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Abstract— The experimental implementation and validation i MM
of a localization system based on a heterogeneous sensor Mobile Agent 7 Accurate but delayed
network is described. The sensor network consists of ultrasound | Web-camersr
ranging sensors and web cameras. They are used to localize a
mobile robot under sensor communication constraints. Apply- Y2 Y
ing a recently proposed sensor fusion algorithm that explicitly
takes communication delay and cost into account, it is shown -
that one can accurately trade off the estimation performance by Fusion Center-f
using low-quality ultrasound sensors with low processing time Scﬁédm;ri

and low communication cost versus the use of the high-quality

cameras with longer processing tl_me and higher communlcatlon Fig. 1. The system architecture for the localization of a rieoagent using
cost. It is shown that a periodic schedule of the sensors is 3 heterogeneous sensor network.

suitable in many cases. The experimental setup is discussed in

detail and experimental results are presented.

l. INTRODUCTION delay, and a high communication cost. The solution desgribe

) . . in the paper shows how the optimal sensor schedules and
Wireless sensor networks provide opportunities for thﬂjsion algorithms developed in [8] can be implemented and

development of new applications in monitoring and automasyended. Periodic and aperiodic schedules are found by
tion [1], [2]. One such possible application area is 10080 e ang of search over a finite set. The main contribution of
systems for tracking mobile objects in indoor and OlJtdoo{he paper is an experimental implementation and validation

envwonm_ents, e.g., [3], [4]. Tracking and localizatiorear ot o solytion using a heterogeneous sensor network and a
well-studied problems, see for example [5]. Nevertheles%ob“e robot

implementation of such algorithms in wireless networksepos Localization is a fundamental feature of most mobile

new challenges: Resource limitations such as battery powgjqtic systems and thus has been thoroughly studied in the
and communication bandwidth need to be taken into accouﬁﬁarature e.g., [9]. Localization can be based on a wariet

in the design of estimation and control algorithms, as well¢ songors (vision, ultrasound, laser etc.) positionedhan t

as communication protocols. When not all sensors can byt or in the environment. Simultaneous localization and
used simultaneously, they need to be actively selected;cﬁenmap building is an important functionality that is based
scheduling problems have been studied extensively in the, ot the robot should build a map of its environment
literature, e.g., [6]. One class of scheduling problemshemw o hreviously observed features while using that map to
there is a cost associated Wlth_the use of the sensors [ﬁ]avigate in the environment [10]. Much work has been done
Another problem recently studied is when the schedulgis, o testing and experimental evaluations of a variety of
depends on the sensor quality, the processing time and §i&torms. The Cricket indoor location system [4], which is
communication cost [8]' . . . ) based on location beacons that are attached to the ceiling of
The problem considered in this paper is to estimate &g room and listeners attached to the robots, is a suctessfu
position of a mob|le robot using two types of Sensorsiycqjization infrastructure that has inspired the system w
ultrasound ranging sensors and web cameras. The systgme geveloped. A natural extension is to use multiple bot
architecture is illustrated in Fig. 1. The sensors share thg jhrove the localization capabilities of each robot by
same communication medium, so the fusion center neeflging them utilize sensors on neighboring robots [11].
to both schedule which sensor to use and decide on hOwWq otine of this paper is as follows. Section Il presents

to incorporate the sensor data into a position estimate. Thg, and sensor models used in the fusion center. A sensor
ultrasound sensors provide low-quality measurementsll smg qiqn algorithm together with a scheduler for the sensor

processing delay, and a light communication cost. The Welymmunication is described in Section Ill. The experimenta
camera provide high-quality measurements, large praw@ssisey, is given in Section IV. In Section V the experimental
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with state a vector:;;, € R™. For the first model, we have
T F z, = X, A= B =1, and for the second model we have

T = (Xk’7 Vk)T, A _ <1 h 0

e

1

B. Sensor Models

The heterogeneous sensor network consists of ultrasound
X sensors and web cameras.
The ultrasound receivers are placed in the ceiling and an
ultrasound transmitter is carried by the mobile robot. Each
receiver can calculate its distance to the robot. Fusing the

are sampled and how stochastic noise enters in the modefstances given by three receivers, it is possible to determ
the robot position through multilateration [12].

