonal structure
of matrices U and V, the change of variables (A, B, xo) — (UTAU,
UTBV, UTx,) does not affect the plant, control, or design graph. In
addition, the cost function becomes

I ) =D x()TUTURGK) + Y k) VI Vii(k)

k=1 k=0

oo o0
=Y xRk + Y k) k),
k=1 k=0
which is of the form (8), because both U and V are unitary matrices.
We are now ready to define the performance metrics of interest in
this paper.

Definition 2.3 (Competitive Ratio). Let a plant graph Gy, control
graph Gx and constant € > 0 be given. Assume that, for every
plant P € £, there exists an optimal controller K*(P) € X such
that

Jp(K*(P)) = Jp(K), VK € X.

The competitive ratio of a control design method I" is defined as
Jo(I" (4, B))
p=xper Jp(K*(P)) '

«On
0
Note that the mapping K* : P — K*(P) is not itself required to
lie in the set @, as every component of the optimal controller may

depend on all entries of the model matrices A and B.

re(IN) =

with the convention that equals one.

Definition 2.4 (Domination). A control design method I” is said to
dominate another control design method I'” if

.]P(F(As B)) EJP(F/(/L B))v VP = (A5 Bs XO) € <(Ps (9)

with strict inequality holding for at least one plant in #. When
I'" € € and no control design method I" € € exists that satis-
fies (9), we say that I’ is undominated in € for plants in &.

2.6. Problem formulation

With the definitions of the previous subsections in hand, we
can reformulate the main question of this paper regarding the
connection between closed-loop performance, plant structure, and
limited model information control design as follows. For a given
plant graph, control graph, and design graph, we would like to
determine

arg Ipelg re(I). (10)

Since several design methods may achieve this minimum, we
are interested in determining which ones of these strategies are
undominated.

In Langbort and Delvenne (2010), this problem was solved in
the case when G» and Gy are complete graphs, Ge is a totally
disconnected graph with self-loops (i.e., Se¢ = I3), and B(e) is
replaced with singleton {I,}. In this paper, we investigate the role of
more general plant and design graphs. We also extend the results in
Langbort and Delvenne (2010) for scalar subsystems to subsystems
of arbitrary ordern; > 1,1 <i < q.

3. Plant graph influence on achievable performance

In this section, we study the relationship between the plant
graph and the achievable closed-loop performance in terms of the
competitive ratio and domination.

Definition 3.1. The deadbeat control design method I"? : A(Sp)
X B(e) — X is defined as

I'“*(A,B) = —B7!A, forallP = (A, B, xo) € P.

This control design method is communication-less; i.e., the con-
trol design for the subsystem i is a function of the model
of subsystem i only, because subsystem i's controller gain
[Ii(A,B) -+ I;2(A, B)] equals to B;'[An -+ Ajg]. The name
“deadbeat” comes from the fact that the closed-loop system ob-
tained by applying controller I"4(A, B) to plant P = (A, B, X)
reaches the origin in just one time-step (Emami-Naeini & Franklin,
1982).

Remark 3.2. Note that for the case where the control graph Gy is
a complete graph; i.e., X = R™", there exists a controller K*(P)
satisfying the assumptions of Definition 2.3 for all P € &, namely,
the optimal linear quadratic regulator which is independent of the
initial condition of the plant. For incomplete control graphs, the
optimal control design strategy K*(P) (if exists) might become a
function of the initial condition (Levine & Athans, 1970). Hence, we
will use K*(A, B) instead of K*(P) when the control graph Gx is a
complete graph for each plant P = (A, B, xy) € & to emphasize
this fact.
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From Definition 2.3, the notation K*(P) is reserved for the optimal
control design strategy for any given control graph G. In contrast,
when Gy is not the complete graph, we will refer to the optimal
unstructured controller as KX (A, B).

Lemma 3.3. Let the control graph Gx be a complete graph. The cost
of the optimal control design strategy K* is lower-bounded by

a’(B)
a*(B) +1
for all plants P = (A, B, xp) € P.
Proof. See Farokhi (2012, pp.73-74). O

Jp(K*(A,B)) > ( )JP(FA(A»B)),

Theorem 3.4. Let the plant graph G» contain no isolated node and
Gx 2 Ggp. Then the competitive ratio of the deadbeat control design
method I'? is

rp(I?) =14 1/€2.

