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Abstract—A new distributed estimation algorithm for tracking
using a wireless sensor network is presented. We investigate how
to track a time varying signal, noisily sensed by the nodes of
the network. The algorithm is distributed, meaning that it does
not require a central coordination among the nodes. Moreover,
the proposed approach is scalable with respect to the network
size, which means that its complexity does not grow with respect
to the total number of nodes. The algorithm designed turns
out to be composed by a cascade structure. Local constraints
are determined to guarantee the global asymptotic stability of
the estimation error. The algorithm can be applied e.g., for the
position estimation, temporal synchronization, as well as tracking
of signals. Performance is illustrated by simulations, where our
filter is shown to behave better than other distributed schemes
proposed in the literature.

Index Terms—Distributed filtering; Wireless sensor networks;
Cooperative Communication.

I. INTRODUCTION

Estimation using wireless networks of sensors (WSNs)
has a growing domain of applications in diverse areas such
as communication, environmental monitoring, industrial au-
tomation, surveillance, and transportation ([1], [2]). Essential
features of these systems are that they are widely distributed
and that their operations rely on limited computational and
communication resources, as discussed in [3]. Furthermore,
central coordination is often impractical or impossible, since
the nodes communicate with low data rate and short range.
This is the case of large networks where the nodes have to
track or estimate a common time-varying signal (as, e.g., a
clock or the intensity of a physical phenomenon commonly
sensed).

There is a recent interest in a class of simple and highly
scalable distributed estimation algorithms. Here we limit the
discussion to some recent and relevant contributions. In [4], the
problem of distributed estimation of an average by a wireless
sensor network is presented. It is assumed that nodes take
a set of initial samples, and then iteratively exchange the
averages of the samples locally collected. Each node reaches
asymptotically the global average. In [5], a more general
approach is investigated. The authors propose the consensus
of the average of a common time-varying signal measured by
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each sensor, when the signal is affected by a zero-mean noise.
The same linear filter was also considered in [6], where a faster
coefficient computation is investigated. A related consensus
filter for distributed low-pass sensor fusion has been proposed
in [7]. In [8], we have proposed an heuristic algorithm for
cooperative estimation in WSNs. It is an extension to the
algorithms in [4]–[7], in that the filter is adaptive and thereby
it is better in tracking time-varying signals. We showed that
the filter performs well in practice.

The specific contribution of this paper is an extension of
the algorithm presented in [8]. A mathematical framework is
proposed to design a cascade structured filter. The filter is
supposed to run locally in each node. It firstly computes the
optimal estimate, and then updates the statistical parameters
necessary to the new stage of estimation. A constrained
quadratic optimization problem is addressed to suitably adapt
the filter coefficients. The solution of the problem provides
a slightly biased estimate but with a low variance. In order
to characterize the statistical inputs for the new estimation
stage, a constrained and weighted sub-optimal least square is
investigated to provide an unbiased estimate. The approach
presents a natural tradeoff between tracking performance and
computational complexity.

Compared to recent relevant work [4]-[7], our approach
is original because we adopt a more general model of the
filter structure since we do not rely to the common heuristic
of the Laplacian associated to the communication graph.
Moreover, our approach differ from [5] and [6], since we
are interested to investigate distributed solutions, whereas in
such papers centralized algorithms are used to compute the
filter coefficients. Furthermore, with respect to [8], we provide
a better theoretical characterization of the estimate of the
error covariance matrix. The characterization enables to design
a filter with enhanced performance when compared to the
findings proposed in [8].

The outline of the paper is as follows. After the estimation
problem has been formulated in Section II, a discussion on
unbiased versus biased estimation is carried out in Section III.
In Section IV, the optimal design of the decentralized es-
timation is presented. An implementation of the distributed
algorithm is proposed in section V, and numerical results are
given in Section VI. Finally, section VII concludes the paper
with future perspectives.
Notation: Given a stochastic variable x we denote with Ex



its expected value. With ‖.‖ we denote the �2-norm of a vector
or the spectral norm of a matrix. Given a matrix K we refer
to its largest singular value with the symbol γ̄(K). We say
that a ∝ b if a = k b with k > 1. With I and 1 we denote
the identity matrix and the vector (1, . . . , 1)T , respectively, of
appropriate dimensions.

