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Abstract— We consider the problem of estimating the size
of dynamic anonymous networks, motivated by network main-
tenance. The proposed algorithm is based on max-consensus
information exchange protocols, and extends a previous algo-
rithm for static anonymous networks. A regularization term is
accounting for a-priori assumptions on the smoothness of the
estimate, and we specifically consider quadratic regularization
terms since they lead to closed-form solutions and intuitive
design laws. We derive an explicit estimation scheme for
a particular peer-to-peer service network, starting from its
statistical model. To validate the accuracy of the algorithm, we
perform numerical experiments and show how the algorithm
can be implemented using finite precision arithmetics as well
as small communication burdens.

Index Terms— anonymous networks, distributed estimation,
dynamic networks, size estimation, sensor networks.

I. INTRODUCTION

The importance of distributed computation is reflected by
the variety of applications where agents interact and coop-
erate to reach a common goal. Examples of these systems
include environmental monitoring [1], management of the
electrical grid [2] and the public transportation system [3].

In most cases the collaborating agents need to preserve
the properties and working conditions of the network, and
also perform opportune restorative actions. To this regard,
size estimation of the network is a key function, and it is
indispensable for topological change detection or automatic
network reconfiguration. An indication of the importance of
the network size estimation problem is the abundance of
literature on the topic, briefly reviewed in the following.

A common approach to network size estimation is to use
random walks [4], [5], [6], relying on a token being passed
around the network to collect information each time it visits
an agent. Another strategy is to use randomly generated
numbers [7], and then exploit classical results on order
statistics to infer the number of participants [8], [9], [10],
[11], [12], [13]. These probabilistic techniques have been
analyzed from a statistical point of view, [14], [15], and are
extensions of the methodologies proposed in [16], [17], for
estimating sums over networks. Other procedures use the
capture-recapture concept [18], [19], where the idea is to
randomly disseminate a number of seeds through the net-
work, then check how many seeds are in a given subset, and
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from this infer the size of the network. We also notice that
some works, e.g., [20], [21], exploit probabilistic counting
algorithms [22], [23] usually implemented in non-distributed
contexts to analyze data fluxes over given channels. Some
other techniques take advantage of their ad-hoc framework
and are thus not implementable in general settings [24], [25],
[26], [27].

We notice that the previous works mainly deal with static
networks, or where the dynamics of the network are suffi-
ciently slow and do not affect the estimation process. There
are extensions of the previous procedures to dynamical cases:
for example, [28] uses order statistics, [29] considers random
walks, [30] exploits opportune derivations of probabilistic
counting algorithms and [31], [32], [33] all deal with various
dynamic scenarios.

Here we consider a scenario of dynamic anonymous
networks, where the network size is not constant in time
and the uniqueness of the node IDs is not guaranteed [34].
The anonymity is motivated for maintaining users’ privacy
(e.g., where users may not want to disclose information
about their identity) and also beneficial when the estimation
strategy must be simple and with limited resources require-
ments (e.g., where generating/storing/exchanging IDs may
be infeasible due to computational/memory/communication
constraints). Here we assume that the nodes have very limited
knowledge of the network topology, and narrowly bounded
computational, memory and bandwidth resources. Our aim is
then to obtain purely distributed strategies, where all nodes
execute the same operations and where no leader nor overlay
Structure is present.

With respect to the previously analyzed literature, we
derive a distributed estimator that extends order statistics
based techniques by means of regularization theory [35],
[36], that to the best of our knowledge has not been proposed
before. More precisely, we introduce a regularization term
that allows the designer to opportunistically take into account
not only the empirical evidence of the data, but also a-
priori believes on the typical behavior of the quantity to be
estimated. In this paper we then provide a full analysis of the
quadratic regularization function, and offer detailed descrip-
tions on the effects of the choice of its design parameters.