Proof. Irrespective of the control graph Gy and for all plants
P € 2, itis true that Jp(KZ (A, B)) < Jp(K*(P)). Therefore, we get

B4, B) _ (T4, B)

< . (11)
Jp(K*(P)) Jp(KE(A, B))
Now, using Lemma 3.3, we know that
A
prA@B) 1 12)

Jp(KE(A,B) — o%(B)’
forall P = (A, B, xg) € #.Combining (12) and (11) results in

o prAaBy 1
) = ey~ T e

To show that this upper bound is attained, let us pick i; € {; and
j1 € djwhere1 <i#j < qand (sp); # 0 (such indices i and j
exist because plant graph G» has no isolated node by assumption).
Consider the system A = e;, e-T1 and B = el. The unique positive
definite solution of the discrete algebraic Riccati equation

ATXA — ATXBUI +B'XB)"'BTXA=X — 1, (13)
isX = 1+1[1/1 + 62)]ejlejT1. Consequently, the centralized
controller KX (A, B) = —¢ /(1 + €?)e;, ejT1 belongs to the set K (Sy)
because Gx 2 G».Thus, we get

Jas.e,) (K™ (A, B, €;,)) < Jas.e,) (K (A, B)) (14)

since K*(P) has a lower cost than any other controller in K (Sy).
On the other hand, it is evident that

Jase) (KEAB)) < Jape, ) (K*(A B.ej)) (15)

because the centralized controller has access to more state
measurements. Using (14) and (15) simultaneously results in

Jape,) (K™ (A B, €;,)) = Jup.e,) (K (A, B)
=1/(1+ €.

On the other hand I'*(A,B) = —[l/e]eilejT] and ](A,B,ejl)(FA

(A, B)) = 1/€?. Therefore, rp(I'?) =14 1/€2. O

Remark 3.5. Consider the limited model information design
problem given by the plant graph G» in Fig. 2(a) and the control
graph G in Fig. 2(b). Theorem 3.4 shows that, if we apply the
deadbeat control design strategy to this particular problem, the
performance of the deadbeat control design strategy, at most, can
be 141/ times the cost of the optimal control design strategy K*.

For instance, when 8 = {I} as in Langbort and Delvenne (2010),
we have 1 4 1/€? = 2 since in this case ¢ = 1. Therefore, the
deadbeat control design strategy is never worse than twice the
optimal controller in this case.

Remark 3.6. There is no loss of generality in assuming that there
is no isolated node in the plant graph G, since it is always possible
to design a controller for an isolated subsystem without any model
information about the other subsystems and without impacting
cost (7). In particular, this implies that there are ¢ > 2 vertices
in the graph because for ¢ = 1 the only subsystem that exists is an
isolated node in the plant graph.

Remark 3.7. For implementation of the deadbeat control design
strategy in each node, we only need the state measurements of
the neighbors of that node. For the implementation of the optimal
control design strategy K* when the control graph has many
more links than the plant graph, the controller gain K*(P) is not
necessarily a sparse matrix.

With this characterization of ' in hand, we are now ready to
tackle problem (10).

3.1. First case: plant graph G» with no sink

In this subsection, we show that the deadbeat control
method "2 is undominated by communication-less control design
methods for plants in &, when G» contains no sink. We also show
that "4 exhibits the smallest possible competitive ratio among
such control design methods. First, we state the following two
lemmas.

Lemma 3.8. Let the plant graph G contain no isolated node, the
design graph Ge be a totally disconnected graph with self-loops, and
Gx 2 Ggp. A control design method I € C has bounded competitive
ratio only if the following implication holds forall 1 < i < q and allj:

ag =0 foralll € §; = y;j(A,B) =0 foralll € J;,
where {; is the set of indices related to subsystem i; ie, 4; = (1+
22;11 Nz, ..., M+ le_:l] ng).

Proof. See Farokhi (2012, p. 75) or Farokhi, Langbort, and
Johansson (2011). O

Lemma 3.9. Let the plant graph G, contain no isolated node, the
design graph Ge be a totally disconnected graph with self-loops, and
Gx 2 Gg. Assume the plant graph Gy has at least one loop. Then,

rp(I) = 141/ (16)
for all limited model information control design method I in C.
Proof. See Farokhi (2012, pp.75-77). O

Using these two lemmas, we are ready to state and prove one of
the main theorems in this paper and, as a result, find the solution
to problem (10) when the plant graph G, contains no sink.