II. PROBLEM FORMULATION

Consider N > 1 sensor nodes randomly placed on the
space. We assume that each node can measure a common
scalar signal d(t) corrupted by additive noise:

ui(t) = d(t) + vi(t) , i = 1, . . . , N ,

with t ∈ N∪{0} and where vi(t) is zero-mean white noise. Let
us collect measurements and noise variables in vectors, u(t) =
(u1(t), . . . , uN (t))T and v(t) = (v1(t), . . . , vN (t))T , so that
we can rewrite previous equation in the following compact
form

u(t) = d(t)1 + v(t) , t = 0, 1, . . . .

The covariance matrix of v(t) is supposed to be diagonal
Σ = σ2I , so that vi(t) and vj(t), for i �= j, are uncorrelated.
With these assumptions it is clear that the additive noise can
be averaged out only if nodes communicate measurements and
estimates. Note that the communication rate of the measure-
ments and estimates should be just fast enough to track the
variations of the signal d(t), but it is not required to be faster
for performance improvement. Indeed, reducing the sampling
time is, in general, not beneficial because measurements may
be affected by an auto-correlated noise.

It is convenient to model the communication network as an
undirected graph G = (V, E), where V = {1, . . . , N} is the
vertex set and E ⊆ V ×V the edge set. We will assume that if
(i, j) ∈ E then (j, i) ∈ E , namely the graph is undirected. The
graph G is said to be connected if there is a sequence of edges
in E that can be traversed to go from any vertex to any other
vertex. In the following we will denote the set of neighbors
of node i ∈ V as

Ni = {j ∈ V : (j, i) ∈ E} .

The estimation algorithm we propose is such that a node i
computes an estimate xi(t) of d(t) by taking a linear combi-
nation of neighboring estimates and measures

xi(t) =
∑
j∈Ni

kij(t)xj(t − 1) +
∑
j∈Ni

hij(t)uj(t) . (II.1)

For node i, the algorithm is initialized with xj(0) = ui(0) for
all j ∈ Ni. In vector notation, we have

x(t) = K(t)x(t − 1) + H(t)u(t) . (II.2)

Note that the matrices K(t) and H(t) can be interpreted as
the adjacency matrices of two weighted time-varying graphs
compatible with a given G representing the underlying com-
munication network.

Given a wireless sensor network modelled by a connected
graph G we consider the following design problem: find time-
varying matrices K(t) and H(t), compatible with G, such that

the signal d(t) is consistently estimated and the variance of
the estimate is minimized. Moreover, the solution should be
distributed in the sense that the computation of kij(t) and
hij(t) should be performed by node i. In the next sections we
will review some of the results presented in a previous work
by the authors of [8] and extend the analysis of the estimator.

III. UNBIASED VERSUS BIASED ESTIMATOR

Let us consider the estimation error e(t) = x(t) − d(t)1 .
We have

e(t) = K(t)e(t − 1) + K(t)d(t − 1)1 + (H(t) − I)d(t)1
+ H(t)v(t) .

Let us assume that d(t) = d(t−1)+δ(t). Taking the expected
value with respect to the stochastic variable v(t), we obtain

E e(t) = K(t)E e(t − 1) + d(t − 1)(K(t) + H(t) − I)1
+ δ(t)(H(t) − I)1 . (III.1)

We then have the following result.
Proposition 3.1: Let us consider the system (III.1). Assume

that (K(t) + H(t))1 = 1 and γ̄(K(t)) < 1 for all t ≥ 0.
Then we have that:

i) If δ(t) < ∞ and H(t)1 = 1 , for any t ≥ 0, the system
is uniformly exponentially stable.