The paper is structured as follows: Sec. II introduces some
preliminaries. In Sec. III we propose a generic regularization
based network size estimator for dynamic networks, and
consider especially quadratic regularization terms. In Sec. IV
we derive an explicit estimator from a Bayesian network
model, which effectiveness is tested in Sec. V by means of
numerical experiments. We then draw some conclusions and
future research directions in Sec. VI. For ease of readability,



proofs are collected in Appendix.

II. PRELIMINARIES

We consider a network model of interconnected agents
(nodes), where agents can join or leave at any time. The
goal is to estimate the network size, i.e., count the number
of agents as the network is evolving. Each agent has a limited
memory and processing power, and can only communicate
with its direct neighbors. Further, the agents are assumed to
be anonymous so that no global unique identifiers can be
used for estimation purposes.

A. Max-consensus

Max-consensus algorithms are procedures that allow a
set of agents ¢ = 1,..., N, each owning a local scalar
value f;, to distributively compute the maximum of the set
{f1,..., fn} with either gossip or broadcast communica-
tions. In the latter case, agents sequentially broadcast their
local values, and whoever receives this information updates
its local fl USing the rule “if freceived > f’L then fz = freceived”-
Under mild assumptions on the communication process,
the max-consensus protocols are proven to converge to the
true maximum in a finite amount of time, see, e.g., [37].
It is immediate to extend scalar max-consensus algorithms
to component-wise max-consensus procedures on vectorial
quantities.

B. Notation

In the following, plain italics indicate scalars, while bold
italics indicate vectors. N (t) represents the number of agents
in the network at time ¢ € N, N (¢) corresponds to an estimate
of this quantity and N (t) represents a a generic hypothesis
on the value of N(t). We extensively use the following
vectorized versions of the previous quantities:

N(t) = [N®),...,N(t-7)]" (1)
N(t) = [N@),....N@t-7)]" 2)
N@®t) = [N®),...,Nt-]" 3)
NI(t) = mtfrfl) SNE=p)T @)

where again N (t) refers to actual values, N(t) to a a
generic hypothesis on the value of N (t), N (t) and N (t) to
estimates. Notice that 7,77 € N are fixed design parameters.
The uniform distribution over the interval [0, 1] is denoted
by U [0, 1].

III. NETWORK SIZE ESTIMATION ALGORITHM

We consider the simplified framework where the effects of
clocks synchronization, packets loss and quantization issues
can be neglected.

The network size estimation scheme in Alg. 1 can be sum-
marized as follows: agents periodically generate some ran-
dom values, share them with their neighbors, and eventually
compute estimates of N(¢) through a penalized Maximum
Likelihood (ML) approach.

Remark 1 The time index ¢ does not denote physical quan-
tities (e.g., seconds), but rather epochs, defined as the time

Algorithm 1 Dynamic Network Size Estimation Algorithm
1: fort=1,2,... do
2: (Generation) Each agent ¢ = 1,...,N(t) gener-
ates M ii.d. random values y; ,(t) ~ Z/{[O 1], m
1,..., M,
3: (Communication) Agents compute, through max
consensus strategies, the M-dimensional max vec-

tor f(t) = [fi(t),..., fa(t)]T, where f,(t) =
max; Yi,m (t);

4: (Computation) Each agent estimates the total number
of agents in the network as

]/\7\(75) = arg min J(ﬁ
NeR7+!

LW, = T), NIW)

&)

necessary to complete each iteration in Alg. 1. We thus
implicitly assume that agents always reach consensus on the
locally generated quantities.

We define the penalized likelihood function J in (5) as

follows:
F(t=7),NI(@) ==

S(t=7)5 N)+9R (N, N@®)) -
(6)

This allows us to estimate the network size IN (¢) penalizing
the hypotheses N that deviate from expected behaviors by
means of the regularization term R : R7t! x R7~7 —
R, . Thus, given a hypothesis N, (5) evaluates both its
plausibility and its empirical evidence [38, Chap. 4]. y in (6)
is called the regularization parameter, and captures the trade-
off between the empirical evidence of IN and its plausibility.

