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ROBUST STABILITY OF TIME-VARYING DELAY SYSTEMS: THE
QUADRATIC SEPARATION APPROACHT
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ABSTRACT

In this article, we are interested in analysing stabilitysgstems that
incorporate time-varying delays in their dynamic. The Lyapv-Krasovskii
approach is definitely the most popular method to addressifisue and
many results have proposed new functionals and enhancedi¢gees for
deriving less conservative stability conditions. In thisegent work, we
propose an original approach: the quadratic separatiothi$end, the delay
operator properties are exploited to provide delay rargglity conditions. In
particular,L,-norm of delay-dependent operators are computed so asuoaed
the conservatism of the approach. Moreover, the main resalble to assess
the stability of non-small delay systems, i.e, it can degestability interval
for systems that are unstable without any delay. Severahpbes illustrate the
benefit of our methodology.

I. INTRODUCTION theorem, integral quadratic constrairfidnd quadratic
separation§]. The proposed conditions are often rather

, ~ Time delay system is a subclass of infinite  ¢4nservative since they produce inner approximations
dimensional systems that has been frequently employedys ihe stability regions, although recent techniques

since it can model commonly arising transport and [8], [9] reduce the conservatism by introducing

propagation phenomena. Delays can be encountered ifeqyndant equations and new decision variables in the
many processes such as biology, chemistry, economics g yiimization problem. Then, these results have been
population dynamicsZ] as well as in networksd. extended to time varying delay systems either using

However, delays are the origin of performance and adapted Lyapunov-Krasovski[10, 11, 12, 13, 14, 15,
stability degradation, which thus have motivated a lot ;¢ 17] or robustness toolslB, 19, 20]. These latter

of work. In the case of constant delay, and unperturbed methodologies often require, explicitly or implicitly,

Iingar sysyems, efficient criteria exist 'based on root . delay-free system to be stable, which is a rather
loci techniques (see4] for a recent review). For the important restriction.

case of uncertain linear systems, the problem has been .. paper aims at providing a novel approach
partially solved, either by using Lyapunov functionals ., ,qqress time-varying delay system stability. More

[5. 6, 7] or robustness tools such as small gain precisely, we propose criteria based on an extension of
the quadratic separation principl2l], [22]. They are
'\\(ATrlth?griisp\tlvri?f?m\éegeJLg)r/t%ezn(t)%?.Electrical Engineeringlan then expressed in terms of Linear Matrix Inequalities
Computer Science, Icarﬁ, 75 avenue de Grande gretagne, 3130(‘LM,|S,) which may.be solved efflc!ently with Semi-
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framework with an appropriate modelling, we provide delayh is time varying with

the main result: a delay range stability condition (where .

the delay . is belonging to a prescribed interval h(t) € [Pmin, hmax] and |A(t)| < d, (2
[Amin, hmax]). Differently from most of papers on this ) .

topic [13, 23], this condition is able to detect pockets of WNer€humin, fumax andd are given positive constants. In
stability even in case of unstable delay-free systems. Wehis work, we aim at assessing the stability of system
emphasize that we do not intend to present an additional(}) Via the quadratic separation principle originally
less conservative criterion that outperforms all existing d€veloped for robust control i2f]. We will show that
results but rather an original methodology to cope with V&rious criteria, relatgd to the a\(ailable |nfo.rmat|ons on
systems which may be unstable for sufficiently small the delay, can be derived choosing appropriately a set of
delays. operators.

The outline of the paper is as follows. In Section
I, some preliminaries are presented and we state2.2. Stability analysisvia quadratic separation
our quadratic separation theorem as well as a set of
useful operators. In sectiofi, this latter prior result
is exploited to derive a stability condition for time-
varying delay systems. Then, an additional operator
is appended for the conservatism reduction. At last,
numerical examples that show the effectiveness of the
proposed criterion are provided in sectibh. Section
V concludes the paper.