Theorem 3.10. Let the plant graph G contain no isolated node and
no sink, the design graph Ge be a totally disconnected graph with self-
loops, and Gy 2 Ggp. Then the competitive ratio of any control design
strategy I' € C satisfies

rp() > 1+ 1/€%
Proof. From Lemma 1.4.23 in West (2001), we know that a

directed graph with no sink must have at least one loop. Hence G»
must contain a loop. The result then follows from Lemma 3.9. O
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Remark 3.11. Theorem 3.10 shows that r»(I") > r»(I"?) for any
control design strategy I" € @, and as a result the deadbeat control
design method "4 becomes a minimizer of the competitive ratio
function r» over the set of communication-less design methods.

We now turn our attention to domination properties of the
deadbeat control design strategy.

Lemma 3.12. Let the plant graph Gy contain no isolated node, the
design graph Ge be a totally disconnected graph with self-loops, and
Gx 2 Ggp. The deadbeat control design strategy I'* is undominated
if there is no sink in the plant graph G».

Proof. See Farokhi (2012, pp. 77-79). O

The following theorem shows that the deadbeat control design
strategy is undominated by communication-less design methods if
and only if the plant graph G, has no sink. It thus provides a good
trade-off between worst-case and average performance.

Theorem 3.13. Let the plant graph Gy contain no isolated node,
the design graph Ge be a totally disconnected graph with self-loops,
and Gx D Ggp. Then the deadbeat control design method I'* is
undominated in C for plants in & if and only if the plant graph G,
has no sink.

Proof. Proof of the “if” part of the theorem, is given by Lemma 3.12.

For ease of notation in this proof, we use [I"]; = [I} -+ I}]
and [A]; = [Ai -+ Ay

In order to prove the “only if” part of the theorem, we need to
show that if the plant graph has a sink (i.e., if there exists j such
that (sp); = O for every i # j), then there exists a control design
method I which dominates the deadbeat control design method.
We exhibit such a strategy.

Without loss of generality, we can assume that (s»);; = O for
alli # g, in which case every matrix A in 4 (S ) has the structure

A o Agar 0
A=| ' : :
Ag-11 Ag-1q-1 O
Aql T Aq,q—l Aqq
Define X, = [x1(0) xq,l(O)]T, and let control design
strategy I" be defined by
—B Ay —B A1 g1 0
37 —1,q— 1Aq71-,1 37 19— 1Aq71,q71 0
I<q1(A B) KM 1(A, B) Kqq(A, B)

forall P = (A, B, xg) € », with
K(A,B) == [Kn (A, B) Kq.q-1(A,B)  Keq(A, B)]
= —(I + B} XgqBaq) "Bl XgqlAl,,

where X4 is the unique positive definite solution to the discrete
algebraic Riccati equation
At XaaBaa (I + B X4qBag) ™' Bl Xaahaq

— Al XagAgq + Xgg — 1 = 0. (17)

In words, control design strategy I" applies the deadbeat strategy
to subsystems 1 to ¢ — 1 while, on subsystem g, it uses the same
subcontroller as in the optimal controller for the plant

Rk + 1) = A%(k) + Bi(k), (18)

with cost function

@
T ) =

Zx(k) Q&(k) + Z k) ack),
where Q = diag(o0, ...,
[Al; and [A]Z = 0 for all z # g, and furthermore, the matrix
B is defined as B = diag(0, ..., 0, Bgy). Note that I" is indeed

communication-less since K (A, B) defined above can be computed
with the sole knowledge of the gth lower block of A and B. Because
of the structure of matrices in 4(S») and this characterization of
I', we have

Ja8xo) (T(A B)) = Jias vo) + Sy (K (A, BY),

where J; . = XbATB~TB~1A%, with

0, Ingxny). the matrix A is defined as [A]q =

A o Argar

N
Il

Aqu Aqflyqfl

and B = diag(B11. ..., By_1,4-1) and i}’ . (K(A, B)) is the closed-

loop cost for system (18). Since K (A, B) is the optimal controller for
this cost, J((/i)B,xo) (K (A, B)) = x, ATWAXo, where

W = diag(0, . .., 0, Xgq — XqqBag (I + Bl XaqBag) ' B} Xaq)-

Using part 2 of Section 3.5.2 in Liitkepohl (1996), we have the
matrix inversion identity