We notice that the hypothesis IN correspond to a time-
window of fixed length 741, while the regularization term R
also explicitly depends on the memory of the past estimates
N"( ) up to time ¢t — 7 (n > 7), defined in (4). The past
estimates IN?(t) are not changed by the estimator, and are
used as extra parameters. A pictorial description of how these
time windows shift in time is given in Fig. 1.

J(N; F0),...
—logp (F(t),...
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Fig. 1. Example of the time behavior of the estimation scheme (6).
The white rectangle indicates the IN. "(t) playing the role of parameters,
while the gray rectangle indicates the time-window where the optimization
problem (5) acts to obtain novel estimates. As time increases these windows
are shifted.



Remark 2 If R = 0, then Alg. 1 reduces to sequentially
computing the estimates as

arg min
NeRr

| M -1
= —| 5D logfi :
(372 e1)

In this case, the various N (t)’s are estimated independently.
(7) corresponds to the ML approach used in static anony-

mous networkAframeworks [39]. In this case, the statistical

properties of N can be summarized as, when M > 2 then

N@) = (—1ogp(f(t) ; W))

(7

Ny | M
E[M’M]—M_l’ ®
N(t) = N(t) 2' M2+ M2
B (mn) M =aroear-z 0 @

A. Parameter design constraints

Intuitively the estimation accuracy is non-decreasing in
M, 1 and 7. However, M is bounded by transmission con-
straints (in the max-consensus step), 7 is bounded by com-
putational constraints (in the optimization step (5)), while 7
is bounded by memory constraints.

The following states that f(¢), f(¢ — 1),... can be com-
pressed to scalar values without loss of information:

Proposition 3 Let s(7) := — Z%Zl log fim (7). Then s(7)
is a complete and minimal sufficient statistic for N (7).

By introducing s(t) := [s(t),...,s(t — 7)]", the penalized
likelihood (6) can be rewritten as

J(W; s(t),ﬁﬁ(t)) = —logp (s(t) ; N)+7R (W, ﬁﬁ(t))

with a memory saving of M -7 scalars (notice that to compute
the current s(t), agents need to run the max consensus on
all the various f,,(¢t), m=1,..., M).

B. Quadratic regularization

Adding a regularization term R in empirical risk mini-
mization problems, as we did in (6), generally improves their
conditioning properties [38, Chap. 4]. The presence of these
terms can also be motivated by Bayesian perspectives, where
the penalty R reflects a-priori beliefs on typical behaviors.

Here we explicitly consider quadratic regularization terms

T _
{Qn le} N —m
Qf, Qu NI — po
Q-1

R (ﬁ, ﬁﬁ)

—

N7 — ps
(10)

where p is a nominal behavior of IV, and Q! is a symmetric

positive definite matrix. With this choice the following result
holds:

Proposition 4 Given a quadratic regularization term (10),
the optimal estimator IN(¢) in (5) satisfies the quadratic
equation system

diag (ﬁ(t)) .

: (S(t) +29Q11 (N (1) — p1) +27Q12 (N2 (1) — uz))
~Mi1=0. (11

Quadratic regularization terms, as in (10), especially cap-
ture the design strategies where R penalizes just the dif-

ferences between the various N(¢),...,N(t — n). In fact,
by defining Q;; := (e; — e;)(e; — e;)T, where {e;} is the
standard basis of R", and ® = [z1,...,2,]7, and letting

Qil = Zi,jQijQij with qij; > 0 then H.’I)*Mﬂ“é =
> Gig(wi— x;)?. In this case, choices for 7 different from
n = 1 or n = 7+ 1 are meaningless, since larger values

would just add a constant value to the regularization term.

IV. PROPERTIES UNDER A MARKOVIAN MODEL

We now derive the quadratic regularization term as an
approximation of the probabilistic model for a simple but
practical network of agents.

