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Abstract: We present a framework for networked state estimation, where systems encode their
(possibly high dimensional) state vectors using a mutually agreed basis between the system
and the estimator (in a remote monitoring unit). The basis sparsifies the state vectors, i.e., it
represents them using vectors with few non-zero components, and as a result, the systems might
need to transmit only a fraction of the original information to be able to recover the non-zero
components of the transformed state vector. Hence, the estimator can recover the state vector of
the system from an under-determined linear set of equations. We use a greedy search algorithm
to calculate the sparsifying basis. Then, we present an upper bound for the estimation error.
Finally, we demonstrate the results on a numerical example.
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1. INTRODUCTION

Networked monitoring and estimation, where sensors, esti-
mators, and monitoring units communicate over a shared
medium (e.g, a common communication bus, a wireless
network, Internet, Ethernet), has attracted much atten-
tion recently because of flexible maintenance and up-
grades (Epstein et al., 2008; Katewa and Gupta, 2011;
Quevedo et al., 2013; Song et al., 2007; Taylor and Sri-
harto, 2006). However, shared communication mediums
bring some limitations, such as band-limited channels,
variable delays, and packet drop-outs. As an example,
consider the schematic diagram in Figure 1, where N
systems (denoted P;) are trying to communicate their
state measurements to a monitoring unit at a distant
location (denoted M). Such systems are found in many
industrial domains, e.g., monitoring applications for large
chemical plants where thousands of sensors are communi-
cating measurements to a central operator. Each system
itself is composed of many subsystems, as illustrated for
system P; in Figure 1, where each subsystem is denoted
by Pf for 1 < ¢ < L = 6. The overall state of all these
systems is too large to be communicated in real-time over
a conventional communication network, but we need to
reduce its dimension to achieve a solution that can be
implemented on low-cost hardware. In this paper, we pro-
pose an encoding/decoding algorithm for each individual
system P;, 1 < ¢ < N, so that it needs to transmit
an output vector with only a fraction of its state vector
dimension. To do so, we utilize the idea of sparsifying bases
(also known as the sparsifying dictionaries or transforms)
from the compressive sensing literature.

Compressive sensing (or solving under-determined linear
set of equations) aims at reconstructing a high dimensional
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source vectors from low dimensional measurement vectors;
see (Blumensath and Davies, 2008; Candes and Tao, 2007;
Candes and Wakin, 2008; Candes et al., 2006; Dai and
Milenkovic, 2009; Elad and Yavneh, 2009; Protter et al.,
2010; Tropp and Gilbert, 2007) among others for a survey
of the results in the compressive sensing and possible
algorithms for the signal reconstruction. For this purpose,
one important condition is that the source vector possesses
a sparse representation; i.e., a representation with most of
its components likely to be zero. This representation is
often performed using a transform known as the sparsi-
fying basis. A careful design of the sparsifying basis is a
crucial step in order to obtain potential performance gains



using the compressive sensing. Common pre-defined bases
are wavelet transforms, discrete cosine transforms, and
curvelets. However, it has been shown in (Aharon et al.,
2006; Zelnik-Manor et al., 2012) that the use of optimal
bases (with respect to a specific criterion), rather than
using pre-defined bases, can improve the performance of
compressive sensing algorithms. Furthermore, when deal-
ing with dynamical systems, we need to find a sparsifying
basis that keeps the system state sparse at all time steps
(which might not be possible using pre-defined bases). We
use sparsifying bases to represent the state vector of each
system in a sparse manner.

In this paper, we focus on system-estimator architecture
in Figure 1. We let the system and the estimator agree on
a sparsifying basis using a common history of the system
state measurements (available to both of them). Then, the
system encodes its state vector using the agreed basis and
transmits the encoded information to the estimator (which
should contain far fewer measurements than the original
one ). Given that the recovery error is small enough, the
system and its estimator can update their basis at each
time step separately while managing to keep the difference
negligible. Then, we find an upper bound for the recovery
error based on the starting point (i.e., the initial state of
the system, the initialization of the estimator, etc.) and
the modeling error of the system. Now, if each system in
Figure 1 uses this protocol for transmitting its state vector,
resources of the communication network would be saved
in comparison to the situation where the systems transmit
their state vectors completely.