X—XYU+ZXY) ' ZX=X""+Y2) !,

which results in
T —1pT
Wyq = Xgq — XgqBgg (I + quququ) BygXaq
= (X' + BegBi) ™"

T p—

< By qu
Note that X' exists because Xoy > I which follows from the
discrete algebraic Riccati equation in (17). This inequality implies
that

ATWA < AT(BH)TBA

where B" = diag(0, .. —1). Thus

’ qq
(¢)] (2)
](A B, xo)(F(A B)) = ](A B, XO) (A B xo)(K(A B))
< Jubx (I (A, B)),

for all P = (A, B,x9) € & such that the gth lower block of A is
not zero, otherwise ]<A’B,XO)(F(A B)) = ](A,B,XO)(FA(A B)). Thus,
control design method I dominates the deadbeat control design
method I'4. O

Remark 3.14. Consider the limited model information design
problem given by the plant graph G in Fig. 2(a), the control graph
G, inFig. 2(b’), and the design graph G, in Fig. 2(c’). Theorems 3.10
and 3.13 show that the deadbeat control design strategy I' is the
best control design strategy that one can propose based on the local
model of subsystems and the plant graph, because the deadbeat
control design strategy is the minimizer of the competitive ratio
and it is undominated.

Remark 3.15. Itshould be noted that, the proof of the “only if”’ part
of the Theorem 3.13 is constructive. We use this construction to
build a control design strategy for the plant graphs with sinks in
next subsection.
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3.2. Second case: plant graph Gy with at least one sink

In this section, we consider the case where plant graph G» has
¢ > 1 sinks. Accordingly, its adjacency matrix Sy is of the form

se = |t ] (9
where

0 (S2)11 (S,?)l,q—c
Se)11 = .. ,

_(S,?)q—c,l (S2)g-c,q—c

(Sp)g—c+1,1 (Sf)q—c+1,q—c

(Sp)21 = ,
(82)g.1 (S2)q.q—c

and

[(59)g—ct1.q—ct1 - 0
(Sp)22 = ;

i 0 o )
where we assume, without loss of generality, that the vertices are
numbered such that the sinks are labeled ¢ — c + 1, ..., g. With

this notation, let us now introduce the control design method I"®
defined by
r°(A,B) = —diag(8;}, ..., B,

» Pg—c,qg—c*

WQ7C+‘1 (Av B)? IR Wq(A7 B))A (20)
for all (A, B) € A(Sp) x B(€), where
Wi(A, B) = (I + BiXiBi) ' B Xi (21)

forallg — c+ 1 < i < qand X; is the unique positive definite
solution of the discrete algebraic Riccati equation

Al XiBi(I + B XiBi) ™' B XiAi — AL XiAii + Xi — I = 0. (22)

The control design method I'® applies the deadbeat strategy to
every subsystem that is not a sink and, for every sink, applies the
same optimal control law as if the node were decoupled from
the rest of the graph. We will show that when the plant graph
contains sinks, I"® has, in worst case, the same competitive ratio
as the deadbeat strategy. Unlike the deadbeat strategy, it has the
additional property of being undominated by communication-less
methods for plants in > when the plant graph G5 has sinks.

Lemma 3.16. Let the plant graph G, contain no isolated node, the
design graph Ge be a totally disconnected graph with self-loops, and
Gy 2 Gg. Let I" be a control design strategy in C. Suppose that there
exist i and j # i such that (sp); # 0 and that node i is not a sink. The
competitive ratio of I" is bounded only if

AU+B{{E‘_"(A,B) =0, forallP = (A, B, Xo) € P.
Proof. See Farokhi (2012, pp.79-80). O

Remark 3.17. Lemma 3.16 shows that a necessary condition for a
bounded competitive ratio is to decouple the nodes that are not
sinks from the rest of the network.

Now, we are ready to compute the competitive ratio of the newly
defined control design strategy I"®. This is done at first for the case
where the control graph Gy is a complete graph.