Fig. 2. Mobile agent kinematic model.

A. Kinematic Models The web camera span-anglefisand its pixel resolution
The mobile robot used for the experimental validation cai$ denoted byAa. Through image processing it is possible
be modeled by a simple non-linear kinematic model, to compute the agent centroid position by performing a

) . ) transformation from pixel coordinates to world coordirsate

X =Vecosf, YV =Vsinf ) A given area will map into the same pixel. The size of the
JO=T, mV =F, area depends on the distance to the camera. The position
error will increase when the mobile agent is more distant

where V is the velocity,§ the heading,/J the moment of
from the web camera.

inertia, T' the applied moment}” the applied motor force, To get mathematically tractable sensor models, the posi-

andm the vehicle mass. The model is depicted in Fig. 2. tion measurements will be modeled &5, — X+
To simplify the description further, we consider one- cas,k = %k

. . L . AX, where the measurement error is zero on average,
dimensional movement along tié-direction ¢ = 0), which i
reduces (1) to EAX;, = 0. The variances of the measurement error are

assumed to be in the forBBA X, A X =: Xd,_y for the
ultrasound measurement, ali\ X, A X =: odp_y for
The driving forceF is supposed to be unknown. We modelthe camera measurement. The variarieando depend on
the motion of the robot as a random walk as well as atie positionX of the robot. If we consider movement in
integrated random walk. a small area, however, the dependence on position can be
Remark 1: It is straightforward to extend the following neglected. If the dependence Bfand o on X is known,
theory to movement in two dimensions by doubling the statéat can be explicitly taken into account in the covariance-
space dimension for a linearization of (1). Another optien ibased scheduler described in Section I1I-B.2, but not in the
to apply Extended Kalman Filtering directly to the nonlineaperiodic scheduler in Section I1I-B.1.
model (1).
The sampled data models are as follows.
1) RandomWalk Model: In the first model, we assume the In this section, the sensor fusion and the scheduling
robot motion is a random walk. This means that the velocitlgorithms are presented. These algorithms were originall

V is white noise. If the model (2) is sampled with a uniformProposed in [8]. We recall them here and include a slight
sampling interval under this assumption, we obtain extension to the scheduler that can be used to take varying

variance of measurements into account.

X=V, mV=F 2)

Ill. SENSORFUSION AND SCHEDULING

Xit1 = Xg + wy, i
A. Sensor Fusion
where w;, IS a random process noise variable such that

Ew, = 0 and Ew,wy = Wik _pr.

2) Integrated Random Walk Model: In the second model,
we assume instead that the foréeacting on the robot is
subject to white noise. If the model (2) is sampled with
uniform sampling intervak under this assumption, we obtain ZTr+1 = Az + By, k>0, (4)

Define two sets of discrete time instaflig, and7j,, such
that whenk € Tj, the high quality sensor is used by the
sensor fusion center, and where Tj, the low quality sensor
ails used. The model (3) together with the sensors is then

X1 = X +WVi, Vi = Vi + YLk = O1i + oLk, hely, G

. ) ) Yo,k = CoZp—q + Vo, k € Thy, (6)
where wj, is a random process noise variable such that

Ew, = 0 and Ewpwy = Wk wherey, ; is the low-quality measurement apgl;, the high-

As is well known, the random walk and the integratedjuality measurement. The variables; andv. ; are white
random walk models can be written as a state-space modelgasurement nois@&uv; v1,k = X0k, aNdEvy v =
commonly used for estimation and tracking purposes [5] asdr—# - It is assumed that the high-quality sensor measure-

ment y, . iS more accurate tham, i, i.e., 0 < X, but
Ty1 = Axy + By, ©) delayed byd samples because of a higher processing and



communication time. It is assumed that the delay of theommunication cost into account, the following performanc
low quality sensor can be neglected since its processing aodterion is considered:
communication time is lower than one time step. Note that M\
Y1 is not defined wherk € Ty, and y,x is not defined Vr(k, M) = PE + Paverage (k) (16)
whenk € Tj,.