There have been other studies in using compressive sens-
ing for networked control and estimation (Bhattacharya
and Basar, 2011; Dai and Yiiksel, 2013; Nagahara et al.,
2012a,b,c; Wakin et al., 2010). For instance, the authors
in (Dai and Yiiksel, 2013) studied the observability (i.e.,
recovering the initial state) of linear systems with a sparse
initial state. In (Bhattacharya and Basar, 2011), the au-
thors proposed a method using the compressive sensing
to close the feedback loop. However, to the best of our
knowledge, the problem of learning an optimal sparsifying
basis in context of networked estimation or monitoring has
not been considered.

The rest of the paper is organized as follows. In Section 2,
we present the problem formulation. In Section 3, we
introduce the basis prediction procedure as well as the
encoding and decoding algorithms that the system and the
estimator utilize in order to communicate the state vector
over the shared medium. We calculate an upper bound for
the estimation error in Section 4. Finally, we demonstrate
the results on a numerical example in Section 5 and
conclude the paper in Section 6.

Notation: We use Z, N, and R to denote the sets of
integers, integers greater than or equal to one (i.e., natural
numbers), and reals, respectively. Let us also define Ny =
N U {0}. We use calligraphic roman letters, such as R, to
show all other sets. We use |R| to denote the cardinality of

1 Note that if we do not have a reasonable model for the system or
if many stochastic disturbances are acting on the system simultane-
ously, we probably cannot find a sparse representation for the state
vector. Then the state vector of the system is not compressible using
the approach of this paper.

any R. Matrices are denoted by capital roman letters, such
as A and E. For any 1 < i < m, A; denotes i-th column
of the matrix A € R™ ™. For any n,m € N, we define
mod(n,m) = n— |n/m|m. For any matrix A € R"*"™ we
define the notation span(A) C R™ to denote a set which is
composed of all linear combinations of the columns of A.
We define ker(A) as the space of all vectors x such that
Az = 0. With slight abuse of notation, the f3-norm of
a vector and spectral norm of a matrix are both denoted
by ||-]|2. We also use ||-||o to denote number of the non-zero
elements in a vector.

2. SYSTEM MODEL

In the rest of this paper, we focus only on one of the
systems in Figure 1 as all the results can be readily
extended to other systems. For illustrative purposes, we
assume that P is the system that we consider. This system
is indeed an interconnected dynamical system composed of
L physically interacting discrete-time linear time-invariant
subsystems (e.g., P{, 1 < ¢ < L, in the magnified part of
Figure 1). Subsystem ¢, 1 < ¢ < L, at time step k € Ny, is
described in state-space form by
L

ok +1) = Z(Aéj + Agj)zo(k) + Bawe(k); 20(0) = 2,

j=1
(1)
where 2¢(k) € R™ and wy(k) € RP¢ are its state vector and
exogenous input, respectively. In (1), Az, is the nominal
model and Ay; is the deviation from this nominal model.
Let us denote the augmented system by

z(k+1) = (A+ Az(k) + Bw(k); 2(0) =z, (2)

where
z1(k) w1 (k) zy
wk)= |, wk= |, w=| |
xr (k) wr, (k) 2P
and F = diag(E1, ..., EL), and
A - Arp Ay - Agg
A=| o - o |, A=] 1
Apy - Arp Apy - Apr

In this definition, we have z(k) € R™, where n = ZzL:l ng.
We are interested in estimating the system state from the
measurement vector

y(k) = C(k)z(k) € R?V, (3)
where p(k) € N is the observation vector dimension and
C(k) is the observation matrix. We will discuss the ob-
servation matrix (and its properties, e.g., the observation
vector dimension) in detail in the following section. With
this model in hand, we are ready to describe the encoding
and decoding algorithms used by the system and the
estimator.

3. TRANSMITTER AND RECEIVER ALGORITHM

The system and the estimator use the block diagram in
Figure 2 to transmit and to receive the state measure-
ments. In the remainder of this section, we explain each
block individually.