Theorem 3.18. Let the plant graph G, contain no isolated node and
at least one sink, and the control graph Gy be a complete graph. Then
the competitive ratio of the communication-less design method I"®
introduced in (20) is

1, if Sp)11 =0and (Sp)2 =0,

14+ 1/€?, otherwise.

rp(I'?) = {

Proof. Based on Theorem 3.4 we know that, for every plant P =
(A,B,xg) € P

2

1+ €2

In addition, proceeding as in the proof of the “only if” part of the
Theorem 3.13, we know that

Janxg) (T2 (A, B) = Japxo) (I (A, B)). (24)
Plugging Eq. (24) into Eq. (23) results in

)
Jasxp) (" (A, B)) §1+l2,
Jia.B.x) (K*(A, B)) €

As aresult, r»(I'?) < 1+ 1/€2. To show that this upper-bound
is tight, we now exhibit plants for which it is attained. We use a
different construction depending on matrices (S»)11 and (Sp)2;. If
(S#)11 # 0, two situations can occur.

Case 1: (Sp)11 # 0 and it is not diagonal. There exist 1 < i # j <
q — c such that (sp);; # 0. In this case, choose indices i; € {; and
Jj1 € Jjand define A = ¢;, ejT1 and B = el. Then, for xy = e;,, we find
that

](A,B,xo)(F@(A, B)) _ ‘1/52 1
= — + —
Jasx) K*(A,B)  1/(1+€2) €2

because the control design I"® acts like the deadbeat control
design method on this plant.

Jasxe) (K*(A, B)) > xoATB~TB ™ Axo. (23)

VP = (A, B, xg) € P.

Case 2: (Sp)11 # 0 and it is diagonal. There exists 1 <i < q— ¢
such that (sp); # 0. Pick an index i; € {;. In that case, consider
A(r) =re;, eiT1 and B = el. For Xy = ¢;;, the optimal cost is
Jaw),Bxg) (K* (A(r), B))

WVt 2r2e2 — 212 4 et 422 4 1417 — € — 1

2¢e2 ’
which results in
Japxy)(I'? (A, B)) _ 1
r—0 JaBxp) (K*(A, B)) €2

Now suppose that (S»)1; = 0. Again, two different situations can
occur.

Case 3: (Sp)11 = 0and (Sp)22 #~ 0. Thereexistsq—c+1<i<gq
such that (sp); # 0. From the assumption that the plant graph
contains no isolated node, we know that there must exist 1 <j <
q — c such that (sp); # 0. Accordingly, let us pick i; € {; and
Jj1 € J;j and consider the 2-parameter family of matrices A(r, s) in
A(Sp) with all entries equal to zero except a;,;,, which is equal to
r,and a;,j,, which is equal to s. Let B = €l. For any initial condition
Xo, the corresponding closed-loop performance is

Ja.9.8.x0) (7 (A(r, 5), B)) = Boxpa(r, s)a(r, s) xo,

where we have let a(r, s) = A(r, s)ﬂ and Bg is

B V27 o F e 42l H 14— — 1
o = .

2¢e2r?




334 F. Farokhi et al. / Automatica 49 (2013) 326-337

Besides, the optimal closed-loop performance can be computed as

Jaw.s).8x0) K* (AT, 5), B)) = Bxga(r, s)a(r, s) xo,
where By is

2?2 +r2(1+€*) — (2 + 1)* + Jereo
P = 2e2(2 + 1)( + 1)

cr = (€2 + (P £2r)(e2 + 1) + (2 + 1.

)

Then,
I'°(A(r,s), B
rp(F®) > lim JA@.5).B.x0) (I (A(r, 5), B))
r—>00,5>00 Ja(r,5),8x) K*(A(r, 5), B))
1

Case 4: (Sp)11 = 0 and (Sp);; = 0. Then, every matrix A €
A(S») has the form [%‘%:I and, in particular, is nilpotent of

degree 2; i.e.,, A2 = 0. In this case, the Riccati equation yielding
the optimal control gain K*(A, B) can be readily solved, and we
find that K*(A, B) = —(I + BTB)~!B'A for all (A, B). As a result,
K*(A,B) = I'°(A,B) for all plant P = (A, B,xy) € & (since
W;i(A,B) = (I + B[B;) B} forallq —c + 1 < i < g), which
implies that the competitive ratio of I"® against plants in £ is equal
toone. O

In Theorem 3.18, the control graph Gy is assumed to be a complete
graph. We needed this assumption to calculate the cost of the
optimal control design strategy K*(P) when (Sp);; = 0 and
(5£)22 # 0 which is not an easy task when the control graph Gy is
incomplete. However, more can be said if (S»)11 # O.

Corollary 3.19. Let the plant graph G, contain no isolated node and
at least one sink and Gy O Ggp. Then

oy _ |1 if Sp)11 =0and (Sp)n =0,
e () = {1 +1/€*, if (Sp)1 # 0.