ii) For |δ(t)| < ∆, for all t ≥ 0, the system trajectories
uniformly exponentially converge to a neighborhood of
the origin whose size is proportional to ∆, namely
E e(t) → I(∆) for t → +∞ where I(∆) = {y ∈ R :
|y| ∝ ∆}.
Proof: If (K(t)+H(t))1 = 1 then the system equation

reduces to

E e(t) = K(t)E e(t − 1) + δ(t)(H(t) − I)1 . (III.2)

i) If also it holds that H(t)1 = 1 then (III.2) simply
becomes E e(t) = K(t)E e(t − 1), since by hypothesis
δ(t) < ∞ for all t. Let us consider the Lyapunov function
V (t − 1) = ‖E e(t − 1)‖. Then we have that

V (t) − V (t − 1) = ‖E e(t)‖ − ‖E e(t)‖
≤ (‖K(t)‖ − 1)‖E e(t − 1)‖

which is negative if and only if ‖K(t)‖ = γ̄(K(t)) < 1.
ii) In this case we have that H(t)1 − 1 = −K(t)1 and

thus the system equation becomes

E e(t) = K(t)E e(t − 1) − δ(t)K(t)1 .

Let us consider again the Lyapunov function V (t− 1) =
‖E e(t − 1)‖. We have

V (t) − V (t − 1) ≤ (‖K(t)‖ − 1)‖E e(t − 1)‖
+ ‖K(t)‖N∆ ,

where we have used the fact that |δ(t)| ≤ ∆. It is easy
to see that, in this case, V (t) − V (t − 1) < 0 if

‖E e(t − 1)‖ >
γ̄(K(t))

1 − γ̄(K(t))
N∆ (III.3)



with γ̄(K(t)) < 1. Thus as t → +∞ then E (t−1) tends
to the interval I(∆) = N∆γ̄(K(t))/(1 − γ̄(K(t))).

If we want to design an asymptotic unbiased linear estimator
then the conditions in 3.1(i) need to be satisfied. Under this
conditions, it is possible to show that the variance is minimized
if K(t) = 0 and with H(t) such that

hij(t) = hji(t) =




1
|Ni| if j ∈ Ni

0 otherwise .

Notice that in this case the nodes do not use any previous
information about the signal d(t) and that the error variance
at each node is proportional to its neighborhood size.

However, if the signal d(t) is slowing varying, then, under
the assumptions of 3.1(ii), it is possible to guarantee that
‖E e(t − 1)‖ tends to a neighborhood of the origin. As we
can notice in (III.3) the size of this cumulative bias is small
if the maximum signal variation is such that

∆ <
1 − γ̄(K(t))
γ̄(K(t))N

.

We remark that the bound is rather conservative and one could
try to find a different Lyapunov function which would yield a
tighter bound. However, we show in the next sections how we
can determine the matrices K(t) and H(t) so that both bias
and variance are minimized.

IV. DESIGN OF THE DECENTRALIZED ESTIMATOR

A. Variance minimization

In order to design a decentralized estimator to track the
signal d(t), we consider the error covariance matrix

P (t) = E (e(t) − E e(t))(e(t) − E e(t))T ,

where we assume that x(t − 1) and u(t) are independent
stochastic variables. Using the state equation (III.1) we have
that the covariance update can be computed as

P (t) = K(t)P (t − 1)K(t)T + σ2H(t)H(t)T . (IV.1)

The problem is then to determine K(t) and H(t) so that,
given the covariance matrix P (t − 1), the covariance P (t) is
minimized. A centralized solution can be obtained through a
semi-definite program, as discussed more in [8], but it is not
interesting here since our goal is to find a distributed algorithm.

Let Mi denote the number of neighbors of node i, i.e., Mi is
the cardinality of Ni = {i1, . . . , iMi

}. Collect the estimation
errors available at node i in the vector εi ∈ RMi . The elements
of εi are ordered according to the node indices:

εi = (ei1 , . . . , eiMi
)T , i1 < · · · < iMi

.