Consider an anonymous peer-to-peer file sharing network,
where a certain file is only located at a subset of the peers,
and the goal is to estimate how many peers that have the
file. At any time, a user can either decide to download or to
delete the file. The peers that have the file (and only those)
generates new random values, the max-consensus procedure
is then run in the background to estimate how many peers
that have the file. We assume that:

« there exists a bound on the maximal number of peers',

say Nimaz}

o downloading and deleting files happen independently

among the peers;

« the stochastic process that agent a downloads or deletes

the file is a Markov process with (known) probabilities:

p=Plz,(t) =1 |z.(t —1) =0]
q:=Plz,(t) =0 | z,(t —1) =1]

where z,(t) 1 (0) corresponds to agent a (not)
having the file at time ¢.

Given these assumptions, we derive the one-step estimator
(7 = 0) with two-steps of regularization memory (n = 1).

(12)

A. Derivation of the regularization term

Let us first consider the Bayesian interpretation of the
quadratic regularization term as log-Gaussian priors on
[N(t), N(t — 1)], and given the independence assumptions
stated before, we need to compute the nominal behavior

w:=E[N(t)] and variance
_ Nty —p 1[ NtOy—u 1"
@:=E [N(t—l)—u] [N(t—l)—u] ] - 43

As stated in the following Sec. IV-C, this assumption is not strictly
required and can easily be removed.




Lemma 5 Leta := % be the radio between the probabilities.

Then,
«

=E[N@)| = Nma;v 14
1 INOI =1 (14)
@
N(t)) = ——= Nnax 15
var (N (¢)) e (15)
o
Nt),Nt—-1)=(1—-p—q)——5Nmaz (16
Thus,
« 1 l1-p—gq
= Nmaz 17
? QtaP|l-p-q 1 an
B. Derivation of the estimator
_Consider 7 = 0 and 7 = 1, so that ]/\T\(t) = N(),
Ni(t) = N(t 1),
.«
1= p2 = 0= 7 Nonaa
1
Qll - Q22 - ’uq(2 — q(l +a)) (18)
14+a)—1
0y = 0y = LU+

ng(2—q(l+a))

In this case, the condition on the optimal estimator (11)
simplifies into the quadratic form

aN2(t) + (bﬁ(t 1)+ c) N#t) -M=0 (19
where
a ‘= 2’)/911
b = 2vQis
¢ = s(t)—27(Qu1+ Q12) 1.

The unique admissible solution for N (t) is given by

)= (bN(t ;al) +c> N % - (bN(t ;al) +c> |
(20)

Remarkably, our penalized ML approach leads to a re-
cursive estimator that is nonlinear but still easy to be imple-
mented in devices with small computational capabilities. The
fact that the obtained smoother is nonlinear accords to that
even when we derived the regularization term using Gaussian
assumptions on [N (¢), N (¢t — 1)], the likelihood term in .J is
non-Gaussian. If the likelihood were Gaussian, the estimator
would have been a linear smoother, leading to a Kalman
filtering strategy.

Notice that the derivation of () using Gaussian assump-
tions is formally incorrect, since it undertakes the probability
that N(¢), N(t — 1) can admit negative values. A formally
correct probabilistic interpretation would require R to be
derived from the actual prior distribution, but this would lead
to a non-quadratic ‘R, and thus to non-closed-form solutions
of (5). Despite this error, the effects of this %)proximation
vanish as N,,., increase since N(t) = > ™ x,(¢) is

a=1
approximatively Gaussian because of central limit effects.

C. The role of the regularization parameter vy

In (6), —logp (s(t) ; W) takes into account the exper-
imental evidence, while R reflects the a-priori information
about the regularity of the solution. The regularization pa-
rameter -y then captures the trade-off between these two com-
ponents and represents how much one trusts the regularity
assumptions. Notice that the 7 maximizing the predictive
capabilities of the filter strongly depends on M, i.e., on the
amount of available information.