Proof. According to Theorem 3.18, for (S»)11 # 0, we get

w(I?(A, B

() = Sup](A,B, ("7 (A, B))

rer  JaBxg) (K*(P))
Jasxp) (I° (A, B)) . 1

res JaBxy) (KE(A, B)) B €2’

Case 1: (Sp)11 # 0 and it is not diagonal. For the special plant
introduced in Case 1 in the proof of Theorem 3.18, we have
Jane)(KEAB) = Jape,) (K*(A B, ej)) since A = ey ef isa
nilpotent matrix. The rest of the proof is similar to Case 1 in the
proof of Theorem 3.18.

Case 2: (S»)11 # 0and it is diagonal. Note that, for the special plant
introduced Case 2 in the proof of Theorem 3.18, we have

K} (A, B)

N2 — 2t et 22 H 1417 — € — 1
- 2er?

which shows Kf(A,B) € X(Sx) and similar to the proof of
Theorem 3.4, we get ](A,B,e,-l)(K;(A, B)) = ]<A,B,ei1)(K*(A, B, e;))).
The rest of the proof is similar to Case 2 in the proof of
Theorem 3.18.

Case 3: (Sp)11 = 0O and (Sp), = 0. Then, every A € A(Sp)
is nilpotent matrix which results in Jp (K*(P)) = Jp(KZ(A, B)). The
rest of the proof is similar to Case 4 in the proof
of Theorem 3.18. O

IA

Now that we have computed the competitive ratio of the control
design strategy I"® in the presence of sinks, we present a theorem
to show that the competitive ratio of any other communication-
less control design strategy is lower-bounded by the competitive
ratio of I'® when the control graph Gx is a complete graph.
Therefore, the control design strategy I"® is a minimizer of the
competitive ratio over the set of limited model information control
design strategies.

Theorem 3.20. Let the plant graph Gy contain no isolated node and
at least one sink, the control graph Gy be a complete graph, and the
design graph Ge be a totally disconnected graph with self-loops. Then
the competitive ratio of any control design strategy I' € C satisfies

rp(I) > 1+ 1/,
if either (Sp)11 is not diagonal or (Sp)2, # 0.

Proof. Case 1: (Sp)11 # 0 and it is not diagonal. Then, there exist
1 <1i,j < q—candi # jsuchthat (sp); # 0. Choose
indices iy € J4; and j; € J; and consider the matrix A defined
by A = eilejTl and B = ¢l. From Lemma 3.16, we know that a
communication-less method I” has a bounded competitive ratio
only if I'(A, B) = —B~'A (because node i is a part of (S»)1; and it
is not a sink). Therefore

.](A,B,Ejl)(F(Aﬂ B)) l

' Jas.e;,) (K*(A, B) e

for any such method.

Case 2: (Sp)22 # 0. There thus exists g — ¢ + 1 < i < q such that
(s»)ii 7 0.Note that, there exists 1 < j < g—csuchthat (sp); # 0,
since there is no isolated node in the plant graph. Choose indices
iy € J;andj; € J;. Consider A defined as A = re;, ejT] + se;, eiT] and
B = ¢l. As indicated in the proof of Theorem 3.18, control design
strategy I'® yields the globally optimal controller with limited
model information for plants in this family. Hence, we know that
r»(I") > 14 1/€? for every communication-less strategy I". O

In Theorem 3.20, we assume the control graph Gy is a complete
graph. In the next corollary, we generalize this result to the case
where Gy is a supergraph of G» when (S5)11 is not diagonal.

Corollary 3.21. Let the plant graph G, contain no isolated node and
at least one sink, the design graph Ge be a totally disconnected graph
with self-loops, and Gx 2 Gg. Then the competitive ratio of any
control design strategy I' € C satisfies

rp(I) = 1+ 1/,
if (Sp)11 is not diagonal.

Proof. Considering that for the nilpotent matrix A = e;, ejT1 , we get
](A,B,ejl)(K*(A, B,ej,)) = ](A,B,ejl)(K; (A, B)), the rest of the proof is
similar to Case 1 in the proof of Theorem 3.20. O

Remark 3.22. Combining Theorems 3.18 and 3.20 implies that
if either (S»)11 is not diagonal or (Sp);; # O, control design
method I"® exhibits the same competitive ratio as the deadbeat
control strategy, which is the smallest ratio achievable by a
communication-less control method. Therefore, it is a solution to
problem (10). Furthermore, if (S»)1; and (S»),, are both zero,
then I'® is equal to K*, which shows that I"® is a solution to
problem (10), in this case too.