Similarly, we introduce vectors κi(t), ηi(t) ∈ RMi corre-
sponding to the non-zero elements of row i of the matrices
K(t) and H(t), respectively, and ordered according to node

indices. It follows from (IV.1) that the variance of ei(t) can
be evaluated as

E ei(t)2 = κi(t)T Γi(t − 1)κi(t) + σ2ηi(t)T ηi(t) , (IV.2)

where Γi(t) = E εi(t)εi(t)T . To minimize the variance of
the estimation error in each node, we propose that κi(t) and
ηi(t) are chosen to minimize (IV.2). In order to minimize
the variance at each node and have convergence as well, the
following optimization problem should be solved at each time
t and in each node i:

min
κi(t),ηi(t)

κi(t)T Γi(t)κi(t) + σ2ηi(t)T ηi(t) (IV.3)

s.t. (κi(t) + ηi(t))T 1 = 1 (IV.4)

γ̄(K(t)) < 1 . (IV.5)

Note, however, that the inequality constraint (IV.5) is global,
since K(t) depends on all κi(t), i = 1, . . . , N . To get a
distributed solution, we consider the following relaxed opti-
mization problem

min
κi(t),ηi(t)

κi(t)T Γi(t)κi(t) + σ2ηi(t)T ηi(t) + βκi(t)T κi(t)

s.t. (κi(t) + ηi(t))T 1 = 1

where we have removed the constraint (IV.5), but we have
modified the cost function. The parameter β > 0 is a parameter
that enforce ‖κi(t)‖2 to be small. Since the size of this
norm is related to the larger singular value of γ̄(K(t)) by
Gershgorin’s theorem and this, on its turn, to the cumulative
bias, as in (III.3), then the β parameter, roughly speaking,
allows a tradeoff between variance and bias.

The optimization problem we posed is tractable since the
cost function is convex and the constraint is linear. Strong
duality holds and each node i can compute the optimal weights
as

κi(t) =
(Γi(t − 1) + βI)−1 1

σ−2Mi + 1 T (Γi(t − 1) + βI)−1 1
(IV.6)

ηi(t) =
1

Mi + σ2 1 T (Γi(t − 1) + βI)−1 1
. (IV.7)

Note that the covariance matrix Γi(t − 1) needs to be known
at node i so that it can compute the weights. Since we assume
that the nodes can exchange only estimates and measurements
the covariance matrix needs to be estimated from data.

The estimator developed so far is shown as block diagram
on the left of Figure 1. Notice that the filter has as input the
measurement vector u(t) and that it uses the previous error
covariance in order to adapt the filter gains.

B. Estimation of error covariance

Since the estimator is a discrete linear time-varying system
and the stochastic process x(t) and thus e(t) is not stationary,
the estimation of the error covariance is not an easy task.
However, if we consider the signals in the quasi-stationary
sense, estimation based on samples guarantees to give good
results. In particular we give the following definition.



u(t)

x(t − 1)

x(t)Pε(t − 1)

Pε(t − 1)

Pε(t)

z−1

z−1

ε(t)

x(0), Pε(0) x(0), Pε(0)β ν

x = κ(t)x− + η(t)u

with weights (IV.6)
and (IV.7)

Eq. (IV.12) Eq. (IV.8)
and (IV.9)

Filter designed in section IV-A

Filter designed in section IV-B

Fig. 1. Block diagram of the proposed estimator. Notice that it is a cascade
of two sub-systems. The one on the left is adaptive and it produces a good
estimate of the d(t) with low variance and small bias. The sub-system on the
right, instead, estimates the error covariance.

Definition 4.1 ([9, pag. 34]): A signal s(t) is said to be
quasi-stationary if it is such that

(i) E s(t) = ms(t), |ms(t)| ≤ C for all t
(ii) E s(t)s(r) = Rs(t, r), |Rs(t, r)| ≤ C for all t and

lim
N→+∞

1
N

N∑
t=1

Rs(t, t − τ) = Rs(τ)

for all τ , and where C ∈ R is constant.