If Npyaq 1s not known a-priori, or if its knowledge is vague,
~ can also be tuned online, e.g., with simple cross-validation
methods [40, Chap. 7.10]. In this case tuning -y, assuming
the knowledge of the probabilities ¢ and p, corresponds to
estimate Ny .y given ¢, p and M.

V. NUMERICAL EXPERIMENTS

We start by noticing the beneficial effects of our regu-
larization approach (20) in Fig. 2, where we compare the
outcomes with point-wise estimation (v = 0). The network
is chosen as in Sec. IV, with Ny, = 1000, p = ¢ = 0.01,
and the estimation parameters are M = 200 and v = 0.001.
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Fig. 2. Comparison of the results from (20) and point-wise estimation

for the same set of s(7) for a network as in Sec. IV. Npax = 1000,
p=gq=0.01, v = 0.001, M = 200.

In Fig. 3 we show the effects of the parameters
D,q,7, Nmax and M by considering 4 different scenarios:
p =q = 0.1 or 0.01; Nyax = 1000 or 2000. For each of
these scenarios we independently generate 1000 trajectories
N;(t), t =1,...,100, j = 1,...,1000 from the network
model in Sec. IV. For each trajectory N;(t) we compute the
estimate (20) using different M ’s in [10,200] and different
4’s in [1075,1072]. Each of the 4 subplots then shows the
dependency on M and ~ of the following average Root-
Mean-Square Error (RMSE)

1 1000 100 = 2
RMSE(M.7) = || 155 > (Nj(t) — N;(t; M, v)) :

j=1 t=1

used as an estimation performance index.
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Fig. 3. Dependency of the average RMSE (21) on the parameters M and

~ for various values of p, ¢ and Nmax. M € [10,200], v € [1076,1072]
(logarithmic axis). RMSE(M, ) is plotted in the z-axis.

The behaviors of the 4 surfaces induce the following rules-
of-thumb, supported also by intuition. Assuming that p, q, M
and Np.x are fixed, there exists an optimal regularization
parameter v* minimizing the RMSE (21). Then:

e if p,q and Ny .« are fixed, then increasing M leads to
a smaller optimal regularization parameter;

o if M and Ny, . are fixed, then increasing p and ¢ leads
to a smaller optimal regularization parameter;

e if p,q and M are fixed, then increasing Ny, leads to
a smaller optimal regularization parameter.

We finally analyze numerically how finite representations
using b-bits of the random samples y; ., (¢) in Alg. 1 can

affect the estimation performances, ie.2

Yim(t) € {0,,2a,...,1} with «a= (22)

20 —1°
Considering again the network model in Sec. IV, with
Npmax = 1000, p = q¢ = 0.01, M = 200 and v = 0.001 as in
Fig. 2, we independently generate 1000 trajectories N;(t),
t=1,...,100, 7 =1,...,1000. In the communication step
we use b-bits precision, but in the local computation of the
estimate (20), we use 64-bits precision. The average RMSE
performance index shows (Fig. 4) that for small networks it
is sufficient to represent the samples y; ,,, () with 12 bits.

[

90% ci. ——RMSE

1,000 .
82
n
=
~ 500 1
0 \ \ . : ‘
8 9 10 11 12 13 14
number of bits (b)
Fig. 4. Dependency of the RMSE (21) on the number of bits used to

represent the samples y; ,,(t), assuming (20) and (21) to be computed
using 64-bits precisions. Nmax = 1000, p = ¢ = 0.01, M = 200 and
v = 0.001.

Remark 6 Experiments in Figures 2 and 3 have been com-
puted with the discretization scheme in Fig. 4 using 12 bits.
Ignoring communication protocol overheads, with this choice
M = 200 leads to data packets of 300 bytes.