Notations. Throughout the paper, the following
notations are used. The seif consists of all
measurable functionsf : R™ — C™ such ||f| ., =

The quadratic separation provides a fruitful
framework to address stability of non-linear and
uncertain systems2[l], [22]. Recent studiesg] have
shown that such a framework reduces significantly the
conservatism of the stability analysis of time-delay
systems with constant delay. In this paper we extend this
method to time varying delay systems, which involves
the development of results for a new set of operators.
Consider the interconnection in Figurevhere& and.A
are two, real valued, possibly non-square, matrices and
- 1/2 V is a linear ope_rator fronis. to Lo.. For simplicity,
(f(f*(t)f(t)) dt < co. When context allows it, W€ assume that is fi_ill column _rank. Assummg weil_-

posedness, we are interested in looking for conditions
the superscript of the dimension will be omitted. The  that ensure stability of the interconnection.
set L}, denotes the extended set &f which consists
of the functions whose time truncation lies ir§. For w @
two symmetric matricesd and B, A > (>) B means
that A — B is (semi-)positive definiteA” denotes the

w—w=Vz

w z
transpose ofd. 1, and0,,«, denote, respectively, the 3
identity matrix of sizen and null matrix of sizem x E(z—2) = Aw ——(+)=—"—
n. If the context allows it, the dimensions of these
matrices are omittedliag(A4,..., Ax) stands for the Fig. 1. Feedback system.
block diagonal matrix wittd,, ..., A, on the diagonal.
Introduce as well the truncation operakyf such that:
Pr(f) = fr = f@), t<T, Theorem 1 The interconnected system of Figuie
T =JT= 0, t>T. is stable if there exists a symmetric matfix= ©7
satisfying both conditions
Il. PRELIMINARIES (e —A]l of¢ 7A]J_>O 3)
2.1. Probl
roblem statement andvu € L., VT > 0,
Consider the following time-varying delay system:
1 1
@(t) = Ax(t) + Agz(t — h(t)) vt >0, <[ PrVv } ur, © { PrVv } ur) <0 )
z(t) = ¢(t) Vt € [—hmax, 0],
1)
where z(t) € R" is the state vectory is the initial PROOF : Inspired from PR1], the proof is detailed in
conditionand4, A; € R"*™ are constant matrices. The [19]. O
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This result includes two conditions: a matrix inequality PROOF: We getthawT > 0,Vxz € L%,,
(3) related to the lower block of the feedback system

and an inner producty that states an Integral Quadratic <[ In } z { -Q 0 } { 1n ] z)
Constraint (IQC) on the upper block. It will be used Dl, |77 0 Q(—h) || D1,
throughout the paper to prove stability of systems under

consideration. = — [T (w)Quz(u)du + [ 2T (t)Qua(t)dt
+T
2.3. Some suitable operators - ! (6)Qu(t)dr + [, h(0> 2" (u)Qu(u)du
It is required to define appropriate operators to = —fT_h(T)a:(u)TQa:(u)du <0
model the time-delay systeml)( as the feedback
system in Figuréd. Clearly, two operators are essential, Wherezq(t) = x(t — h(t)). &
describing the dynamics and the delay: the integral Since the 1QC for the delay operatbrdo not depend
operator on h, it is clear that it will induce some conservatism.
T: Loe— Lo, As an example, in the constant delay case, the 1QC
(5) defined by Lemma is equivalent to replace the delay
t) = {x(@)d@, by a norm-bounded uncertainty. The phaseof* is

not taken into account. This can be approached by the
—hs

and the delay operator (or shift operator) operator; (s) = 1= [20]. It can be embedded as a

D: Lo — Lo, ©) norm bounded uncertamty:
x(t) — z(t — h). ’1 _ gk ,
SUp || ———— || = Mmax-
The next step is to characterize the two operators by the w Jw *

use of IQCs introduced in the following two lemmas. 1,4 onerator can also be interpreted as the first-order

. : L
Lemma1 An IQC for the operatof is given by the Taylor remainder of the exponential functien”s:

following inequality:vx € L%, andvP > 0, e " =1 — hsdi(s).
( 1, 0 -P 1n ) <0 Following the same idea, we formulate now the time-
Pr1, -P 0 Pr11, ' varying counterpart by considering a new operator
defined as follows:
PrROOF: Simple calculus shows thdf” > 0,Vx € LY., Fio Lae— L%tv
8
< 1 0 _p 1 > x(t) %t_;{(t) x(s)ds.
1, || =P 0 71, |*
Its characterization through an 1QC can be derived as
T t follows:
=2 [a@t)TP [x(s)dsdt
OT 0 Lemma 3 An IQC for the operatotF = (1 —D)oTis
=-2f %(Iaj)TP(I:c)dt given by the following inequalitytz € L.,
0
T 2
= — x dS TP dS 1“ hmaxR 0 1n
Uo () Uy #(s)ds) < <[ PrF1, } o [ 0 R || Prr1, |77
¢ <0,

whereh,.x is the upperbound on the delayt) and R
Lemma2 An IQC for the operatoD is given by the  is some positive definite matrix.
following inequality:vT > 0,Vz € L, andV@ > 0,