We next derive a time-varying Kalman filter for (4)—(6).
We rewrite the system to accommodate for the time delay
by introducing a new state vector

where M is the number of times the high-quality sensor is
used over the time intervé, k] and ) is a positive parameter
that is proportional to the communication cost.

The average communication cost per time sample is

_ T A . : .
I = (T Tho1 ... Tha) , (7 .1 When only the high-quality sensor is used, the
so that (4)—(6) becomes performance is/7(k, k) = A 4 paverage (k), @and when only
- - the low-quality sensor is useld;(k,0) = paverage (k). Thus
ZTp4+1 = ATy + By, (8) X is a measure of how much better (measured in resulting
U = CrTy, + Uy (9) average error covariance) than the low-quality sensor the
high-quality sensor must be for us to prefer to use it
where, (Vr(k, k) > Vp(k, 0)).

It is legitimate to ask when the high-quality vision sensor

A 0 0 0 B , _
I, 0 0 0 0 is useful at all, since da_lta from thaF sensor are delayed
Q- 0 I, 0 0 5 0 (10) and hav_e a comm_u_nlcatlon cost. It is shown in [8] that
- ) ) T ) there exists non-trivial sensor schedules that incorperat
Lo : the vision sensor while minimizing’>. The optimization
0 0 ... I, O 0 problem grows exponentially with the time horizbnTo find
suboptimal solutions, we restrict the presentation toquici
o — Ci 0 ... 00], keTy 1 schedules and to a local search for so called covarianasbas
’“{ {0 0 ... 0 Cy], k€T, (11) " schedules.

) ) ) ) ) 1) Periodic Scheduler: For the periodic scheduler, we
Introduce the following time-varying recursive Riccatizssyme that the high-quality sensor is used with period

equation N> 1
Pl =A [P,:,k,l — By, CF The(N) = {N — 1,2N — 1,3N — 1,...}
_ e o ={k>0](k+1) mod N =0},
x [CuPyuo O + T3] Ckpglk_l} AT + BWBT, TV)= (0,12, N 2N}
(12) ={k>0]|(k+1) mod N #0}.

where P,j‘k_l is the minimum possible covariance of theOne can show thatP,j‘k_1 (and P,;“k) converges to an
estimation error of the state, given the measurements up N-periodic matrix function whenk — oo, under weak
until time £ — 1. The time-varying Kalman filter that gives assumptions on the system [8]. Henpg,c,.4.(k) tends to
the optimal estimate is given by a constanpayerqge (V). For sufficiently largek, the optimal
sensor cycle period is given by

Tii1k = (A — KpCk) ZTy—1 + Kk (13) \

Ky = AP}, _,C{ (ékP,;‘l w1 CF + Vk) e N, = arg min (N + p;emge(k)) : 7
wherei,,, 1|1, is the new state estimate ahd, is the Kalman Note that (17) is a simple_minimizgtior! prqblem over a finite
gain. See [8] for further details on this filter. set. The steady-state optimal peridd is given by
B. Sensor Scheduling N* = arg m]\ifn <J>\\[ +p§mmge(N)> .

How to schedule the sensors, i.e., how to choose the sets . heduler- h .
Ti, andTh,, is described next. 2) Covariance-Based Scheduler: For the covariance-

The overall estimation quality is defined as the averagké"’lsed scheduler, we let the sensor choice be given by the
trace of the covariance matrix of the estimation error: sensor that decreases the estimation error covariance the
most in one step. Such an online scheduler is interesting
1 & . to compare with the offline periodic scheduler discussed in
Paverage (k) := k1 > trace],, (15 previous section.
=0 At a fixed time instantc, the covariance-based scheduler
where Py, is the block of Pglk that corresponds to the computes the error covariancéy ., , i = 0,...,D,
current stater;, in (7), see [8]. It is desirable to minimize for all possible sensor combinations. The search dépiha
Paverage (k) through a proper choice df},. To also take tuning parameter. To find the appropriate sensor schedele, t



processing and data exchange. Both types of sensors com-
municate with a base-station placed in the same area which
is used to perform the data fusion, filtering and estimation.
The base-station’s processing unit is connected to a \ssele
node in order to communicate with the ultrasound nodes
over IEEE 802.15.4 and an IEEE 802.11g wireless card to
communicate with the vision system’s processing unit. The
ultrasound sensor network consists of 16 wireless nodds wit
ultrasound sensors placed in the ceiling of our corridoe Th
web camera is placed on the wall in the area where the tests
are performed. A radio-controlled car is used as the mobile
agent to be located. The rest of this section describes i som
Fig. 3. Tree search for the covariance-based scheduler \hen2. more detail the ultrasound-based sensor system, the vision
based sensor system, and the sensor fusion center.

