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Abstract—We derive a modular fluid-flow network congestion
control model based on a law of fundamental nature in networks:
the conservation of information. Network elements such as queues,
users, and transmission channels and network performance indi-
cators like sending/acknowledgment rates and delays are mathe-
matically modeled by applying this law locally. Our contributions
are twofold. First, we introduce a modular metamodel that is suf-
ficiently generic to represent any network topology. The proposed
model is composed of building blocks that implement mechanisms
ignored by the existing ones, which can be recovered from exact re-
duction or approximation of this new model. Second, we provide a
novel classification of previously proposed models in the literature
and show that they are often not capable of capturing the transient
behavior of the network precisely. Numerical results obtained from
packet-level simulations demonstrate the accuracy of the proposed
model.
Index Terms—Congestion control modeling, conservation law,

fluid-flow model, queuing model, self-clocking.

I. INTRODUCTORY DISCUSSIONS

A. Congestion Control Problem

T HE CONGESTION problem [1], [2] is inherent to com-
munication networks where capacity of supporting infra-

structure that relays information is small compared to user de-
mand. Congestion is responsible for delay and data loss, which
compromise the efficiency of the overall network. Controlling
congestion is hence an important problem for which several al-
gorithms have been developed. They mainly rely on the con-
cept of congestion window (the number of desired outstanding
packets), which is adapted according to a congestion measure.
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According to the type of congestion measure, two classes of
congestion control algorithms may be identified [2], [3]. The
first and oldest class is loss-based, meaning that the conges-
tion measure is the packet-loss information. This class is easy
to implement, but leads to a quite rough control since the pro-
tocol detects the network congestion only after provoking it.
In order to control congestion more smoothly and prevent data
loss, delay-based algorithms, using for instance the round-trip
time (RTT) information as the congestion measure, may be con-
sidered instead. They are, however, more difficult to implement
due to the possible unavailability of certain necessary measures,
such as queuing delays.
The main difficulty in congestion control lies in the fact that,

basically, the hosts ignore almost everything about the network:
the routes and their capacity, the numbers of routers (hops),
the number of users, etc. Hence, protocol designers face the
problem of controlling a very large and complex system with
actually very little information.
When designing a protocol, stability of the network is cer-

tainly the most important constraint. Performance criteria can
be additionally considered in order to optimize the network be-
havior. For instance, wemaywant to use all available bandwidth
(efficiency), share it equally between users (fairness), and/or be
tolerant with respect to unregulated traffic and other protocols
(cross-traffic adaptation).
In order to observe/predict the network behavior and vali-

date a protocol, simulations and experiments must usually be
conducted. NS-2 is a widely accepted open-source event-based
simulator dedicated to this purpose. However, as any other sim-
ulator, it does not permit to analyze the stability of a network
theoretically. Hence, constructing mathematical models for net-
works may play an important role in network analysis and pro-
tocol design since they potentially allow for a theoretical anal-
ysis and an equation-based design of new protocols.

B. Models, Approximations and Accuracy

Modeling is now ubiquitous. The key idea is to start from
a system and arrive at an abstract representation of it, such as
one given in terms of a set of mathematical equations. It is not
always necessary that a model represents all characteristics of
a system but only a subset of interest: e.g., a molecular-level
model can be irrelevant to portray a river. This gave rise to
fluid mechanics, which, although being an idealization of the re-
ality, yields very accurate predictions. A similar idealization has
been shown to be very useful for the congestion control problem
through the consideration of fluid-flow models [4].
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C. Metamodels and Network Models

A paragon of network modeling is undoubtedly used in the
field of electrical engineering. It is easy to identify the reasons
for the success of the theoretical framework:
1) only two universal concepts: current and voltage, governed

by simple laws (Kirchhoff's laws);
2) local description of the elements in terms of these variables

and additional local concepts (e.g., resistance, etc.);
3) easy transcription of the electrical network into a topolog-

ically identical diagram, and vice versa;
4) new models corresponding to new devices may be freely

added without compromising the existing ones;
5) model predictions fit very well to reality;
6) systematic way of analysis by hand calculations or

simulators.
A very important feature is that the principles of modeling an
electrical network is independent of its topology and elements.
This is achieved thanks to the structure of the paradigm that we
refer from now on as ametamodel, which is amodel that consists
of a set of frames, rules, constraints, submodels, and theories
applicable and useful for modeling a predefined class of prob-
lems. In the case of electrical networks, the metamodel consists
of the concepts of current and voltage, the Kirchhoff's laws, and
the local models of electrical elements (resistor, capacitor, tran-
sistor, etc.), as well as all the related mathematical tools. Since
networks (like communication networks, electrical networks,
transportation networks, and even social networks) consist of in-
terconnections of several elements, it turns out that metamodels
are then very suitable for describing them since they also consist
of interconnection of concepts, rules, and submodels. Hence,
metamodels provide, in essence, an elegant scalable and mod-
ular way for modeling networks.

D. Motivations and Contributions

The main motivation of this work is to give a clear picture
of congestion control modeling problem through derivation of
a metamodel having solid mathematical foundations. We intro-
duce a modular metamodel that would lead to an interesting step
forward toward a generic way of providing models for commu-
nication networks. This metamodel should then satisfy the ad-
ditional constraints on independence of network topology (scal-
ability) and elements (modularity). It should also provide accu-
rate predictions along with simple graph representation. An un-
derlying difficulty is the presence of several phenomena at dif-
ferent levels: decision to send a packet, transmission of packets
on transmission channels, storage of packets in queues and time-
varying waiting-time (queuing delays), congestion window size
adaptation, etc. Finding a unified way for representing all these
critical phenomena is challenging.
The proposed metamodel is based on a single concept of in-

formation conservation, from which models for the network
constituents (i.e., transmission channels, queues, and users) are
obtained. This allows to derive new models for network ele-
ments, obtain mathematical proofs for unproved/claimed ex-
isting ones, and invalidate some of them. All important vari-
ables of the network (sending rates, ACK rates, queue size, etc.)
are described by explicit formulas, hence computable. Using the
proposed metamodel, describing a given topology is immediate
and performed by simply plugging the models together, so as

Fig. 1. Example of graph with four edges: one user edge , one
buffer edge , and two transmission edge ,

.

the actual topology is transcribed into a graph having the dif-
ferent network elements located on the edges, as in electrical
engineering. It is also proved that existing sending rate models
are either approximations of the proposed sending rate model, or
even exact provided that the network topology satisfies certain
structural conditions. Simulations and comparisons to existing
works tend to suggest the relevance, reliability, and accuracy of
the proposed metamodel. A nonexhaustive summary of related
works on congestion control modeling is finally made in order
to compare congestion control models according to important
properties and criteria.
The outline of the paper is as follows. Section II introduces

the particular network graph representation considered in
the paper. Using continuous-time models, such as fluid-flow
models, to describe networks is justified, and concepts of
universal clock, local discrete-time network element clock, and
clock-coupling are defined in Section III. Section IV presents
the conservation law of information, and we derive the trans-
mission channel model in Section V. In Section VI, we develop
the model for the first-in–first-out (FIFO) buffer network
element. The user model is given in Section VII, and we sum-
marize the obtained results in a compact form in Section VIII.
In Section IX, we consider a network with single-buffer/mul-
tiple-user topology to implement the proposed model. We
validate our model in Section X, and related work is given in
Section XI. Section XII concludes the paper.