1, -Q 0 1n PrRoOOF: See Q] or[19]. O
{ P;D1, | YT 0 a@) P;D1, | * )<0. The operator” = (1 —D)oZ can be slightly trans-
formed as F = ﬁ}‘. The corresponding integral

witha =1 — h. constraint is then expressed as follows.
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Lemma4 An IQC for the operatotF is given by the  Hence, we get

following inequality:vT > 0,Vxz € L3,,VR > 0, © 9 B2
/12 _ "max 2 <
) | gel? - 2 el <o,
| prr1, | " i
T 4n which concludes the proof. O

_hm' XR 0 1"
{ 0a h(t)R ] [ PrFl1, This result is a key result for the main theorem
because it allows to build a stability condition that does
PROOF: Omitted. O not require the system to be stable for small delays as
An interesting contribution of this work is then the we will see in sectiorV.
introduction of a novel operator that improves the
modelling of the delay dynamic. This operator is related

}ﬂfﬂ <0.

to the Taylor remainder of order two:

t
 2-DI2 - h()T 1

—h(t)s

9)

The following lemma gives a parameterized constraint

on#H.

Lemma5 An IQC for the operatorf is given by the
following inequality:vT > 0,Vz € L3,,VS > 0,

h2
— —max G 0 1n
Jor [ 75 %), o

<0.
HHIH2 =

o) (o)

Using Cauchy-Schwartz inequality and settififj=
Hh(t), VYT >0,Vxze Ly, we get the following

inequality,
//d@ds //H:c )||2dbds | ,

t—h(t) s t—h(t) s

~ t t
X 2 2
- < I(0)|2dods,

t—h(t) s

I
< PrH1,

PrROOF: Note that

[ He||? <

/O P H”Hxll dt < ///th )2 dodsdt,
0 —hmax S

o0 h o0
< "’max 2 )
/0 oy Pl < 2 / o (o)|Pdt

1. MAIN RESULTS

We present in this section the main results of
the article which is based on the quadratic separation
framework already used for constant delay systems.
This approach allows us to establish the main theorem
for the robust delay range stability analysis.

3.1. Methodology

To illustrate the proposed methodology, let us
reformulate the systeni) as the feedback in Figure
As a first modelling, the systeni)(can be described as
the feedback

71, O 0 z(t)
w(t) = 0 D1, O x(t) |, (10)
0 0 Fi, z(t)
v z(t)
with
x(t)
w(t) = z(t — h(t))
x(t) — x(t — h(t))
and
1 00 A Ay O
0 1 0 1 0 0
10 1 z(t) = 0 0 0 w(t). (11)
0 0 O 1 -1 -1
—_——
& A

Then, according to Theoremi, we have to find

a separator® that fulfills both inequalities 3)-(4).
Combining the three constraints related to the different
operators (stated by the lemmas in Secfidl), a global
(conservative) constraint oW is deduced. Hence, the
matrix

0 0 0 P 0 0
0 -Q 0 0 0 0
0 0 —h2, R| 0O 0 0
O=1—F 9 0 0 0 O (12)
0 0 0 0 aQ 0
0 0 0 0 0 R
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whereP, Q and R aren x n positive definite matrices, (a) Rewrite the delay systeri) @s an interconnected
satisfies the inequality4]. The interconnected system feedback.

(10)-(11) (and therefore systent)) is thus stable if (b) Embed the integrator, the delay and other
the matrix inequality §), with £, A and© defined as auxiliary operators into the matrix’.

(12) and (2), holds. Because of the occurrences of

hmax @andh(t) in the criterion, it is refered to adelay (c) Construct IQCs fok.

and rate dependenSettingh(t) = d in the separator, '
the condition becomes a single LMI that can be easily (d) Establish the LMIs of Theoreirand compute the
solved via SDP. separatoro.