1) System: The first block illustrates the system dy-
namics. The output of this block is the state vector of
the system which we are planning to encode and transmit
across the communication network.



Procedure 1 Greedy algorithm for basis optimization.

Input: X (k) €R"H €>0,¢>0,60>0.

Output: Y (k) € R™*H D(k) € R**™ s(k) € N.

Initialization: Fix Dgq = 0. Whenever m < H, use D = [X;(k)
... Xm(k)]; otherwise, use D = [X (k) R] where R € R**(H~-m)
is a random matrix.

1: while |D — D4l > 6 do

2: Dglg < D.

3: for:=1,...,H do

4: Y; « OMP(D, X;(k), ).
5:  end for

6 D+ XYT(YYT +eI)~! (Note € > 0 allows the expression

to become invertible).

7: end while

8: D(k) is the normalized version of D.

2) Calculating the Basis at the Transmitter: At time-
step k € Np, the transmitter solves
(Y (k), 5(k), D(k)) € argmin | X(k) — DY |,
Y e RmxH
seN 4

st |[Yillo <s,Vie{l,...,H},

where H = Hy, + Hy with backward and forward horizons
Hy, Hf € Ny, and

X(k):[x(kab) oo z(k-1) Ax(k-1) --- Afo(kfl)]

In (4), m > n is a design variable which determines the
size of the basis that is used to represent state of the sys-
tem. Notice that problem (4) admits many solutions with
different s(k) (e.g., all the solutions with a higher sparsity
than the minimum s needed for representing X (k) using
Y with s-sparse columns). Here, we choose the solution
with the least sparsity. This optimization problem is NP-
hard in general (Zelnik-Manor et al., 2012). Therefore,
we use the sub-optimal greedy algorithm in Procedure 1
for approximately solving this problem; see (Engan et al.,
1999; Zelnik-Manor et al., 2012) for a discussion on this
algorithm. This algorithm uses orthogonal matching pur-
suit (denoted by OMP in Procedure 1 and introduced in
Procedure 2) which is a signal reconstruction algorithm in
the compressive sensing literature; see (Pati et al., 1993;
Tropp and Gilbert, 2007) for a discussion on orthogonal
matching pursuit.

REMARK 1. Note that the solution to this optimization
problem is definitely not unique. This is indeed true
since Y; are sparse vectors and hence, the columns of
D(k) that do not belong to |JIZ, support(Y;) can be
changed arbitrarily without affecting the outcome of the
optimization, where for any y € R™, support(y) denotes
the set of all indexes such that the components of y are
non-zero.

Let Z(k) denote the set of all indices 1 < ¢ < m such
that D;(k) # 0. The sparsity is given by s(k) = |Z(k)|. We
define Dz (k) € R™**() a5 a submatrix of D(k) € R"*™
generated by all its columns belonging to the set Z(k). In
addition, for any z € R™, we define 27(;) € R**) to be
the vector composed of all z; such that ¢ € Z(k). Clearly,
D(k)z = Dz (k)zz for all z € R™. Now, let us define a
vector z(k) € R™ such that zz(z-(k) = 0, and

2z(ky (k) = argmin [lz(k) — Dz (k)v]2. ()

veERs (k)

Procedure 2 Orthogonal matching pursuit (OMP).

Input: D € R"*™ x € R", &> 0.

Output: y € R™.

Initialization: Fix r =z, y =0, S = 0.
1: while [|r||2 > € do

2: 4§ + argmax;ege |D] 7).

3 S+ Su{ir}.

4 s+ |S].

5:  Set y € R such that ys < argmin,/cgs |z — Dsy’||2 (where

Ds € R™*$ is a submatrix of D generated by keeping all its
columns belonging to S) and ysec = 0 (where S¢ denotes the
complement of S).

6: r < x — Dy.

7: end while

Procedure 3 Algorithm for constructing the output vector.

Input: Matrices Cy(k) for 1 < ¢ < L.
Output: y(k)

1: fort=0,...,7T—1do

2: for ¢ € Cr_; do

3: if t =0 then

4: Subsystem P, calculates z,(0) = Cy(k)x¢(k).