It turns out that if a quasi-stationary signal is the input of a
uniformly exponentially stable time-varying linear system then
its output is also quasi-stationary [10]. In particular in our
case the input signal is the measurement signal u(t) which
is (component-wise) stationary and ergodic and thus also
quasi-stationary. This implies that also x(t) is quasi-stationary
(component-wise) since it is the output of a uniformly expo-
nentially stable time-varying linear system. We can estimate
the error covariance using the sample covariance. In particular
we have that the sample mean m̂εi

(t) and covariance estimate
of Γ̂i(t) can then be computed as

m̂εi
(t) =

1
t

t∑
i=0

ε̂i(t) (IV.8)

Γ̂i(t) =
1
t

t∑
i=0

(ε̂i(t) − m̂εi
(t))(ε̂i(t) − m̂εi

(t))T (IV.9)

where ε̂i(t) = xi(t) − d̂. Thus the problem reduces to design
an estimate of d̂(t) from data. A node i in the network has
available the estimates xij

(t) and measurements uij
(t) with

ij ∈ Ni. Let xi(t) and ui(t) be the collection of all these
values. From the design of the estimator described in the
previous section we can model this data set as

xi(t) = d(t)1 + ξ(t) + w(t)

ui(t) = d(t)1 + v(t) ,

where ξ(t) ∈ RMi models the bias of the estimates and w(t)
is zero-mean Gaussian noise modelling the variance of the

estimator. Roughly speaking, node i has available 2Mi data
values in which half of the data are corrupted by a small biased
term ξ(t) and a low variance noise w(t) and the other half is
corrupted by zero-mean Gaussian noise v(t) with rather high
variance.

It is clear that using only ui(t) to estimate d̂(t) we can
obtain an unbiased estimate of d(t), however its covariance
is rather large since Mi is typically small. Using only mea-
surements we then over-estimate the error covariance and
this results in poor performance. On the other hand using
xi(t) only determines an under-estimate of the covariance,
which rapidly makes the weights ηi(t) vanish. In this case the
signal measurements are discarded and thus tracking becomes
impossible. In order to use both xi(t) and ui(t) we pose a
least square problem as follows1:

min
d̂,ξ̂

∥∥∥∥
(

xi

ui

)
− A

(
d̂

ξ̂

)∥∥∥∥
2

s.t. ‖ξ‖2 ≤ ρ

where the matrix A is the signal model, namely(
x̂i

ûi

)
=
(
1 I
1 0

)(
d̂

ξ̂

)
,

and the constraint can be represented as∥∥∥∥(0 I
)(d̂

ξ̂

)∥∥∥∥
2

=
∥∥∥∥B
(

d̂

ξ̂

)∥∥∥∥
2

≤ ρ .

However, the problem is difficult to solve in a closed
form [11]. Furthermore, previous formulation has the follow-
ing disadvantages: (1) requires heavy numerical algorithms for
determine the optimal solution (typically SVD decomposition),
(2) the value of ρ is not known in advance. We thus consider
the following regularized problem

min
d̂,ξ̂

∥∥∥∥
(

xi

ui

)
− A

(
d̂

ξ̂

)∥∥∥∥
2

+ ν

∥∥∥∥B
(

d̂

ξ̂

)∥∥∥∥
2

(IV.10)

where ν > 0 is a parameter whose choice is typically rather
difficult. We propose here to use the Generalized Cross-
Validation method [12]. This consists in choosing

ν = arg minφ(ν)

where

φ(ν) =
‖(AT A + νBT B)−1(xi, ui)T ‖

tr (AT A + νBT B)−1
.

Taking the derivative of the argument of (IV.10), after some
algebraic efforts, the solution of the optimization problem is

(d̂, ξ̂)T = (xi, ui)T A
(
AT A + νBT B

)−1
.