Remark 1 It has been shown in1f] that the above ~ 3.2. Model extension
criterion, based on the three operators, provides the By extending the dynamics of the time-delay
same results in terms of conservativeness as severakystem, it is possible to achieve less conservative
classical results of the literature6] 25]. Indeed, results, seed7, 8, 28]. An augmented state is composed
such a particular choice of operators and separator of the original state vector and its derivative. By
amounts to choosing a Lyapunov-Krasovskii functional defining relationship between augmented stater,
candidate of the form: the delayh and its derivativeh, an enhanced stability
condition is provided. Differentiating the systefh),(we

. 9 ; get:
Vi(z:) = @ (0)Pz(0) + / 7 (0)Que(0)do i(t) = Ai(t) + (1 — h(t) Agi(t — h(2)).
—h{®) Consider
Flo () = Az(t) + Aga(t — h(t),
+/ /xt (s)Rite(s)dsdf. { #(t) — Ad(t) + (1 h(o)Agi(t - h(e)). )
t—hy, 0

Introduce the augmented state
Further discussions on the quadratic separation method (%)
and the Lyapunov-Krasovskii counterpart for the (t) = [ (1) },
constant delay case can be found &).[Other authors - ) )
have emphasized the links between the LyapunovSO Dy specifying the relationship between the two

(14)

method and the robust analysis in general, e.gjl, p4, ~ components ofc(¢) with the equality[0 1[<(t) =
26]. [1 0]s(t), we have the descriptor system

_ _ ES(t) = As(t) + Aas(t — h(t)), (15)
Remark 2 A simpler criterion can be derived by where
removingF fromV. In that case, the stability condition
is independent of the delay because no information on 10 ) A0
the size ofh(t) (for instance,hm.x) appears in the E=101],A=]0 A |,
matrices&, A and ©. However, a bound o is still 10 0 1
required. ) A, 0
Remark 3 Because the inequality in the Lemn2a Aa = 8 (1*}‘0(75))‘461

imposes a constraint on the delay variatibft), a rate
independent condition can be obtained if the system

(1) is represented only through the first and the third 3.3. Delay range stability condition

operators of £0). We now model the augmented time-varying delay
system {5) through the new set of operators:
<(t) Il O 0 0 S(t

In the next sections, we investigate new operators

(t)
for the delayed dynamics. The objective is to reduce <a(?) = 0 Dl 0 0 ﬁ(t)
the conservatism of the stability analysis by taking wi(t) 0 0 Flan O ﬁ(t)
into account some further informations on the delay. wa(t) 0 0 0 Hln i(t)
Throughout the paper we will apply the following w(t) v 2(t)
procedure: (16)
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=T e
’wg(t) = l‘(t) - :C(w - zg) h(t)) = Elg(t) — ngl(t)
andEy=[1 0 ]andE;=[0 1 |.Then,accord-

ing to the Lemmasl()-(5), the separator
o O©11 | O12
o- 2oz
. hipax
011 = dlag(Ozn, —Q, —hmax R, 77‘5),

©12 = diag( — P, 0sn),
@22 - diag(02m (1 - h(t>>Qa h(t)Rv 2‘9);

(17)

with some positive definite matricéy Q, R € R?"*2"
and S € R™*™, fulfils the requirement4) of Theorem
1. Consequently, the stability ofLH) (and thus 1))
holds if

M ()O(h(t), h(1)&(t) > 0

suchthaf & —A ]&(t) = Owith¢ = [ ;((?) }This

condition is equivalent to3) of Theoreml. Condition
(18) can be rewritten as another equivalent condition

(18)

T (ONT (A(E)O(h(t))N (h(t))(t) >0, (19)
z(t)
wherey — g(th th)) , such thaiS (h(1))i(t) = 0
] wg(t)
with
A -1 Ay —1h(t) 0 0
S=|1 0 -1 0 —1h(t) 0
A 0 Ay 0 -1 -1
) (20)
and
[ AA As(1—h) AA4 1
A 0 Aq
A 0 Aq
1 0 o |,
N = AA Ag(1—h) AAg | B0
A 0 Aq
AA Ag(1—h) AAg
A 0 Aq
]-6n
i (21)

Applying Finsler's lemma, we note that conditiohd)
is equivalent to

NT(h(t)ON(h(t)) + XS(h(t)) + ST (h(t))XT > 0.

(22)
It is easy to show thatv” (h(t))ON (h(t)) is affine,
and thus convex, ik and . So condition 22) has to
be assessed only at the four vertices of the polytop
generated by the intervals bft) andi(t). We are now
in a position to state our main result.