5: else

6: Subsystem P, calculates zo(t) = Cy(k)ze(k) +

D ien, it = 1), where Ny = {5 | (P}, Py) € £}.
7: end if

8: Subsystem P, transmits z,(t) to subsystem P; such that
(P[, Pl) SRR

9: end for

10: end for

11: The estimator calculates y(k) = Zz‘ecl zi(T —1).

Note that z(k) is a s(k)-sparse representation of x(k)
using basis D(k). The error caused by this representation
is e(k) = z(k) — D(k)z(k). Later, we use the notation
0s(k) = |le(k)|l2 to denote the norm of this representation
error.

REMARK 2. Notice that span(4) C span(X(k)) and
w(k —1) € span(X (k)) implies that e(k) = 0. However, in
general, z(k) might not be s(k)-sparse representable using
basis D(k). This is indeed true because we construct the
basis assuming that w(k —1) =--- =w(k+ Hf —2) =0
and A = 0 whenever Hy > 0.

3) Calculating the Output Dimension: In this block, we
set the number of outputs p(k) that one requires in order
to recover the state vector in the estimator. Note that in a
perfect situation, we need to fix this number equal to the
sparsity level s(k). However, in practice, p(k) might vary
considering different recovery algorithms in the receiver
(to ensure the stability of the algorithm or to decrease
the recovery error). For the moment, it suffices to fix this
number as p(k) = O(s(k)).

4) Constructing the Output Vector: In this section, we
develop a distributed algorithm for constructing the obser-
vation vector y(k) = C(k)z(k) with a stochastic observa-
tion matrix C'(k) where its entries are identically and inde-
pendently distributed Gaussian random variables (0, 1).
Let us define the communication graph.

DEFINITION 1. The communication graph G = (V,€) is a
directed graph with the vertex set V = {0,1,..., L}, where
0 denotes the estimator node and ¢ denotes subsystem ¢
for 1 < ¢ < L. An edge such as (i,j) € £ with 1 < i,j <
L, shows that subsystem j can receive the information
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Fig. 2. The block diagram of the transmission protocol using the basis optimization.
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Fig. 3. An example of the communication network G.

transmitted by subsystem 4 and an edge such as (i,0) € £
with 1 < ¢ < L, shows that the estimator can receive the
information transmitted by subsystems i.

We make the following standing assumption concerning
the communication graph.

AssUMPTION 1. The communication graph G = (V, &) is
an acyclic directed graph. Furthermore, for each 1 < ¢ <
L, there exists exactly one path that connects node ¢ to
node 0.

Notice that Assumption 1 can also be expressed as the
graph extracted by reversing the direction of all the edges
in G is an arborescence rooted at node 0 (Tutte, 2001,
p.126); i.e., a directed rooted tree in which all the edges
are directed away from the root which is node 0.

Let us again consider the magnified part of the schematic
diagram in Figure 1. As illustrated there, six subsystems
form P; (which is trying to transmit its state vector to
the remote monitoring unit M). The directed graph in
Figure 3 shows an example of the communication graph
among these six subsystems and the monitoring unit.
Clearly, this communication graph satisfies Assumption 1.

We define the partition C; U---UCr = {1,..., L}, where
T is the maximum length of a path in the communication
graph G. For each 1 <t < T, we define C; as the set of all
vertices j such that there is a path of length ¢ that connects
J to 0 over the communication graph G. Note that due to
Assumption 1, the sets C; for 1 < t < T, are unique and
well-defined (i.e., C;, NCy, = @ for 1 <ty #ta <T).

Now, let us construct random matrices Cy(k) € RP(F)xne,
1 < ¢ < L, where their entries are identically and indepen-
dently distributed Gaussian random variables with prob-
ability distribution N(0,1). Let us assume that the com-
munication delay is negligible in comparison to the system
dynamics. Hence, we can have as many communication
rounds as we desire in just one time step. Procedure 3
describes a numerical procedure that the subsystems fol-
low to construct the output vector y(k) = C(k)x(k) dis-
tributedly at time step & € Ny. Following the steps in
Procedure 3, it is easy to see that the equality in (6)
holds, where the second equality is due to the fact that
each subsystem is connected to node 0 only through one
path (see Assumption 1) which proves that C;, NCy, = ¢
for 1 <ty #to <T.