VI. CONCLUSIONS

We proposed to estimate the size of anonymous dynamic
networks using stochastic inference with a max-consensus
protocol and a regularization-based estimator. Regularization
approaches naturally penalize hypotheses conflicting with
a-priori assumptions on the network’s behavior, encoded
in the regularization term. We explicitly considered and
characterized the class of quadratic regularization terms, and
also applied the strategy to a particular peer-to-peer network
model, showing how the performance of the estimation
strategy is influenced by the design parameters. Interestingly,
the derived estimator corresponds to a nonlinear smoother.

Indeed, the algorithm has been derived exploiting some
simplifying assumptions: convergence of the max-consensus
protocols, reliable communications, infinite numerical preci-
sion and a time synchronized network. We nonetheless re-
mark that if the algorithm does not convergence to consensus,
then this naturally leads to an estimation of the subset of the
network with whom one had the possibility of exchanging
information with, and this represents an interesting extension
of the current estimator. We have also shown with numerical
experiments that quantization effects seem to play a minor

2The problem of designing the optimal alphabet is not developed here
because of space constraints.



role, and that for networks of hundreds of agents, numbers
can be represented with just a few bits even though a
more precise analysis should be devised. The synchronization
assumption is instead crucial for the current algorithm,
and corrupted communication schedules can lead to severe
estimation biases intuitively corresponding to delays in the
arrival of information. Future investigation directions are
thus to evaluate the fragility of the scheme, and endow
the algorithm with consensus-based clock-synchronization
strategies.

[1]

[2]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman,
“Decentralized environmental modeling by mobile sensor networks,”
IEEE Transactions on Robotics, vol. 24, no. 3, pp. 710 — 724, June
2008.

S. Bolognani and S. Zampieri, “A distributed control strategy
for reactive power compensation in smart microgrids,” arXiv, vol.
arXiv:1106.5626v2 [math.OC], October 2011.

R. Herring, A. Hofleitner, S. Amin, T. Nasr, A. Khalek, P. Abbeel,
and A. Bayen, “Using mobile phones to forecast arterial traffic
through statistical learning,” in Transportation Research Board Annual
Meeting, Washington D.C., USA, January 2010.

B. Ribeiro and D. Towsley, “Estimating and sampling graphs with
multidimensional random walks,” in Proceedings of the 10th annual
conference on Internet measurement, 2010.

C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-
peer networks: algorithms and evaluation,” Performance Evaluation,
vol. 63, no. 3, pp. 241 — 263, March 2006.

L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
25th annual ACM symposium on Principles of distributed computing,
2006.

D. Kostoulas, D. Psaltoulis, I. Gupta, K. P. Birman, and A. J.
Demers, “Active and passive techniques for group size estimation in
large-scale and dynamic distributed systems,” The Journal of Systems
and Software, vol. 80, no. 10, pp. 1639 — 1658, October 2007.

C. Baquero, P. S. Almeida, R. Menezes, and P. Jesus, “Extrema
propagation: Fast distributed estimation of sums and network sizes,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 4, pp. 668 — 675, April 2012.

J. C. S. Cardoso, C. Baquero, and P. S. Almeida, “Probabilistic
estimation of network size and diameter,” in Latin-American
Symposium on Dependable Computing, Jodo Pessoa, Brasil, September
2009, pp. 33 — 40.

D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed size
estimation in anonymous networks,” IEEE Transactions on Automatic
Control, vol. (submitted), 2011.

P. Chassaing and L. Gerin, “Efficient estimation of the cardinality of
large data sets,” in 4th Colloquium on Mathematics and Computer
Science, 2006, pp. 419 — 422.

F. Giroire, “Order statistics and estimating cardinalities of massive
data sets,” Discrete Applied Mathematics, vol. 157, pp. 406 — 427,
2009.

J. Lumbroso, “An optimal cardinality estimation algorithm based on
order statistics and its full analysis,” in International Meeting on
Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis
of Algorithms, 2010.