A. Ultrasound-Based Sensor System

The ultrasound transmitter and receiver circuitry are con-
nected to wireless sensor nodes of the type Tmote Sky [13].
In order to perform the multilateration position compudati
a method based on the time-delay-of-arrival (TDOA) tech-
nigue was implemented. See [12] and [4] for further details
on this method.

The ultrasound system works as follows. A transmitter
circuitry placed on the mobile agent interact with the ul-
trasound receivers connected to the wireless nodes in the
ceiling. With a 250ms period, the ultrasound transmitter
node is simulatenously sending a wireless (IEEE 802.15.4)
message and an ultrasound signal. The ultrasound receiver
computes the time of flight of the ultrasound signal, using
time calibration for the wireless message and the speed
of sound. This gives the distances between each receiver
Fig. 4. Overview of the experimental setup that consists thsbund .nOde and the. transmltt.er node. The position Cal.CU|at|0n
sensors, web cameras, wireless network, fusion center, amobite agent 1S performed in the fusion center where all the distances
to track. achieved by the receiver nodes are collected and used in a
multilateration computation. Filtering and outlier rejea
are used to improve information.

Fusion Center

a tree search is done to find the lowest sumPpf; , . ;.
i =0,...,D (adding the communication cost each time B. Vision-Based Sensor System
a high-quality measurement is used). An example of such a vision-based system that is composed of a Logitech
a tree search is shown in Fig. 3 for depth = 2. The Quickcam Fusion web camera [14] connected to a process-
scheduleTy, for the time intervalk,k + 1,....k + D IS jng unit was developed. The processing unit performs the
the path that generates the minimum. The algorithm is lUthage acquisition, storage, and processing accordingeo th
whenk = 0,D,2D,.... Another alternative is to optimize scheduler in the sensor fusion center. The communication
the schedule at every in a receding horizon approach, with the fusion center is over a IEEE 802.11g network. The
but that requires more computations. Based on the estima@ﬁput of the vision-based system is the 2D position of the
of current and future position, it is also possible to let theygpile agent in the experimental area. It is computed tHroug
noise covariance matrices, o, W, depend on position when g jinear transformation between pixel coordinates anddvorl
computingP,:H'kH_l, as mentioned in Section 1I-B. coordinates.
The image acquisition and storage is performed using the

OPENCYV library functions [15]. The image processing was

The experimental setup is illustrated in Fig. 4. The systemone in MATLAB. The time spent for these three tasks is
is composed of ultrasound sensors, web cameras, wirelegsout 1 s, which is more than the communicating delay.
network, fusion center, and a mobile agent to track. The webn artificial delay was introduce to investigate the progbse
camera presents the high-quality sensor and is connectedfittering schemes. In the experiments presented in Sectjon V
a laptop enabling image processing and data exchange.ti#e artificial delay was set to 2s, so the total delay it
single camera was used in the tests described here. Tioek from requesting a vision-based position measurement
ultrasound sensors use wireless sensor nodes for sigt@lhaving it available in the sensor fusion center was 3 s.

IV. EXPERIMENTAL SETUP



TABLE |

OPTIMAL PERIODIC HIGH-QUALITY SENSOR SWITCHINGN * FOR
The sensor fusion center is responsible for reading MeamopeL 1 AND 2 CONSIDERING DIFFERENT COMMUNICATION COSTA.

surements from both sensors and using them according to

C. Sensor Fusion Center

the specified filter. It also has the task of triggering the 3 ]'\ffg‘ie;llU:w ?\"f‘i‘iegzgleg%
vision-based system measurements. The ultrasound measure 2000 | N*= 9 14 N = og

ments are received periodically. The sensor fusion center
implements the sensor fusion and scheduling algorithms of