II. NETWORKS AND GRAPHS

It is convenient to introduce here the particular network graph
representation considered in the paper. It is different from the
traditional ones [5]–[8] since it places all network elements on
graph edges, leaving nodes with the role of connecting points,
as in electrical circuits. Four types of nodes are distinguished:
the input nodes , and output nodes , for user and
buffer , respectively. The superscripts have to be understood
as a temporal order of reaction or causality: the data come (-)
then leave (+). We will denote any edge of the graph by

, where and are the input and output nodes, respec-
tively. Moreover, given any edge , the input and output nodes
are given by and , respectively.
According to these definitions, a queue edge is always de-

noted by , a user edge by , and a transmission
edge by , or , . This is illus-
trated in Fig. 1. We call a circuit the communication path of
user , that is the path connecting its output to its input ,
i.e., . Note that in complex networks there exist
several possible paths, but only one of them, the one used for
communication, is a circuit. In Fig. 1, the only possible circuit
is given by .
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III. FLUID-FLOW IDEALIZATION
In an asynchronous network like the Internet, each element

can be considered to have its own local discrete-time clock
where is countable, governing the rhythm of pro-

tocol decisions and packets transmission. In congestion control,
the clocks beat with the rhythms of acknowledgment reception
rates, which are influenced in turn by network congestion; this
is referred to as ACK-clocking1. When several sources send
data through the same buffer/path, a flow-coupling takes place
leading then to clock-coupling. This clock-coupling arises at a
very large scale, and distant sources having their clocks coupled
cannot be considered to have independent behaviors. As a
consequence, the sending rates and acknowledgment rates are
hence intimately interdependent. Modeling this clock-coupling
and the underlying phenomena is of incredible complexity
since the number of clocks and their interactions grow very
quickly with the network complexity, leading then to a very
complicated structure for the interrelated local clocks ; see
for example [9, Eq. (3.7)].
An idea to resolve this complex time-structural problem relies

on the definition of a universal clock dictating a common
time to the entire network. This leads us to the following fact:
Fact 1: There exists an ideal universal clock embedding

any local clock , i.e., .
A natural universal clock is given by and is a dis-

crete-time clock. It, however, does not simplify too much the
modeling problem since it is difficult to write recurrence rela-
tions for general network topologies [9]. Deriving a metamodel
achieving scalability is then unlikely using such a universal
clock. A less natural universal clock assimilated to a
clock running over positive real numbers continuously, i.e.,

, is much more promising. This particular universal
clock indeed dramatically simplifies the modeling problem,
and this motivates its consideration in this paper. Using such
a timescale, a metamodel can be obtained, resulting then in
a scalable solution in which the network asynchrony is cap-
tured through appropriate expansions and compressions of the
time-space. Furthermore, it enables the use of well-established
mathematical tools: real function analysis, integration theory,
dynamical systems, delay-differential equations, etc. A conclu-
sion is that continuous-time models may be used to describe
networks [4], [6], [10]–[12]: These are generally referred to as
fluid-flow models, emphasizing the connection with continuum
mechanics and more specifically with fluid mechanics.
Within this framework, it is possible to provide a proper def-

inition for data flows.
Definition 2: Let us consider a point in an edge of the net-

work and denote the number of packets having passed through
point between and , , by .
Then, the flow of data passing through point is defined as a
function verifying

(1)

where the integral is a standard one, e.g., the Lebesgue integral.
Flows are defined in such a wayb rather than being the deriva-

tive of the number of packets, since the number of packets is
nondifferentiable, i.e., flows may contain dirac pulses, steps,
and so on. It is also interesting to note that since the universal

1The term self-clocking is also used, but is less explicit.

clock embeds all the local clocks, it is possible to recover dis-
crete-time asynchronous models such as the one in [9] by setting
flows to be trains of dirac pulses on .
Using the notation defined in Section II, we can build

the flow vectors using the “ ” operator as
, where is any input and output

node of the network elements, i.e., can be any , , ,
. The quantity denotes the number of flows passing

through node . The concept of flows of data is hence very
close to those of current in electrical engineering and flow of a
liquid in fluid mechanics.

IV. CONSERVATION LAW OF INFORMATION

The core of the metamodel is the conservation law of infor-
mation stated in this section. This law allows to improve the
characterization of the elements of the network by notably clar-
ifying their input/output relationship, enabling then a modular
formalism. This conservation law follows from the remark that
the quantity of information2 is preserved in a communication
network: The data can either be in transit, lost, or received. As-
suming lossless networks, it is possible to determine the total
number of packets in transit in any edge, simply by counting the
number of entering packets according to a simple rule. When
applied to a specific element, this law allows to characterize
the fact that the information is preserved from the input to the
output.
Law of Conservation of Information: Given any edge of

a network, then for all , there exists a time ,
such that

(2)

The integration over is an abstract integral that has to be un-
derstood as a flow spatial integration from to , that
is, the number of packets in the edge
at time .
The above result stated in quite abstract terms just says that

the number of packets in transit in an edge at a certain time can
be determined by counting the number of entering packets (i.e.,
integrating the input flow) over the interval , the lower
bound of the interval depending on the considered element,
i.e., transmission channel, queue, or user. A simple application
of the law is given in Section V discussing transmission chan-
nels models.
The first benefit of this law is to show that we can interchange-

ably use a spatial or a temporal integral to calculate the quantity
of information (number of packets) in an edge. The temporal
integral formulation is very convenient to work with since it re-
quires the knowledge of the input flow only, rather than the flow
value on the entire edge for the spatial integral formulation. This
hence allows to discretize the space dimension by only consid-
ering flows at the nodes, simplifying then the network represen-
tation and the modeling problem.
The second benefit lies in the fact that the temporal integral

can be utilized to yield explicit solutions for the output flows of

2expressed in bits or packets.
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Fig. 2. Transmission channel block.

the different network elements. A very general result is given in
the following.
Proposition 3: The input flow and the output flow

of edge verify

(3)
where we assume that is absolutely continuous and

is the upper-right Dini derivative of at , i.e.,
.

Proof: Since is the current number of
packets on edge at time , then differentiation with respect to
time provides the balance equation

Note also that a second valid balance equation is given by

Identifying the right-hand side yields the result.
The proposition given above plays a crucial role in the meta-

modeling problem since it provides an explicit formula of the
output flows. This output flow verifies the conservation of in-
formation from the input to the output of the edge . By inte-
grating the input and output over , the very same value
is obtained. This emphasizes that the output flow is defined in
such a way that, as desired, it respects the natural property of
conservation of information. Proposition 3 is used repeatedly
in the paper in order to provide accurate and explicit models for
transmission channels, queues and users. Applications are given
in Sections V, VI-C, and VII-D.