REMARK 3. As we will see later, the recovery algorithm
requires the observation matrix C(k) at each time step
k € Ny (which is not possible to communicate to the moni-
toring station). However, we can change the random matri-
ces C'(k) with pseudo-random ones. Doing so, the recovery
algorithm would only need the seeds of these pseudo-
random number generators. Examples of such pseudo-
random number generators are linear feedback shift reg-
ister (Goresky and Klapper, 2012) and complementary-
multiply-with-carry (Marsaglia and Zaman, 1991).

5) Calculating the Basis at the Receiver: At time step
k € Ny, the receiver solves the optimization problem
(V(k), 5(k), D(k)) € argmin_ | X (k) = DY |,
Y c R'mx
seN (7)

D e Rnxm

s.t. ||Y;H() <s,Vie {1, ceey H}7
where H is equal to the one in the transmitter and

X(k)=[2(k—Hy) -+ @(k—1) Az(k—-1) --- AHri(k—-1)].

6) Recovering the State Vector: — Let us use Z(k) to
denote the set of all indices 1 < ¢ < m such that D;(k) # 0.
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The sparsity is given by §(k) = |Z(k)|. Now, we can define
a vector £(k) € R™ such that 23 ,.(k) =0, and

2y (k) = argmin [y(k) — C(k) Dy (k)vlla.  (8)

cR3(k)

The state estimate at the receiver is (k) = D (k)2 (k).
4. PERFORMANCE BOUND

In this section, we find an upper-bound for the estimation
error. First, we need to prove the following useful lemmas.

LEMMA 1. For any z € R™, there exists a € R¥ (with
H = Hy + H,) such that D(k)z = D(k)Y (k)a.

Proof: If ming,,n |z— ZH 1 @ Y;(k)|l2 = 0, the equality
is trivially satlbﬁed Hence, without loss of generality, we
assume that ming, yn [z — ZHlal Yi(k)|]2 > 0. Let us
define the notation

(a ) Z—ZOQZ

1=1

: (9)

2

—, € argmin

(041)1 1

and subsequently, zp = z — Zfil aY; (k). We prove that
Yi(k)T29 = 0 for all 1 < i < H. Assume that this is
not true. Therefore, there exists j € {1,..., H} such that
Y;(k) " 20 # 0. Now, we define a; = o for all i # j and
_ o Yi(k) T2
MEAR7OR7D)
It is easy to see that

H
}/J(k)T Z = O‘zxfz(k)>
_ ; e ey i) 20
i=1 J J

Y;(k)" = _
=Y;(k)T (zo - Wyj(m = 0.

In addition, we have

H
z— Zain(k‘)
i=1

N IR
Y;(k)TY; (Ok ZO” 2,
Y;(k T2
) z_Z;”H%>'+hﬂégm&f““2’

where the second equality holds due to the fact that Y} (k)
is orthogonal to z — Zil @;Y;(k). Therefore, noting that
1(¥5(k) " 20)/ (Y5 (k) TY; ()Y ()12 > 0, we get

>

)

H H
2=y a;Yi(k) z— Y a;Yi(k)
i=1 i=1 2

which contradicts (9). Therefore, we know that Y;(k) " zy =
0 for all 1 <7 < H and as a result,

D(k)z=X(eIl +Y(k)"Y(E)'Y (k) 2

=X(el+Y(k)Y(k)?

H
T ZQ*YZ )
=1

Y (k)Y (k)"

zo—i—Za Yi( )

= X(eI + Y (k)TY (k)

= X(eI +Y (k) Y (k)™
= D(k)Y (k)o*,

where the first equality and the last equality both follow
from the identity in (10) on top of the next page and the
second equality follows from the fact that Y;(k)T2zp = 0
for all 1 <4 < H. This completes the proof. ™

LEMMA 2. For any z € R™, there exists £ € R™ such that
|Pk)z = D)2 < (90(k) + 85 (k) + 3 5 (k)
< |[Y (k)" 2|2,
where dp (k) = [|D(K)Y (k)= X (k)||2, 65 (k) = [ D(k)Y (k)—

X (k)2 ox.x(k) = || X (k) — X (k)||2, and Y (k)T denotes
the Moore—Penrose pseudo-inverse of Y (k).