Section 11, where V) (k, M) denotes thej-th repeated experiment and

we assume the noise sequences in different experiments are
independent.
This section presents some experimental results performed,_et us first consider the periodic scheduler in an exper-
on the testbed. First, we discuss how some model parametgfent in which the communication cost was setXo= 0.
used in the filter were obtained, and then we compare thgg. 5 shows the empirical codty as a function of the
periodic and the covariance-based scheduler for somee&hoighe period N. The upper plots are derived for the random
of tuning parameters. walk model and the lower plots for the integrated random
N walk model. The cost for the estimated positions with the
A. Moael Parameter Estimation periodic scheduler is shown together with the cost for the
The ultrasound sensors give on average an errgrash, raw position measurements. The integrated random walk
with a variance ofl2 cm?. The vision-based system givesmodel (lower plots) provides better position estimatesitha
more precise measurements with average errors less thtae random walk model, which is expected since the motion
2.cm, and with variance lower thaihcm?. These values of the mobile agent is closer to the integrated random walk
were achieved by testing the system using fixed positiomaodel. It is also clear that in this case, the periodic scleedu
of the vehicle. Based on these measurements, we use for ffiresented in the paper gives much better estimates than
model (4)—-(6)X = 12 for the ultrasound-based system andhe raw measurements. Fig. 5(a) indicates that the regultin
o =1 for the vision-based system. performance for the proposed filter is for most values\of
The mobile agent moves in the tests in tiedirection:Y  worse than using the direct measurements.
is fixed andX is varying. The test trajectory is approximately Also the performance of the covariance-based scheduler
4.5m long, and a single test takes abdl#ts. Since the is shown in Fig. 5. The optimal schedule obtained was to
measurements given by the camera are very accurate armsler use the high-quality sensor in the case of the random
taken at precise times, one can estimate the velocity lwyalk model and to usé/ = 12 for the integrated random
V = (X, — Xk_1)/At. The mobile agent starts up (fidts) walk model. The parameter search depth parameter was
with a velocity approximately equal td1 cm/s, followed tuned toD = 4. It can be seen Fig. 5 that the covariance-
by an approximately constant velocity 60 cm/s. For the based scheduler does not give as good results as the periodic
final 3 s it has a constant velocity dfl cm/s. Using these scheduler.
velocities, the process noises of the model 3 in Section II-A The optimal periodN* for communication cosi = 0
were set toa/ = 0.5 andU = 0.05, respectively. and 2000 are given in Table I. It is natural that when the
. communication cost\ is large, the schedule perio* is
B. Sensor Fusion Tests large (since the vision sensor is then too expensive to use).
Tests were made using the random walk and the integratedFig. 6 shows a position trajectory. Both filtered and raw
random walk models in (3). The periodic schedules and thgosition measurements are compared to the real positions.
covariance-based schedule were evaluated. In each2fest, The period for the high-quality sensor ¢ = 6. We note
samples were taken with the sampling perfod= 1 s. The again the results using the integrated random walk model for
performance of each filter was evaluated through the costthe sensor fusion filter together with the periodic schedule
K are good (lower plot). The initial transient in the estiroati

1 ' 2 i initi i timator.
Vis(k, M) = = 1(M/\ 4 Z |Zreati — Test/raw] ), error is due to the initial error in the es

V. EXPERIMENTAL VALIDATION

=0 (18) VI. CONCLUSIONS

where z,..,; is the actual robot position at timg and  An implementation and evaluation of a localization system
Test/raw,i 1S the mea;ured or estimated position at timé pased on a heterogeneous sensor network was presented.
depending on what filter was used. The empirical ddst The system is suitable for testing various networked contro

should be compared with the cogf in (16). and estimation algorithms. A sensor fusion scheme with an
We expresd/r as roughly the average df; over several ntelligent scheduler that takes communication cost atelyde

different identical experiments: into account was demonstrated with promising results. The
i sensor network consisted of ultrasound proximity sensuds a

Vip(k, M) = lim %Zvé(k,z\/[% web cameras. They were used to localize a mobile robot

et i under sensor communication constraints.
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As expected, the integrated random walk model provides ptisition  with N = 6.
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