V. TRANSMISSION CHANNEL MODEL WITH CONSTANT
PROPAGATION DELAY

The first element-model is derived in this section, namely the
model for lossless transmission channels with constant delay.
They exactly behave as transmission lines and a delay-based for-
mulation is provided. The derivation is rather straightforward,
but it is a good example of application of Proposition 3.
Result 4: Given a lossless transmission channel corre-

sponding to edge and having constant propagation delay
, the output flow is given by

(4)

The corresponding module is depicted in Fig. 2.
Proof: According to the conservation law (2), the number

of packets in transit in the edge at time obeys

(5)

where since the propagation delay is constant. A
packet sent at time will indeed be, at time , still in the edge
and about to leave. The result follows then from Proposition 3.

Fig. 3. Queue/buffer block.

We are now in a position to introduce transmission channel
operators defining part of the network topology.
Definition 5: The flow vectors ,

, , and
are related by transmission channel

operators , as

(6)

where

and

The matrices , correspond to routing ma-
trices between output and input nodes. For instance, maps
flows at user output nodes to flows at buffer input nodes. These
matrices essentially consist of constant delay operators with de-
lays corresponding to transmission channels. The full-rank input
matrix drives the vector of cross-traffic flows to buffer
input nodes.

VI. FIFO BUFFER MODEL

This section is devoted to the very important buffer el-
ement that temporarily stores incoming information before
processing it. First, the standard fluid model for queues is re-
called [2], [3], [11], and a complete delay-map is characterized.
In order assign each input flow to its corresponding output
flow and solve the output flow separation problem [13]–[18],
the conservation law is then applied on the standard queue
model, in a similar way as for transmission channels. The
output separation problem allows us to focus on the accurate
description of queues, which captures both the FIFO behavior
and the form of output flows; see Fig. 3. Some extra discussions
and interpretations of the results are also provided. Finally, a
comparison to an existing model for output flows is carried out
and concludes in favor of the proposed one.

A. Queue Model
Routers have queues to store incoming packets temporarily.

The following integrator model [11] can be proved to be a limit
model of an M/M/1 queue when the packet size and thus the
processing time tend to 0 [2], [19].
Definition 6: The queue dynamics of buffer is governed by

the model

(7)

where the aggregate output rate is defined as
if
otherwise. (8)
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Above, , , and represent the queue size, the max-
imal output capacity, and the flow of type at the input, respec-
tively. The condition is given by

(9)

The corresponding queuing delay can be easily deduced using
the relation .
The above model can also be refined to capture additional

features such as finite maximal queue length, flow priorities,
and multiple output capacities. These extensions are omitted
here since they are straightforward. It is important to stress that
this model is incomplete and useless in this form. First, the
output flow is given in aggregate form. This prevents the mod-
eling of the appropriate routing of each output flow. Second, it
does not capture the queue FIFO behavior. Finally, the model
does not assign a specific queueing time to each input flow.
In Section VI-B, the conservation law (2) is used in order to
confer the FIFO property to the model and separate the aggre-
gate output flow into distinct flows.

B. Forward and Backward Queuing Delays
The maps defined in this section are very useful for obtaining

a closed formula for the buffer output flows in Section VI-C and
for RTT in Section VII-C.
Let us consider first the buffer model (7) with queueing delay
. Assume that the time instants at which packets enter the

queue are chosen as reference times. We may then be interested
in predicting the packet output time. This leads to the following
definition.
Definition 7 (Forward Delay Operator): The forward delay

operator corresponding to buffer mapping, at
a flow level, any input-time to the output time is defined
as

(10)
where is the queuing delay of buffer .
It is easy to see that output time can be readily computed

from the knowledge of input time and queuing delay value. If,
however, we would like to set the reference time to be the output
time, we may ask the question whether it is possible or not to
retrieve the input time from it. This is equivalent to asking the
question of invertibility of the map .
Result 8 ([17]): The map is invertible if and only if

the input flow of the corresponding buffer is positive almost
everywhere.
Hence, provided that there is a nonzero input flow to the

buffer, the input time corresponding to a given output time is
well defined and can be obtained using the backward delay
operator.
Definition 9: The backward delay operator

corresponding to buffer mapping, at a flow level, any output
time to the input time is defined as under the
assumption of Result 8.
We also have the following useful results.
Result 10 ([17]): The functions and obey

if

otherwise

if

otherwise
if

otherwise
(11)

where stands for the upper-right Dini derivative of ,
i.e., .
The following technical result allows to simplify the condi-

tions involved in hybrid models.
Result 11: The equivalence holds.
Proof:
Proof of : If the buffer is congested at time , then

the buffer will also be congested at time since the data entered
at time leave at time .

Proof of : Conversely, if there is any data to leave at
time , they must have entered in the queue in the past, i.e., at
time . Equivalence is proved.

C. FIFO Buffer Output Flow Separation
In this section, we use the results given above and the conser-

vation law in order to improve the buffer modeling by adding
the FIFO characteristics and splitting the aggregate output flows
into a sum of distinct ones. Without further consideration on the
queue type, there exists an infinite number of ways to separate
the aggregate output flow directly from the queuing model of
Definition 6. When a FIFO queue (i.e., order preserving) is con-
sidered, it turns out that the output flow separation problem is
easily solvable. The FIFO characterization and output flow sep-
aration problems have been fully solved in [17]. In this section,
we will simply recall and explain these results and connect them
to the conservation law (2).
Result 12 ([17]): Let us consider the queueing model (7),

which we assume to represent a FIFO queue. The output flow
corresponding to the input flow , is given
by

if

otherwise.

(12)

Proof: Aproof is available in [17]. Amore direct one based
on Proposition 3 is given here. Noting that for buffer , we
have , then using Proposition 3 and the formulas
of Result 10, we get (12) with the difference that the condition
is . However, from Result 11, the condition is
equivalent to , and the result follows.
The same model has been also proposed in [13] and [16],

but claimed without any proof. We have shown above that
this model is an immediate consequence of the information
conservation law and gives, for the first time, a theoretical
proof for it. This considerably strengthens the trust we may
have in this model. A comparison to packet-level simulations
in Section VI-D tends to show its exactness.
This model also deserves interpretation. Formula (12) says

that output flows consist of scaling and shifting of the input
flows. The delay accounts for high flow viscosity and captures
the queue FIFO behavior, at a flow level, while the nonlinear
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ratio expresses the flow coupling at the core of the flow and
clock-coupling phenomena, see Section III, since each output
flow depends on the corresponding input flow and all the other
ones as well. A change in a single flow will affect all the output
flows. This model also tells that the output flow corresponding
to the input flow is expressed as a (delayed) ratio of
the input flow to the total input flow that entered the
buffer at the same time. Hence, the output flows are proportional
to relative flows modeling the “chance” of having a packet of
certain type served at time . This “chance” is then scaled up by
the maximal output capacity to utilize the available capacity.
Operators representing buffers can now be introduced:
Definition 13: The buffer operator with input flows

is defined as

(13)

where the output flows and the buffer state are governed by (7)
and (12). Using these operators, we can build a matrix of oper-
ators connecting the 's to the 's as

(14)

where .