Remark 3.23. The case where (S5)1; is diagonal and (S»);; = O'is
still open.
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The next theorem shows that I'® is a more desirable control
design method than the deadbeat control design strategy when
the plant graph G» has sinks, since it is then undominated by
communication-less design methods.

Theorem 3.24. Let the plant graph Gy contain no isolated node and
at least one sink, the design graph Ge be a totally disconnected graph
with self-loops, and Gy 2 Gsp. The control design method I'® is
undominated by any control design method I € C.

Proof. See Farokhi (2012, pp. 80-82). O

Remark 3.25. Consider the limited model information design
problem given by the plant graph G, in Fig. 2(a’), the control
graph G’ in Fig. 2(b’), and the design graph G, in Fig. 2(c’).
Theorems 3.18, 3.20 and 3.24 together show that, the control
design strategy I"® is the best control design strategy that one
can propose based on the local model information and the plant
graph, because the control design strategy I"® is a minimizer of
the competitive ratio and it is undominated.

Remark 3.26. For general weight matrices Q and R appearing in
the performance cost, the competitive ratio of both the deadbeat
control design strategy I’ and the control design strategy I"®
is 1 + 6 (R)/(c(Q)e?). In particular, the competitive ratio has a
limit equal to one as 6 (R) /o (Q) goes to zero. We thus recover the
well-known observation (e.g., O'Reilly (1981)) that, for discrete-
time linear time-invariant systems, the optimal linear quadratic
regulator approaches the deadbeat controller in the limit of “cheap
control”.

4. Design graph influence on achievable performance

In the previous section, we have shown that communication-
less control design methods (i.e., G is totally disconnected with
self-loops) have intrinsic performance limitations, and we have
characterized minimal elements for both the competitive ratio and
domination metrics. A natural question is “given plant graph G,
which design graph Ge is necessary to ensure the existence of
I' € ¢ with better competitive ratio than "4 and I"® ?”. We tackle
this question in this section.

Theorem 4.1. Let the plant graph Gy and the design graph Ge be
given and Gy 2 Ggp. If one of the following conditions is satisfied
thenrp(I') > 141/ forall ' € C:

(a) Gy contains the path k — i — j with distinct nodes i, j, and k
while (j, i) & Ee.
(b) Thereexisti # jsuchthat n; > 2and (i, j) € Ep while (j, i) & Ee.

Proof. We prove the case when condition (a) holds. The proof for
condition (b) is similar.

Let i, j, and k be three distinct nodes such that (s»)i # 0 and
(Sp)ji # 0 (i.e., the path k — i — jis contained in the plant graph
Gp). Let us picki; € 4;,j1 € djand k; € J; and consider the 2-
parameter family of matrices A(r, s) in A(S») with all entries equal
to zero except a; x,, which is equal to r, and a;,;,, which is equal to
s.Let B = el and let I € C be a limited model information with
design graph Ge. For Xy = e, we have

Joat9.8.e,) (T (A(r,5), B)) = (1 + €Viyi, (A, B))®
x [y, (A, B) + (s + €%, (A, B)]

where y;,,, cannot be a function of s because (j, i) ¢ Ec. Note that,
irrespective of the choice of y;,;, (A, B), we have

(r + €Viiky (As B))ZSZ
1+ €2 '

Jae.9).8.e,) (I'(A(r, 5), B)) =

The cost of the deadbeat control design on this plant satisfies
Jaw.9 8o (T (AT, 5), B) =12 /€,
and thus

Jp(I"(A, B))
rer Jp(K*(P))

[ Jp(I"(A, B)) Jp(I'*(A, B))]
re LJp(I'4(A, B)) Jp(K*(P))

Je(I" (A, B))
= Sup ——————

e Jp(I'4(A, B))

re(IN) =

€2(r + €yik, (A, B))?s?
(1+€ed)r?
This shows that r» (I") is unbounded unless r + €y;,k, (A(r, 5), B)

= 0 for all r, s. Now consider the 1-parameter family of matrices
A(r) with all entries equal to zero except a;,x,, which is equal to r.