J. Cichon, J. Lemiesz, and M. Zawada, “On message complexity of
extrema propagation techniques,” Wroclaw University of Technology,
Tech. Rep., 2012.

P. Clifford and I. A. Cosma, “A statistical analysis of probabilistic
counting algorithms,” Scandinavian Journal of Statistics, vol. 1, pp.
1 — 14, March 2011.

E. Cohen, “Size-estimation framework with applications to transitive
closure and reachability,” Journal of Computer and System Sciences,
vol. 53, no. 3, pp. 441 — 453, December 1997.

D. Mosk-Aoyama and D. Shah, “Fast distributed algorithms for
computing separable functions,” IEEE Transactions on Information
Theory, vol. 7, no. 7, pp. 2997 — 3007, July 2008.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

S.-L. Peng, S.-S. Li, X.-K. Liao, Y.-X. Peng, and N. Xiao, “Estimation
of a population size in large-scale wireless sensor networks,” Journal
of Computer Science and Technology, vol. 24, no. 5, pp. 987 — 997,
September 2009.

S. Petrovic and P. Brown, “A new statistical approach to estimate
global file populations in the eDonkey P2P file sharing system,” in
21st International Teletraffic Congress, September 2009.

J. Cichon, J. Lemiesz, W. Szpankowski, and M. Zawada, “Two-phase
cardinality estimation protocols for sensor networks with provable
precision,” in IEEE Wireless Communications and Networking
Conference, Paris, France, April 2012.

J. Cichon, J. Lemiesz, and M. Zawada, “On cardinality estimation
protocols for wireless sensor networks,” in Ad-hoc, mobile, and
wireless networks, ser. Lecture Notes in Computer Science. Springer,
2011, vol. 6811/2011, pp. 322 — 331.

P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
data base applications,” Journal of Computer and System Sciences,
vol. 31, no. 2, pp. 182 — 209, 1985.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm,” in
Analysis of Algorithms, 2007.

D. Dolev, O. Mokryn, and Y. Shavitt, “On multicast trees: Structure
and size estimation,” IEEE/ACM Transactions on Networking, vol. 14,
no. 3, pp. 557 — 567, June 2006.

M. Howlader, M. R. Frater, and M. J. Ryan, “Estimating the number
and distribution of the neighbors in an underwater communication
network,” in SENSORCOMM, August 2008.

R. Ali, S. S. Lor, and M. Rio, “Two algorithms for
network size estimation for master/slave ad hoc networks,” in
IEEE 3rd International Symposium on Advanced Networks and
Telecommunication Systems, December 2009.

A. Leshem and L. Tong, “Estimating sensor population via
probabilistic sequential polling,” IEEE Signal Processing Letters,
vol. 12, no. 5, pp. 395 — 398, May 2005.

E. Fusy and F. Giroire, “Estimating the number of active flows in
a data stream over a sliding window,” in Workshop on Analytic
Algorithmics and Combinatorics, 2007.

D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and A. Demers,
“Practical algorithms for size estimation in large and dynamic
groups,” University of Illinois, Urbana-Champaign, Tech. Rep.,
February 2004.

Y. Chabchoub and G. Hébrail, “Sliding hyperloglog: Estimating cardi-
nality in a data stream over a sliding window,” in IEEE International
Conference on Data Mining Workshops, Sydney, Australia, December
2010.

S. Alouf, E. Altman, C. Barakat, and P. Nain, “On the dynamic
estimation of multicast group sizes,” in MTNS, Leuven, Belgium,
July 2004.

S. Alouf, E. Altman, and P. Nain, “Optimal on-line estimation of the
size of a dynamic multicast group,” in Joint Conference of the IEEE
Computer and Communications Societies, vol. 2, November 2002,
pp. 1109 — 1118.

T. M. Shafaat, A. Ghodsi, and S. Haridi, “A practical approach
to network size estimation for structured overlays,” Self-organizing
Systems, vol. 5343, pp. 71 — 83, 2008.