D. Comparison to Another Model
Two main models for buffer output flows have been re-

ported in the literature on fluid-flow models: the flow-based
model [13], [16], [17] described in this paper and the
pseudo-queue-based one [14], [15], [18] given by

if

otherwise
(15)

where is the number of packets of type in queue and
is the maximal output capacity of queue .
Until now, these models have not been confronted to each

other. In the following, they will be theoretically and experi-
mentally compared, and it will be shown that the flow-based
model is the only model that faithfully characterizes the actual
output flows, validating then the proposed conservation-law-
based paradigm.
1) Theoretical Argumentation: First, the above model as-

sumes that the “chance” of having a packet of type at the output
at time is . Model (15) then makes no differ-
ence in picking a packet in the middle, at the end, or at the be-
ginning of the queue since only the number of packets matters.
It is thus unable to capture the FIFO characteristic of the queue
since swapping packets in the queue does not modify the output
flow. In contrast, the proposed model does capture this charac-
teristic through the delay dynamical model and the delayed non-
linear input–output relationship involving flows directly: Rela-
tive variations of the input flows are passed to the output flows
after some queueing delay. Note, however, that both models co-
incide at equilibrium.
Second, since output flows in model (15) are computed from

the integration of input flows, it turns out that the map from
input flows to output flows is a nonlinear low-pass filter with
“bandwidth” equal to when . High frequencies
in the input flows are hence filtered out, making the existing
model inaccurate for high frequency flows (fast transient), es-
pecially when the queue size is large. Note that the actual buffer

behavior does not have any filtering effect; it just behaves as
an ordered tank. On the other hand, the proposed model does
not filter out any frequency band due to its feedthrough struc-
ture. It, however, has a distortion effect on the input flows due to
the nonlinear structure and the dynamically changing delay, i.e.,
change of frequency and amplitude. As a result, the queue-based
model does not satisfy any conservation law since low-pass fil-
ters dissipate energy all over the frequency band, resulting in in-
formation loss at the model level. This is in total contradiction
with the actual queue behavior that just stores information and
does not dissipate anything. Note, however, that the flow-based
model intrinsically satisfies the conservation since the model is
derived from it.
Lastly, the proposedmodel incorporates naturally the queuing

delay in the expression, while for model (15), it is unclear which
delay to consider since the order of arrival of data is not tracked.
2) Case Analysis: To compare the models, let us consider

two input flows given by

(16)

where and are the buffer output capacity and
the oscillation of flows. The term is a tunable param-
eter related to the amplitude of the inputs flows, and the func-
tion is a square function of period

. Since the flows are in phase opposition, they lead to
an alternation of packet types in the queue, while packet popula-
tions remain roughly close to each other at any time. Therefore,
the output flows should reflect the actual content of the queues,
and the model should be able to keep track of the order of arrival
of packets in the queue.
The queue-based model (15) predicts the queues

(17)

with from which it is quite difficult to
foresee the shape of the output flows. We can, however, note
that the filtering effect of the convolution operator with kernel
will deform the input flows, making then the output flows not
square anymore.
When the proposed flow-based model is considered, it is

enough to compute the forward and backward delays and apply
the formula for output flows

(18)

In this case, the predicted output flows have the same shape as
the input flows, but with a different frequency and amplitude.
The proposed output flow model then exactly captures the con-
tent of the queue, that is the alternation of blocks of size
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Fig. 4. Comparison of the output flows predicted by (top) model (12)
and (bottom) model (15). Plain: output flow . Dashed: input flow

.

Fig. 5. Comparison to NS-2 simulations of the total number of packets
counted at the inputs of the buffers described by (top) the proposed flow-based
model (7)–(12) and (bottom) the queue-based model (7)–(7)–(15).

of type 1 and type 2. It is also immediate to see that the number
of packets received by the buffer over
one period is given by

(19)

By virtue of the information conservation law, the same
number of packets is retrieved at the output over the period

, enlarged due to the limiting output capacity . It is
quite convincing that the flow-based model yields a much more
coherent picture for this example.
3) Simulation: For simulation, we choose (i.e.,
s), , Mb/s, and . The output flows

obtained from the different models are depicted in Fig. 4, where
we observe the behaviors predicted by the above calculations.
Notably, the output flows predicted by model (15) tend to slow
down (low-pass filtering effect), decrease along time, and seem
to both tend to , which is basically unrepresentative of the
actual content and output of the queue. We can also notice the
decrease of the bandwidth for the queue-based model as long as
the queue grows in size.
For comparison to NS-2, which deals with packets rather than

flows, we integrate (up to an additional constant) the output
flows predicted by each model to obtain a number of packets
so that the comparison to NS-2 makes sense. The results are
depicted in Fig. 5, where we can see that the proposed model
yields exactly the same results as NS-2, while the queue-based
model is unable to track the stair-like curve returned by NS-2.
It is also important to stress that the considered scenario is quite
convenient for the queue-based model since the input flows con-
tain mostly constant parts (low frequency parts). A very fluctu-
ating input flow would be very penalizing and would make the
low-pass filtering effect of the queue-based model even more
apparent.

Fig. 6. User block.

VII. COMPLETE USER MODEL – WINDOW CONTROL

The derivation of the user model (see Fig. 6) is, partially, still
an open question, and a complete solution, based on the con-
servation law (2), is proposed in this section. We assume that
the implemented congestion control protocol admits a fluid-flow
approximation, for instance interpolating the discrete-time tra-
jectories of the real protocol [11], [20]. The conservation law
is then applied over the circuit used by a user to obtain the
so-called ACK-clocking model [21], [22] relating flight size,
user sending rate, and RTT together. Several expressions for
RTT are provided according to the considered reference time,
similarly as for buffers. These results are finally merged together
in order to clarify the connection between the flight size and the
user sending rate. The last step concerns the derivation of for-
mulas relating the above variables to user congestion window
size.

A. Protocol Model

Here, we assume that the congestion control algorithm can
be represented as a continuous-time (hybrid) dynamical system.
That is, we have the following fact.
Fact 14: There exist bounded functionals , , and

such that the trajectories of the following contin-
uous-time model defined over :

(20)

match the trajectories of the asynchronous protocol (defined
on ) at points in . Above, , , , and

are the state of the protocol, the congestion measure,
the acknowledgment flow rate, and the user sending flow,
respectively. The window size, , is considered as the number
of outstanding packets to track and supposed to be (weakly)
differentiable.
A procedure to solve the above interpolation problem has

been first proposed in [11] for TCP and has been adapted to
FAST-TCP in [20, Appendix C].