Theorem 2 For given positive scalarsi, hn;, and
hmax, If there exist positive definite matrice®, Q,
R € R?"*2" g positive definite matri¥ ¢ R**" and
a matrix X € R®»>37 then the systeml)] with a
time-varying delay constrained bg)(is asymptotically
stable if the LMI 22) holds for A(t) € {—d,d} and
h(t) S {hmina hmax}-

Remark 4 Most of the papers in the literature provide
the so-called delay dependent stability condition using
the Lyapunov-Krasovskii method (see for example [
25, 29, 30]). Basically, a stable delay-free system
is considered and the maximal value of the delay
that preserves the stability is looked for. Recently,
some papers have studied the problem of finding the
largest delay intervalh,in, hmax] fOr which the delay
system is stable. In that case, the Lyapunov-Krasovskii
functionnal depends explicitly on the delayt), but
also on the lower and upper boundd, 13, 14, 23]. In
these papers, they explore tightly the relations between
z(t — hmin) @nd z(t — hmax) through the use of well-
fitted Lyapunov-Krasovskii functionals. Nevertheless,
their results are restricted to the case of a stable
delay free system, i.e. a stable matuk+ A4. We
address in this paper the tricky case of the delay
range condition where the delay belongs to an interval
(h(t) € [hmin, hmax] ) @nd the system may be unstable
for small delays.

3.4. Robust stability

Quadratic separation provides a suitable frame-
work for stability analysis of uncertain delay systems:

i(t) = A(A)a(t) + Aa(A)z(t — h(t)  (23)
where
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The second term of the right hand side describes the PROOF: First, introducing the exogenous signals
uncertainty characterizing syster@3]. The uncertain

time-varying matrixA (¢) satisfies wa = Aza, With za = Cz(t) + Caz(t — h(t)),

ATHA®) <1, V6> 0, YA € Q (24) we rewrite systemZ3) as the interconnection of
and models non-linear and neglected dynamics as well 2t f(t}z(t)) ig
as parametric uncertainties. The matriégs” andCy 2(t) — ot — h(t)) =V (1)
are constant and of appropriate dimensions. According wa () a(t)
to the set of admissible uncertainties agd)( we have A A
to find a separatav such that w(t) z(t)

with V = (Z1,,D1,, F1,,A) and
<{i]z,[gi 52 ] [i]zxo,\maz.
2 Ex(t) = Aw(t), (28)
U

(25)  where& and A are defined inZ7). Combining every
For instance, assunfeis a set of diagonal real-valued |QC related to each operators defined by lemmas

matrices with bounded uncertainties: and the struture of the uncertainty leading &5)( a
_ separator of the form of2@) fulfills the requirement
Q= {A = diag(d1, ..., on) | 16| < di} . (4). Finally, condition @) provides the robust (with

respect to the uncertain g@j stability criterion. O
Then, inequality Z5) holds with
_ _ For the sake of simplicity, Theorefis given only
U = diag (—6fus, ..., —0%un,u1,...,un) with the two operator® and F. In the case of time
o ) invariant uncertainties, it is easy to extend to the third
whereu;, i =1, ..., N, are scalar decision variables. We - qperatory. If A is time-dependent, the model extension
propose to analyze the robust stability of systét8) ( (Supsectior.2) is however more tricky to apply and a
with the following theorem. good knowledge of the uncertainty is required.

Theorem 3 For given positive scalaré,., andd, if
there exists positive definite matrices @, R € R™*" IV. NUMERICAL EXAMPLES

and matricesUy, Us, Us such that g5) holds, then We illustrate the developed theory through three
system 23) with a time-varying delay constrained by examples.

(2) is asymptotically stable for any uncertainty € Q

if the LMI condition @) holds with®, £ and.A defined 4.1, First example: delay dependent case

as follows:
Consider
911 :diag(onvavth R, Ul),
@ @ . max . -
e = [@il @;j, ©12 = diag(—P, 020, Ua), i(t):{ 2 0 ]m(tH[ 1 0 ]x(ﬁ_h(t».
- Ogs = diag(0n, (1 — d)Q, R, Us), 0 —0.9 11

29
(26) (29)

First, let us remark that the delay-free case is stable.