Proof: Let us pick 2 = Y (k)a where o € R is chosen so
that D(k)z = D(k)Y (k)a (see the proof of Lemma 1). We
assume that the projection of « to ker(Y (k)) is zero. This
assumption can be made without loss of generality, as we
can always use o/ = a — (I — Y (k)'Y(k))a instead of a.
Note that in this case, the identity D(k)z = D(k)Y (k)d/
still holds due to (10). Now, we can easily prove the
inequality (11) on top of the next page. Additionally, using
the fact that Y (k)a = z (and noting that the projection
of « into ker(Y (k)) is zero), it is easy to see that

a=Yk) 24+ T -YE)Y(E)a=Y (k)2

and as a result, ||alz = ||V (k)Tz|/2. This concludes the
proof. ]

Now, we are ready to prove the main result of this paper
concerning the estimation error.

THEOREM 3. Let {0(k)}72, be a sequence of real numbers
such that ||x(k) — &(k)||2 < 9(k) for all k € Ny. Then,

D(k) < 0,(k) + (3p(k) + 05 (k) + 0 5 (R) ) [¥Y (k) 2(k) |2,
(12)

and consequently,



(k)
(R)Y (k) e "I =Y (k)(el +Y (k) Y (k)Y (k))

(R)e ' (Y(k)T =Y (k)Y (k)(el +Y (k)Y (k)Y (k)T) (10)
(B)e Y (Y (k)T — (el +Y (k)Y (k) —el)(el + Y (k)Y (k)Y (k) T)

(k)

- HD(k)Y(k)a - f?(k)f’(k)aHz
= [Pty () = X (k) — (DET (k) ~ KR+ (X (k) = L(k)a, "
< (IDM)Y (k) = X(R) 12 + 1 DE)Y (k) = KWl + X (k) = K(R)2) llall

< (5D(k) +485(k) +6X,X(k)) l[erll2-

(k) < 85k + (90 (k) + 65 (k) + 0 ¢ (k) i, ,
’ (13) Sy < (k) < O(k—i)2+> || A]J50(k—1)2
< (1Y (k)T D () 2(35 (k) + [|x(K)]|2)- B ; ; ’
Proof: The proof easily follows from the sequel of 1- ||A||Her1
inequalities in (14). n < \ 14112 1A, (k1) 2"’219

Notice that (13) shows that the encoding and decoding u

scheme at least result in a stable estimation of the state
vector if the original system is stable. To further simplify
the upper bound of the estimation error, we need to prove
the following lemma.

By substituting the result of Lemma 4 into Theorem 3,
we get the following two upper-bounds for the estimation
€error.

COROLLARY 5. Let {19( ) 172 be a sequence of real num-
bers such that ||z(k) — Z(k)||2 < J(k) for all k € Ny. Then,

2
< 85(k) + ER)Y (B) D(k) [12(85 (k) + [l2() =),

LEMMA 4. Let {J(k)}32, be a sequence of real numbers
such that ||x(k) — Z(k)||2 < 9(k) for all k € Ng. Then,

(k)
A A|Hs 2 H, ' where
el = J v e GO Al
‘ E(R)<Op (k)40 5, (k) + W (k=1)%+)  9(k—i)?
1Al :
Proof: For E = X (k) — X (k), we have COROLLARY 6. Let {9(k)}?°, be a sequence of real num-