B. ACK-Clocking Model

The ACK-clocking model [21], [22] is a very important con-
sequence of the conservation law. It characterizes the flight size3

of the user at any time over a
circuit . The importance of the ACK-clocking
model lies in the semantic; it adds to the model by relating RTT,
flow, and flight size together.4 With this result, it is possible to

3The number of outstanding packets.
4Note, however, that in [22] the window size is considered instead of the

flight size, which is rather different. To make the distinction, the window-based
ACK clocking model is denoted by W-ACK, while the flight-size-based one
by FS-ACK. Equivalence holds when some conditions, such as “

,” are met. We will come back on this in Section VII-E.
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incorporate a number of important user properties and mecha-
nisms into the corresponding model.
Result 15 (FS-ACK-Clocking): The (FS)ACK clocking

model is given by

(21)

where is the RTT of a packet sent at time by user
over the circuit .

Proof: Since flight size is a number of packets in a circuit,
it can be cast as a spatial integration over the corresponding
circuit. Thus, according to the conservation law, it is possible to
convert the spatial integration into a temporal one provided that
we can determine the integration bounds. To obtain them, we
use the notion of RTT and suppose that a data sent by user in
the circuit at time has a round-trip time given by .
This means that the packets sent between and
are unacknowledged at and thus still in the circuit.
Hence, the corresponding temporal integral has bounds and

.

C. Round-Trip-Time Models
The RTT consists of sum of a constant and a time-varying

part, namely the propagation delays and the queuing delays,
which have been characterized in Sections V and VI, respec-
tively. By combining these results together, it is immediate to
obtain an RTT-based forward model on a forward circuit oper-
ator, which considers the packet input time as a reference.
To properly define it, let us consider a circuit with

queues, indexed from 1 to . The indices 0 and are used
to denote the input and output nodes of the circuit, respectively.
Given a packet input time , the corresponding packet output
time and RTT obey the following formulas based on the
forward circuit operator F .
Definition 16: The forward circuit operator F

of circuit assigned to any packet at input time , an output
time is given by

F

F

(22)
where is the constant delay operator with delay corre-
sponding to the propagation delay between and and the
composition operator. The corresponding RTT expression is
then given by

F (23)
where is the identity operator.
Formula (22) actually represents the alternation between con-

stant delay operators corresponding to transmission channels
delay (the 's) and the queuing delays corresponding to queues
(the 's). Example 18 illustrates this formula on the topology
depicted in Fig. 1. The same formulas, albeit expressed in dif-
ferent ways, have been also obtained in [9, Section 3.3.5] and
[22, Eq. (7d)–(7f)].
Although immediate to obtain, these expressions suffer from

several drawbacks. First, operator F is clearly noncausal
since it requires the knowledge of future information. Second,

as pointed out in Section VI-B, the most convenient reference
time to use is the output time. In the user modeling problem, it
coincides with the reception time of acknowledgments and the
moment when the user receives the RTT information. Hence, it
seems to be more convenient to consider a backward circuit op-
erator based on the backward delay operator of Section VI-B.
The existence of such an operator is immediately inferred from
the existence of the backward delay operator.
Definition 17: The backward circuit operator B

of circuit assigned to any packet at output time , an input
time is given by

B F

B

B

(24)
Moreover, the corresponding RTT expression is given by

B (25)
It is important to stress that the RTT formula given above

looks noncausal since the RTT of a packet sent at time is de-
fined in terms of time . This is, however, not a problem
since the RTT information is only available, and then used, by
the user at time , when the ACK packet is actually received.
What is important is the causality of the operatorB in order to
ensure computability of the RTT at any time. This emphasizes
once again the relevance of considering output times as refer-
ences. The following example illustrates the above discussions.
Example 18: In the single-user/single-buffer case, the above

expressions reduce to

(26)
where and are the forward and backward propagation
delays corresponding to the constant delay operators and

.
Using the backward expression of RTT and the relationF

B B F , it easy to obtain the following result.
Result 19: The flight size obeys

F
F

(27)

B
(28)

Proof: This is an immediate consequence of the conserva-
tion law (2) (through the ACK-clocking model) and the above
RTT models.
Note that in [22], a model is obtained directly from the

W-ACK-clocking applied directly to a selected topology.
However, the model is not modular itself since hand calcu-
lations are needed to make it implementable, which results
unfortunately in complexity very sensitive to the topology.
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Hence, the objective of obtaining a metamodel is not attained.
The reason is that the ACK-clocking model is used in implicit
form, while our proposed method incorporates solutions of it,
yielding an explicit formulation achieving the characteristics of
a metamodel, i.e., modularity and scalability.

D. ACK-Clocking Dynamics and User Flow Computation
Since the flight-size expression (28) is exactly of the form

(2), then Proposition 3 can be immediately applied to derive an
explicit expression for the output flow of a given circuit, which
is the flow of received acknowledgments.
Result 20: Let us consider a circuit . Then,

the ACK-flow that user receives is given by

B B (29)

Proof: The key idea is to remark that
B . Hence, using Proposition 3 and noting that

the ACK-flow corresponds to the flow leaving the circuit
, the result is obtained. Differentiability of B

is inferred from the differentiability of the backward delay
operators.
Note that differentiation of (28) yields

B B (30)
meaning that to maintain a constant flight size, i.e.,
, the user has to naturally send data at the same rate it receives
ACK packets: This is exactly ACK-clocking, but expressed at
a flow level. By flow integration, we can easily recover the
“packet-level ACK-clocking.” A similar expression is reported
in [18], but stated without proof and using the model in (15)
to represent the buffer output flows. Once again, the proposed
methodology allows to provide strong mathematical founda-
tions for some existing results.

E. User Flow, Flight Size, and Congestion Window Size
We need to clarify the relation between a user congestion

window size and its sending rate . First, recall
that the congestionwindow size corresponds to the desired flight
size, while the flight size is the current number of packets in
transit. The window size is then a reference to track, while the
flight size is the controlled output. The control input is the user
sending rate.
When the window size increases, the user can immediately

send a burst of packets to equalize the flight and window sizes.
In such a case, we can ideally assimilate them to be equal5 (and
so are their derivatives). The small delay corresponding to the
protocol reaction time can be easily incorporated in the constant
part of the RTT. The problem is, however, slightly more diffi-
cult when the congestion window size becomes smaller than the
flight size. In such a case, we cannot withdraw packets from the
network, and the only thing we can do is to wait for the packets
in the network to be acknowledged until, at some point, the flight
size becomes equal to the window size. This basically means
that the rate of decrease of the flight size is equal to the rate of
received acknowledgments (the rate at which data leave the net-
work). Therefore, while positive slope of the flight size is ideally
unconstrained from above, the negative slope is lower bounded.

5This is the main assumption in [22] justifying the use of the W-ACK-
clocking model.