M. Yamashita and T. Kameda, “Computing on an anonymous net-
work,” in Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing, 1988, pp. 117 — 130.

G. Wahba, Spline models for observational data. SIAM, 1990.

V. N. Vapnik, Statistical Learning Theory. ~New York: Springer-
Verlag, 1998.

F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus
algorithms in wireless channels,” IEEE Transactions on Signal
Processing, 2012 (submitted).

B. Scholkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. The MIT Press,
2002.

D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed statistical
estimation of the number of nodes in sensor networks,” in IEEE
Conference on Decision and Control, Atlanta, USA, December 2010.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. New York:
Springer, 2001.



VII. APPENDIX

Proof (Prop. 3) Due to the independence of the vari-
ous y;m(7), it follows that p(f(t), N OO W) =
H:le (f(r); N7). To prove the proposition it is then
sufficient to show that s(7) is a complete and minimal
sufficient statistic for N (7).

Since

p(F(r): W) = N (m0e),

s(7) is a sufficient statistic for N(7) because of the Fisher-
Neyman factorization theorem. It is also clearly minimal
because it is a scalar.

To show the completeness of s(7), we must show
that if g(s(7)) is a generic measurable function s.t.
Elg(s(7)) | N] = 0 independently of N, then it must
be g(-) = 0 (a.e.). Consider now that —log f;(7) is an
exponential random variable with rate N. Thus s(7) is the
sum of i.i.d. exponential random variables, i.e., s(7) ~
Gamma (M, +). E[g(s(7)) | N] = 0 can then be rewritten
as

“+00
F(M)il NM/ g(S)SMfleXp(—sN) ds=0.
0
This is equivalent to the fact that the Laplace transform of

g(s)sM =1 has to be zero a.e., and this happens if and only
if g(s) is zero a.e. O

Proof (Prop. 4) Since, for all ¢,

M B
p (f1(t),...,fM(t) ; N(t)) = H N()- fm(t)N(t)*l

and since s(t),...,s(t — 7) are independent, it follows that
—logp (s(t),...,s(t —-7); ﬁ) =

t

= > ((N(5) = 1)s(i) = M1og N (i) .
i=t—T

We can thus rewrite the estimator (5) as

t

argﬁmin Z (N (i) — 1)s(i) — M log N (i))+

+7 (N - Nl)T Q11 (N — 1)
+2v (N — /L1)T Q12 (]/V\f - le)
+7 (J/V\f - N2)T Qoo (J/V\f - ug) .

Setting the gradient w.r.t. N equal to zero yields, for each
t=t—rT,...,1,

N M i) D =
5(2)—W+27 (ng (N —m) + QY (N:] - N2>> =0,
where Qgil) is the i-th row of Qq; (same for Q(lg)). Multi-

plying by N (i) and vectorizing the previous equation leads

to (11). &

Proof (Lem. 5) Notice that N(t) = Zivgf‘” Z4(t), where

the processes z, are i.i.d. Let us first compute the expected

value, variance and covariance of z, for a single agent.
The Markov process in (12) is described by the transition

matrix P given by

[ 7]

¢ l—gq
The equilibrium distribution, w# = =P, for the Markov
process is T = 1_%0‘ [1 a] , thus the expected value is
o
E|z.(t)] = .
ralt)] =

Further, the variance is

var (z4(t)) = E [z,(t)*] —E [2a(8)]* =

o« a \? _ o
4o l+a) (1+a)?
Finally, for a single agent we have the covariance

cov (x4(t), zq(t —1)) =
=Ezq(t)za(t —1)] — E[z.(¢)| E[za(t — 1)] =

2
=0 (15) =0ragie

For the entire system N (t) = Zivzml‘” x4(t) we utilize the

fact that the different agents are i.i.d., and the linearity of the
expected value, variance and covariance to simply multiply
the results for a single agent by N, 4. &