Because (j, i) & Ec, we know that I';(A(r), B) = I}(A(r, s), B) for
all z € 4;. Thus
J@ .o (T (A, B) = 12 /€2,

On the other hand, similar to the proof of Theorem 3.4, we can
compute the optimal controller for systems in this 1-parameter
family and find

Jr) 5., (KA, B €)= Jar) b, (KE (AT, B))

lim

5—>00

v

(25)

=r’/(1+é€).
As aresult, we get
TS P L
r2/(1 4 €2) €?

which concludes the proof for this case. O

Remark 4.2. Consider the limited model information design
problem given by the plant graph G in Fig. 2(a), the control graph
G in Fig. 2(b"), and the design graph Ge in Fig. 2(c). Theorem 4.1
shows that, because the plant graph G, contains the path 3 —
2 — 1 but the design graph Ge does not contain 1 — 2, the
competitive ratio of any control design strategy I" € € would be
greater than or equal to 1 + 1/€2.

Corollary 4.3. Let both the plant graph G» and the control graph G
be complete graphs. If the design graph Ge is not equal to Gy, then
re(I) > 141/ forall I € C.

Proof. The proof is a direct application of Theorem 4.1 with
condition (a) fulfilled. O

Remark 4.4. Corollary 4.3 shows that, when G, is a complete
graph, achieving a better competitive ratio than the deadbeat
design strategy requires each subsystem to have full knowledge of
the plant model when constructing each subcontroller.

5. Extensions to under-actuated sinks

In the previous sections, we gave an explicit solution to the
problem in (10) under the assumption that all the subsystems
are fully-actuated; i.e., all the matrices B € B(¢) are square
invertible matrices. Note that this assumption stems from the
fact that the subsystems that are not sinks in the plant graph
are required to decouple themselves from the rest of the plant to
avoid influencing highly sensitive (and potentially hard to control)
subsystems in order to keep the competitive ratio finite (see
Lemma 3.16). Therefore, we assume these subsystems are fully-
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Fig. 3. Plant graph Gy, control graph Gy, and design graph Ge used to illustrate an extension to under-actuated systems.

actuated to easily decouple them from the rest of the system. As
a future direction for improvement, one can try to replace this
assumption with other conditions (e.g., geometric conditions) to
ensure that the subsystems can decouple themselves. From the
same argument, it should be expected that the assumption of a
square invertible B-matrix is dispensable for sink nodes. In this
section, we briefly discuss an extension of our results to the slightly
more general, but still restricted, class of plants whose sinks are
under-actuated.

Consider the limited model information control design problem
given with the plant graph G, the control graph G4, and the design
graph Ge given in Fig. 3. The state space representation of the
system is given as

X (k+1) 4 x, (k) B|:g](k)i|
NEk+1D || %0 O
where

CAn An|’ |0 Byl

with x, (k) € R™M, x,(k) € R", u,(k) € R™, and u, (k) € R™ for
some given integers n;y > 1,n, > my > 1. Thus, for the second
subsystem the matrix By; € R™*™ is a non-square matrix, and
as a result the second subsystem is an under-actuated subsystem.
Let us assume that the matrices A1, Az, Boo satisfy the “matching
condition”; i.e., the pair (A,3, By;) is controllable and span(A;;) €
span(B,,) (Siljak, 1991). Besides, assume that for all matrices B, we
have o (B) > € for some € > 0. For this case, we have

%(A, B) = —diag(Byy, W2(Az, B))A,

where W5 (A, B;y) is defined in (21). Note that we do not require
the matrix By; to be square invertible. Under some additional
conditions and following a similar approach as above, it can
be shown that the control design strategy I'® becomes an
undominated minimizer of the competitive ratio over the set of
limited model information control design strategies. This result can
be generalized to cases with higher number of subsystems as long
as the sinks in the plant graph G» are the only under-actuated
subsystems (Farokhi & Johansson, 2011).

6. Conclusion

We presented a framework for the study of control design
under limited model information, and investigated the connection
between the quality of controllers produced by a design method
and the amount of plant model information available to it.
We showed that the best performance achievable by a limited
model information control design method crucially depends on
the structure of the plant graph and, thus, that giving the
designer access to this graph, even without a detailed model
of all plant subsystems, results in superior design, in the sense
of domination. Possible future work will focus on extending
the present framework to dynamic controllers and/or where
disturbances are present.
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