In [9], a rate limiter is a posteriori added to the model in order
to constrain the negative slope of the flight size. This solution is,
however, difficult to implement in the context of [9] due to the
time-varying nature of the slope lower bound and the lack of any
ACK-flowmodel. Note also that in most recent works [18], [22],
this problem is automatically excluded by considering that the
flight size is always smaller than the window size, and that the
window size does not decrease “too much.” To the authors' best
knowledge, no well-rounded solution has been provided yet for
the problem of congestion window size decrease. We provide
below an explicit and complete solution to this problem, regard-
less of the rate of the variation of congestion window size. This
is achieved through an augmentation of the user model and the
consideration of the flow of ACK packets.
According to the above discussion, the flight size must obey

if
otherwise (31)

where is a condition that is true when no lower limit on
the rate of variation of the flight size is imposed, and false
otherwise.
Result 21: The flight size satisfies (31) if the user

sending rate is defined as

if
otherwise

(32)

where and
if
otherwise. (33)

Moreover, this model is the simplest one.
Proof: The ACK-buffer , taking nonpositive values,

measures the number of ACK packets to retain in order to
balance the flight and window sizes. When the virtual buffer
has negative state, i.e., , the arriving ACK-packets
have to be retained until the state reaches 0. Once zero is
reached, the user can start sending again until the window size
decreases too fast, i.e., . Substitution of the
user sending rate defined by (32) and (33) in (30) yields the
flight-size behavior (31). To see that the model is minimal, it is
enough to remark that both conditions in are necessary.
In order to characterize the ACK-retaining mode, the ACK-

buffer (33) has to be adjoined to the protocol model (20), re-
sulting in an augmentation of the state of the user model. The
protocol behavior depends on the measurements , which
are functions of the overall network state ; this state is dis-
cussed in more detail in Section VIII.
We are now in a position to define user operators from (32).
Definition 22: The user operator map-

ping the ACK-flow to the sending flow is
given by

(34)
where and is given in (20).

VIII. GENERAL NETWORK MODEL

Modular and independent models for transmission channels,
buffers, and users have been developed in Sections V–VII, re-
spectively. In this section, we summarize the obtained results
in a compact form involving dynamical systems and operators,
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and properties of the model are discussed. Notably, correspon-
dence of the proposed model with existing ones is emphasized/
recalled.

A. General Model
The general network model takes the form

B
(35)

with

(36)

where and
are the flows and the state of the network,

respectively. The hybrid models for user and queue dynamics
are described by the nonlinear (discontinuous) functional ob-
tained from (7), (8), (20), and (33). The notation is here to em-
phasize that the evolution of the network state depends on past
state values [23]. Note that adjoining the flight-size expression
is needed to obtain a finite number of equilibrium points. Indeed,
since the user flow is computed from the derivative of the flight
size, the equilibrium information is lost and can only be recov-
ered from the original expression of the flight size. At equilib-
rium, we indeed have , where and

are equilibrium values for RTT and the sending flow of user
, respectively.

B. Model Approximations
The proposed framework includes explicit and seemingly

exact expressions for every quantity of interest, but this was
not historically the case. The sending rate model has always
been a missing link in past formulations where ad hoc models
were considered. It has been recently shown in [9] and [22]
that these flow models are actually approximations of the
W-ACK-clocking model, which is turn an approximation of
the FS-ACK clocking model considered in this paper. We
summarize these remarks below for completeness.
1) Ratio Flow Model: By making the approximation

in the FS-ACK-clocking model to get the
W-ACK clocking model, we obtain

B
(37)

and using the right-square rectangle rule, we get the following
expression for the sending rates:

(38)

which is very similar to the ratio flow model for instance con-
sidered in [7], [8], and [11].
2) Joint Flow Model: The joint flow model reuses the

W-ACK-clocking model and by making a first-order Taylor
expansion on the implicit expression

F

(39)

we obtain

(40)
or equivalently

(41)

which is exactly the joint flow model considered in [9] and
[19]–[21]. Neglecting the derivative term yields the usual ratio
model [7], [8], [11].
3) Static Model: The static link model assumes that sending

rates are proportional to the derivative of congestion window
sizes, making the relation between these sizes and queuing de-
lays static. This model can be obtained by further approximating
the ratio model or using linearization and a (0, 0) Padé approxi-
mation. In Section IX-B, a more general proof for the static-link
model is provided, and it suggests that the static model has a
much wider domain of validity, as experimentally emphasized
in [24].

IX. SINGLE-BUFFER/MULTIPLE-USER TOPOLOGY WITH
DELAY-BASED PROTOCOLS

The purpose of this section is twofold: exemplify the mod-
eling technique on a simple topology and prove that when some
conditions on the topology are met, the proposed model re-
duces to a model involving a static-link model [24]. The pro-
posed model hence allows to clarify the status of the static-link
model [24] by providing, for the first time, a mathematical proof
for its domain of validity.
To this aim, a single-buffer/multiple-user topology connected

by lossless transmission channels is considered. The forward
and backward propagation delays of user are denoted by
and , respectively. We propose to use the following generic
model of any delay-based congestion control protocol as the
user model:

(42)
where , , , and are the
state of the protocol, the congestion window size, the propaga-
tion delay, and the backward delay operator, respectively. The
functions and are defined as in (20).

A. Multiple-User/Single-Buffer Topology Model
The general model is given by (35) with (42) and

if
otherwise

if
otherwise

if
otherwise

if

otherwise

(43)



BRIAT et al.: CONSERVATION OF INFORMATION, TOWARDS AXIOMATIZED MODULAR MODELING APPROACH TO CONGESTION CONTROL 861

where denotes the normalized cross-traffic .
The topology of this model is completely described
by (36) with the operators , ,

, , and
, where is the constant delay

operator with delay .

B. Homogeneous Delays and No Cross-Traffic—The
Static-Link Model
As stated in Section VIII-B.3, the static-flow model can be

obtained using various approximations, which suggests that the
static-model is only valid locally. This, however, contradicts the
results reported in [24], where it is emphasized that the static
model may yield quite precise results over a wide domain. Note
also that the static-link model has been invalidated in many sce-
narios, notably some involving very heterogeneous delays or
cross-traffic; see, e.g., [9] and examples of Section X. In the fol-
lowing, we show that the static model can be exact when some
conditions on the network topology are met.
Result 23: According to the model proposed in (43), the

static-link model given by

(44)

is exact in the single-link topology whenever:
• the buffers are permanently congested, i.e., holds true
for all ;

• the propagation delays are homogeneous, i.e., ,
, ;

• the cross-traffic is absent, i.e., ;
• the users are not in ACK-retaining mode, i.e., holds
true for all .
Proof: Assuming in (43) that the propagation delays are

homogeneous, i.e., , , , that
there is no cross-traffic, i.e., , that the buffer is always
congested (i.e., holds true for all ), and all users are active
(i.e., the 's are all true), we obtain, after the substitution of
sending flows in queue dynamics, that

. After integration, we get the model (43), where we have
assumed and , . The additional
constant term is determined using the fact that

at equilibrium.
Compared to the justification of this model in [22], the

proof developed above is much more insightful since no model
approximation is made, only assumptions on the network
topology. This shows that the static-link model has an appli-
cation domain that is much wider than the ratio-link and the
joint-link models, when the conditions on the topology are met.
It is indeed valid in the nonlinear setting, and it does not result
from any approximation, just assumptions on the topology.
This also shows that the proposed metamodel is able to pro-

vide theoretical justifications of a simpler model. This supplies
a way for deriving proofs for validity domain of models.
Note also that the above result might be generalizable to the

case of chained buffers and multiple users. The exactness of the
static model over more complex topologies is an open question.