bers such that ||z(k) — &(k)|2 < 9(k) for all k& € No.
Whenever Hy, = 0, we get

1El2 = SR o) [Ewl2/]w]2
O(k) < B(k) +~(k)O(k — 1),

weRH

= sup ZE w; /Hw||2 where R
weRH\{0} B(k) =0s(k) + (5p(k) + 85(k)) Y (k) D(k)T[|2
X (05 (k) + [lz(k)[l2),
< e, Z 1 Eil2fwil/l|w]l2 and
= ALl AL
V(k)= —AIIY(k) D(E)2(6s (k) +lz(F)ll2)-
S il12s . .
— This would result in
- k k k
where the last inequality follows from the Cauchy-Schwarz I(k) < vy | Bt) + v(5) | 9(0)
inequality. Now, by the definition of matrices X (k) and ; j:1t1+1 H
X(k), we get For the special case where there exist I', B € R such that
v(k) <T <1 and B(k) < B for k € Ny, we get
& <l BT k+1
< — )2 i - -1 I(k) < —— +T*T19(0).
I < \| 3000 = 3 144k = 1) 30k~ 1)l (k) < === + T*19(0)
5. NUMERICAL EXAMPLE
< Ik — All59(k — 1)2.
- Z: A Z: A2 ) Consider a discrete-time linear time-invariant dynamical

system composed of L = 30 subsystems, where each one
Therefore, can be described by
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Fig. 4. Sparsity factors s(k) and §(k) as a function of time
for the scenario described in Subsection 5.1.
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)+ ZO‘EJ (zj(k

with initial conditions w(O), 1 < ¢ < L, that are chosen
according to a normal probability distribution with zero
mean and unit standard deviation. Let us rewrite this
system in the form introduced in (2). Doing so, we can
define A such that ay; = oy; if € # j and ap = 1 —

,,ap; otherwise. For the moment, we set A = 0
JAL T
(however, later, we introduce modeling uncertainties). Let
us pick ag; = 5 x 1072, We illustrate the behavior of the

encoding/decoding scheme in the following subsections.

5.1 Perfect Modeling in the Presence of Two Active
FErogenous Inputs

xg(k-l—l —iL'g _l'l(k))+w£(k)v

Let us pick the index set of active exogenous inputs as
L = {13,15}. Hence, we assume that {we(k)}3>, = 0 for
any ¢ ¢ L, but {w,(k)}32, is a stochastic process com-
posed of independently and identically distributed random
Gaussian variables with zero mean and unit variance for
any £ € L.

Now, we use the numerical procedure described by the
block diagram in Figure 2 to transmit the state measure-
ments. Let us fix m = 30, H, = 10, and Hy = 5. For
the first Hp time steps, we let the transmitter send the
whole state vector. This is to ensure that both bases (in
the transmitter and the receiver) have access to a common
history. Figure 4 shows s(k) and §(k) versus time. There-
fore, the transmitter and the receiver have learned bases
that can represent the state vector of the system using a
sparse vector. Figure 5 illustrates the error ||z(k) — Z(k)]|2
and its upper bound in (12) as function of time for the case
where we transmit p(k) = [1.3s(k)] measurements in each
time step k& € Ny (which amounts to roughly half of the
information, in terms of bits, that we need to relay in the



case we do not compress the data). Figure 6 illustrates the
scaled error ||z(k) — Z(k)||2/||z(k)||2 (in dB scale) versus
time. As we can see in Figure 6, for this numerical example,
the estimation error is practically negligible (with a noise-
to-signal ratio of less than —40dB for all time steps).

5.2 Imperfect Modeling in the Presence of Four Active
Ezxogenous Inputs

Let us change the index set of active exogenous inputs to
L ={2,4,26,28}. Furthermore, assume that the modeling
parameters «;;, 1 < ,j < 30, can deviate by £2.5% from
the nominal model. Figure 7 shows s(k) and §(k) versus
time in this case. Comparing Figures 4 and 7, we can
deduce that by adding more uncertainty to the system,
the estimator requires more measurements to recover the
state vector of the system (with a noise-to-signal ratio of
less than —20dB for all time steps).

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed an encoding and decoding strat-
egy for large-scale systems to transmit their entire state
over a shared communication network. The strategy was
based on finding a sparsifying basis that can replace the
state vector by a vector with fewer nonzero components
(i.e., a sparse vector). As a future direction of research,
we can consider proposing an optimal estimator (based
on Kalman filters for discrete-time linear time-varying
system) to reduce the estimation error.
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