10" 1On 8 8 Next, the maximal allowable delay,,.x, is computed.
g=1|-1, 0 1, © To demonstrate the effectiveness of our approach,
o 0 0 1, ’ results are compared to the literature. All papers, except
0 0 0 0 [18, 20, 32], use Lyapunov theory in order to derive
' (27) stability criteria. In [L8], [20], the stability problem is
A Aq 0 B solved in an IQC framework. The results are shown in
l, 00 0 Tablel.
A=10 0 0 0 In [20] and [32], the delay is modeled as an
10 Cc{ 01 8 uncertain parameter and appropriate weighting filters

are used to bound it. Their methodologies provide very
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Table 1. The maximal allowable delajs,.x for system 29)

d | o Jo1]o2]|05] 08| 1 |vi>1]
Fridman et al (2002)q || 4.472| 3.604] 3.033] 2.008| 1.364| 0.999| 0.999
Wu etal (2004)25 | 4.472] 3.604| 3.033| 2.008] 1.364| - -
Kao etal (2005)18] || 4.472| 3.604| 3.033| 2.008| 1.364| 0.999| -
Fridman et al (2006)1[1] || 1.632| 1.632] 1.632] 1.632] 1.632] 1.632| 1.632
Kao et al (2007)20] | 6.117] 4.714| 3.807| 2.280]| 1.608] 1.360| -
He et al (2007)29] 4.472] 3.605| 3.039| 2.043| 1.492] 1.345| 1.345
He et al (2007)9] 4.472| 3.605| 3.039| 2.043| 1.492| 1.345| 1.345
Ariba etal (2009)32] || 6.117| 4.794| 3.995| 2.682| 1.957| 1.602| 1.345
Sunetal (2010)14] || 4476 3.611] 3.047| 2.072| 1.500| 1.529] -

Theorem2 5.120| 4.081| 3.448| 2.528] 2.152] 1.991| -

good results, however, they are restricted to time-delay ~ Table 2. Interval of stabilizing delays for systeBt)
system that are stable without delay. Although Theorem

2 does not provide the best condition, it provides d Bomin P
conservatism reduction compared to many conditions 0 0.102 1.424
from the literature. Besides, Theoretraddresses the 0.1 0.102 1.424
stability of systems witlinterval delayswhich may be 0.2 0.103 1.423
unstable for small delays (or without delays). 0.5 0.104 1.421
0.8 0.105 1.419
1.0 0.105 1.418

0 (analytical) 0.10016826 1.7178

4.2, Second example: delay range case
4.3. Third example: robust stability

static delayed output feedback(t) = ky(t — h(t)).
Choosingk = 1, we get: .oy _ | —2+401cost 0
& J () [ 0 14 8ysint | *®
—1 4~ cost 0
. 1 _ _
=[G o0+ [0 2 ]at-nen L B )
' (31)
. (30) extracted from 33]. §; and~; are uncertain bounded
In order to assess the interval of the delay such that parameters:
system 80) is stable, Theorer2 is applied with given
hmin and hpa.. Then, a sliding window principle |01] < 1.6, 2] <0.05, |11] < 0.1, |y <0.3.
is performed to stretch the bounds. The results are
presented in Tablg. Let us rewrite the system as i&3) with
Theorem 2 allows us to assess a conservative _ _
A2 0] ,_[-1 0
region of stability w.rt.k and h(t) (for d=1). It 0 1= -1 —1 |

provides a set of values @f that ensures a stabilizing B = 1,, C = diag(1.6, 0.05), C4 = diag(0.1, 0.3).
delayed output feedback fai(t) — 0.1y(¢) + 2y(t) =
u(t) as shown in Figuré. Simulation results are gathered in the Tahkle
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3
= 4
0]
5
6
% 05 1 15
Delay h(t)
Fig. 2. Stability region ofg(t) — 0.19(t) + 2y(t) = ky(t — h(t)) 7.
w.r.t. k andh(t).
Table 3. Maximal allowable delajim.x for the system 1) 8
w.r.t. d.
| d || o |o1] o5 08|
[33] 0.241| 0.234| 0.188]| 0.110 9.
[29 1.149| 1.106| 0.924| 0.760
[2Q] 1.416| 1.302| 0.974| 0.829
Theorem3 || 1.515| 1.422| 1.105| 0.910
10.
V. CONCLUSION
11.

In this paper, stability analysis of a time-varying
delay system has been studied by means of quadratic
separation. Inspired from previous work on time-delay
systems with constant dela§][ novel stability criteria
for time-varying delay system were provided. Using
an augmented state, which emphasizes the relation
betweenh and (i, i), the resulting criteria have been
expressed in terms of a convex optimization problem
with LMI constraints. Finally, numerical examples
show that this method reduced conservatism and
improve the maximal allowable interval on the delay.
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