C. Homogeneous Delays and Cross-Traffic
When cross-traffic is added to the problem, the overall pic-

ture changes. The cross-traffic acts as a bandwidth limiter both
in the networking and control terminology. Indeed, a nonzero

reduces the maximal output capacity , creating then sort of
“varying output capacity” , which reduces the band-
width perceived by users.
Result 24: In the congested mode, the queue model writes

(45)

where and is the output flow
at time corresponding to the cross-traffic. The term is
responsible for the bandwidth reduction.

Proof: Since the buffer is always congested and the users
are not in ACK-retaining mode, we have

(46)
and

(47)

Substituting the above expressions in the queue model and
noting that yields the result.

X. MODEL VALIDATION

We consider the scenarios given in [9] and [22] to validate
the proposed model. The results obtained via NS-2 have been
slightly shifted in time so that the congestion window variation
times match. Unlike [22], the results are not shifted in ampli-
tude, and this causes small discrepancies. If, however, the NS-2
results were shifted vertically so that they match initial equi-
librium values, then the curves would match almost perfectly.
The simulations are performed on a nonoptimized MATLAB/
Simulink implementation of the model. Comparisons to NS-2
in terms of accuracy and execution times are made even though
a fair comparison should have been made with a C/C++ imple-
mentation of the proposed model.

A. Single Buffer/Multiple Users
In this section, we consider the interconnection of two users

through a single resource, as depicted in Fig. 7. The bottle-
neck has capacity Mb/s, and the packet size including
headers is 1590 B. The following scenarios from [9] and [22]
are considered.
• Scenario 1: The congestion window sizes are initially

and packets, at 3 s is increased to
150 packets. The propagation delays are ms and

ms for users 1 and 2, respectively; see Fig. 8.
• Scenario 2: The congestion window sizes are initially

and packets, at 5 s is increased to
300 packets. The propagation delays are ms and

ms for users 1 and 2, respectively; see Fig. 9.
We can see that our results fit well with the ones obtained by
packet level (NS-2) simulations. Yet, this is not the case for the
ratio-link, static-link, and joint-link models when the transient
state is considered. The obtained results by the proposed model
are identical to the results given in [9] and [22] and obtained
using the W-ACK-clocking model. This is expected since the
W-ACK clocking is an approximation of the FS-ACK-clocking
model defended in this paper. Note also that the approximation
condition related to the window size increase is satisfied here.
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Fig. 7. Topology of scenarios 1 and 2.

Fig. 8. Scenario 1: queue size.

Fig. 9. Scenario 2: queue size.

Fig. 10. Topology of scenarios 3–6 ( represents cross-traffic I/O nodes).

Considering the scenario 1, the proposed model simulates in
91 s, whereas NS-2 in 26 s, with a 0.1-ms time-step.

B. Multiple Buffers/Multiple Users

Here, we consider the case of two buffers interconnected in
series (see Fig. 10) with capacities Mb/s and

Mb/s. The packet size including headers is 1448 B. The link
propagation delays are 20 ms for link 1 and 40 ms for link 2.
The total round-trip propagation delays are ms,

ms, and ms for sources 1–3, respectively. Initially,
the congestion window sizes are packets,

packets, and packets. The following scenarios
from [9] and [22] are considered.
• Scenario 3: No cross-traffic, and the congestion window

is increased by 200 packets at 10 s; see Fig. 11.
• Scenario 4: No cross-traffic, and the congestion window

is increased by 200 packets at 10 s; see Fig. 12.
The proposed model is again able to capture the network be-
havior well, and it retrieves the previous results reported in
[9] and [22]. This is again due to the equivalence between the
ACK-clocking models in this case. Considering the scenario 3,
the proposed model simulates in 129 s, whereas NS-2 in 87 s,
with a 0.1-ms time-step.
We introduce now a constant cross-traffic on the

first link. Initially,6 we set , , ,
and we consider the following scenarios.

Fig. 11. Scenario 3: (top) queue 1 and (bottom) queue 2.

Fig. 12. Scenario 4: (top) queue 1 and (bottom) queue 2.

Fig. 13. Scenario 5: (top) queue 1 and (bottom) queue 2.

Fig. 14. Scenario 6: (top) queue 1 and (bottom) queue 2.

• Scenario 5: The congestion window is increased by
200 packets at 10 s; see Fig. 13.

• Scenario 6: The congestion window is increased by
200 packets at 10 s; see Fig. 14.

The obtained results are identical to the results obtained by
the NS-2 simulations. Notice the reaction time between the mo-
ment at which the congestion window size is increased and the
moment at which the second queue sees the flow variation. This
illustrates that the model captures well the communication path
and the order of elements (spatial and temporal topology). These
characteristics are not directly visible in the simulation results
given in [22] since the curve steps seem to have been aligned on
the same temporal cursor.
Despite results equivalence, the proposed metamodel enjoys

interesting properties such as modularity and scalability, which
themodel reported in [9] and [22] lacks. This is an important im-
provement over previous models that were not able to cumulate
accuracy, scalability, modularity, and other interesting proper-
ties. This will be discussed in more detail in Section XI.

6This scenario is actually identical to the one in [22, Section III.B.3]; the
initial values for congestion window sizes given in [22] are incorrect.
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Fig. 15. Scenario 7: (top) queue size and (bottom) ACK buffer.

Fig. 16. Scenario 8: (top) queue size and (bottom) ACK buffer.

C. Decreasing the Congestion Window Size

The models proposed in [18] and [22] do not capture sudden
decreases in the congestion window size that would cause the
buffer to empty or become smaller than the actual flight size, that
is, smaller than the number of packets in flight. The proposed
model does capture these phenomena since: 1) the FS-ACK-
clocking model derived from the conservation law involves the
flight size rather than the congestionwindow size, unlike in [22];
and 2) the user model implements an ACK-buffer to count the
number of packets to remove from the network before starting to
send again. Note that the derivation of the user model including
the ACK-buffer has been made possible due to the availability
of an explicit expression for the flow of acknowledgments (29).
This makes it computable through an explicit solution for the
queuing delay and the buffer output flows [17], [25]. In [9], the
decreasing of congestion window size is handled by adding a
rate limiter to constrain the (negative) slope of the queue size.
This rate limiter is, however, rather difficult to characterize due
to the time-varying nature of the lower bound on the slope that
depends on the received rate of acknowledgment and the net-
work state, the former being unfortunately unavailable in the
framework of the thesis [9].
Let us consider the single-user/single-buffer case where the

total propagation delay is ms, the packet size in-
cluding headers is 1040 B, and the initial value of the congestion
window size is . At s, the congestion window
size is halved. We consider the following scenarios.
• Scenario 7: Mb/s and no cross-traffic; see Fig. 15.
• Scenario 8: Mb/s and half capacity used by cross-
traffic; see Fig. 16.

We can see that we obtain exactly the same results as NS-2 sim-
ulations (and the rate-limiter model reported in [9]). As desired,
the ACK-buffer measures (counts) the number of packets to re-
move before starting to send again. Considering the scenario 8,
the proposed model simulates in 157 s, whereas NS-2 in 19 s,
with a 0.1-ms time-step.

XI. RELATED WORK

Despite being unorthodox, it was to the authors' point of view
to discuss the related works after presenting the proposed meta-
model. Many congestion models have been proposed in the lit-
erature with different formalisms: time domains, protocols, net-
work topologies, and other hypotheses. It is thus quite difficult
to compare them directly and give a thorough discussion. Yet,
we have identified some important characteristics that are sum-
marized in Tables I–III. Table I collects global characteristics of
a network model such as the time-domain property to indicate
whether the model is in discrete (DT) or continuous (CT) time,
or the modularity property to indicate whether it is modular or
not. With delay, we indicate that the model considers it either
as constant (Cst), time-varying (TV), state-dependent (SD), or
asynchronous (Async) discrete-time system whose asynchrony
(incorporating delays) depends on the state of the system. Spa-
tial and temporal topologies denote whether the model shares
the same spatial and time topologies with the actual network, re-
spectively.Generic indicates the ability of the model to describe
the network for different protocols, whereas rate model denotes
fromwhich formula the user sending rate is computed. The ratio
flow model [7], [8], [11], [14], [15] is given by quotient of the
congestionwindow size and the RTT. The static flowmodel [24]
assumes that the flow is proportional to the derivative of the con-
gestion window size, and the joint flow model [9], [19]–[21] as-
sumes that the flow is given by the sum of the ratio-flow model
and the congestion window size derivative.
Tables II and III examine the important subparts of the

model, namely the user and buffer models, respectively. It is
also important to mention that none of them has the structure
of a metamodel having the precision of the considered one.
In Table II, homogeneous and heterogeneous delays denote
how well a model captures the case of homogeneous or hetero-
geneous propagation delays, whereas cross and bursty traffic
denote how well a model captures the presence of cross-traffic
and bursty traffic [26], respectively. Exact indicates that the
transient-state behavior of a model matches well to the one
observed in packet-level simulations. Too fast and too slow
mean that a model converges to steady state faster or slower,
respectively, compared to what is observed in packet-level
simulations. Faster states a relativity faster convergence, yet
not as much as observed when it is too fast. In Table III, output
flows indicates whether it is defined as aggregate, meaning all
input flows are mixed, or split, where the buffer acts as a square
multiple-input–multiple-output (MIMO) system mapping a
given input flow to a given output flow. FIFO characterization
denotes whether the model captures the actual content of the
queue and the FIFO behavior. With queuing delay model, we
indicate whether its effect on input flows is clearly defined.
Frequency filtering effect denotes whether the model of buffer
has a filtering effect on the input flows to the output flows.

A. Table I

In this model, while the delay is denoted as a function of
time, it is implicitly defined from the state, without further in-
vestigation. An exact delay characterization as a function of
the state has been obtained in [17]. The state-dependent delay
is implicitly characterized by the ACK-clocking formula and
the RTT expression. The modularity of the model could have



864 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 3, JUNE 2015

TABLE I
MAIN CHARACTERISTICS OF SOME EXISTING MODELS IN THE LITERATURE

TABLE II
COMPARISON OF DIFFERENT USER FLOW MODELS WITH RESPECT TO THE ACCURACY OF ESTIMATED QUEUE SIZES

TABLE III
COMPARISONS BETWEEN DIFFERENT BUFFER DESCRIPTIONS

been developed, but was not. Modular but not able to repre-
sent any topology, essentially due to lack of any output flow
model for buffers. This modeling technique can be applied
to any type of topology, however hand calculations, which re-
sult in poor scalability, are necessary. The notion of flow is
not defined in a discrete-time model. The discrete-time model
is derived from a continuous-time model using the (FS)ACK-
clocking model. The flow is implicitly defined as the solu-
tion of the (W)ACK-clocking model. The flow is computed
by solving the (FS)ACK-clocking model explicitly.

B. Table II
This model is the one introduced in [25] and also consid-

ered in the current paper. In the single-buffer case, the model
is exact. It is unclear whether this is also true for the multiple
buffer case. In most cases, the model is too fast. Accurate
modeling of discontinuity/high slope of the queue when burst of
data arrives at the queue input. The model is usually too fast.
It might, however, be possible to refine it to account for constant
cross-traffic [19]. Unable to characterize the high slope of the
queue due to the low-pass filtering effect of the resulting queue
model; see Section VI-D. Exact in the case of homogeneous
delays and single-buffer topology since the relation is static and

it has an infinite bandwidth; see Section IX-B. Too fast other-
wise. Larger bandwidth than the ratio model, but still limited
since the bandwidth reduces as the queue size grows. These
models may withdraw packets from the network by injecting
negative flows.

C. Table III

The information is lost since the output flows are aggre-
gate. The output flows are insensitive to content swapping.
The output flows are sensitive to any swap of information in

the queue. The exact queuing delay is actually difficult to as-
sign to any output flow due to the structure of the model for
the output flows involving queues. Undefined due to the ag-
gregate formalism. All-pass when the sum of the input-flows
does not exceed the maximal output capacity, otherwise the fil-
tering effect is not really defined due to the aggregate formalism.
All-pass when the sum of the input-flows does not exceed the

maximal output capacity, otherwise acts as a low-pass filter with
bandwidth inversely proportional to the queue size. This is
due to the direct-feedthrough structure of the model. The delay
and nonlinear formula for the output flows only have a com-
pressing/expanding effect on time and amplitude.
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XII. CONCLUSION
This paper presents a modular fluid-flow network conges-

tion control model to analyze communication networks with
arbitrary topology. This modular metamodel is introduced by
mathematically modeling network elements such as queues,
users, and transmission channels and network performance
indicators such as sending/acknowledgment rates and delays.
It is composed of building blocks that implement local mech-
anisms, some of which are being ignored/unmodeled by some
existing models in the literature. It is shown that the proposed
model allows to recover existing models and brings a formal
proof for their validity/invalidity as well as for their domain
of validity. We present a novel classification of the previously
proposed models in the literature, and we show that the ex-
isting models are often not capable of capturing the transient
behavior of the network precisely. Numerical results obtained
from packet-level simulations demonstrate the accuracy of the
proposed model. We plan to extend our work with modeling of
data loss, such as packet drops, and the timeout mechanism at
the user level.
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