The inverse of the matrix in the previous equation can be
computed in closed form using the following result:

1We disregard in the following the time dependence both because all the
variable are considered at a certain time instance t and to keep the notation
lighter.



Proposition 4.2: If ν > 0 then(
AT A + νBT B

)−1
=

1
Mi(1 + 2ν)


1 + ν −1 T

−1
Mi(1 + 2ν)I + 11 T

1 + ν


 (IV.11)

Proof: By Schur’s complement we obtain(
AT A + λaT a

)−1
=



(
2Mi −

Mi

1 + λ

)−1

1 T (11 T − 2Mi(1 + λ)I)−1

(11 T − 2Mi(1 + λ)I)−1 1

(
(1 + λ)I − 11 T

2Mi

)−1




From [13] it follows that(
(1 + λ)I − 11 T

2Mi

)−1

=
I

1 + ν
+

1 1 T

Mi(1 + 2ν)(1 + ν)
,

It is easy from here to show that the resulting matrix is (IV.11).

Since we are interested to know εi(t) = xi−d1 , we observe
that an estimate of this difference is ξ̂. This is given by

ξ̂ =
xi

1 + ν
− ν 1 T xi + (1 + ν)1 T ui

Mi(1 + 2ν)(1 + ν)
1 (IV.12)

The covariance estimator we have developed in this section
is depicted on the right of the block diagram shown in
Figure 1. Thus, using ξ̂ as an estimate of the estimation error
we compute the error covariance from samples.

As it appears clearly from Figure 1, the total estimator
is a cascade of two sub-systems. One, on the left, which
is adaptive, and is used to produce a good estimate of the
d(t) and the other that provides a good estimate of the error
covariance.

V. IMPLEMENTATION

The implementation of the estimation algorithm is shown
as Algorithm 1. First, each sensor initializes the local mean
estimation error m̂ε = 0 (see line 2) and its local covariance
matrix estimate with the noise covariance, i.e. Γ̂i(0) = σ2I
(see line 2 in the algorithm), where we remark that we are
using the “hat” since these are sample estimates of the real
mean and covariance of the error. The optimal weights are
computed using equations (IV.6) and (IV.7) (lines 8 and 9). In
line 11 we compute the optimal estimate. Lines from 12 to
15 implement the covariance update based on the available
data by solving the constrained least-square considered in
the end of subsection IV-B. Sample mean and covariance
of the error are updated in lines 14 and 15. Notice that we
used a recursive way of computing (IV.8) and (IV.9). In
the algorithm, the inversion of the covariance matrix should
be computed. This is not a difficult operation in resource
constrained sensor networks, since each node has generally
a rather limited number of neighbors, and thus the size of the
matrix Γ̂i is small.

Algorithm 1 Estimation algorithm for node i
1. t := 0
2. m̂ε := 0
3. Γ̂i(0) := σ2I
4. xi(0) := ui(0)
5. while forever do
6. Mi := |Ni|
7. t := t + 1

8. κi(t) :=
(Γ̂i(t − 1) + βI)−1 1

σ−2Mi + 1 T Γ̂i(t − 1) + βI)−1 1

9. ηi(t) :=
1

Mi + σ2 1 T (Γ̂i(t − 1) + βI)−1 1

10. Let j ∈ Ni

11. xi(t) :=
∑

j κij (t)xj(t − 1) + ηij (t)uj(t)

12. ξ̂ :=
xi

1 + ν
− ν 1 T xi + (1 + ν)1 T ui

Mi(1 + 2ν)(1 + ν)
1

13. ε̂i := ξ̂

14. m̂εi(t) :=
t − 1

t
m̂εi(t − 1) +

1

t
ε̂i(t)

15. Γ̂i(t) :=
t − 1

t
Γ̂i(t− 1) +

1

t
(ε̂i(t)− m̂εi(t))(ε̂i(t)− m̂εi(t))

T

16. end while

Fig. 2. The topology of the network with N = 25 nodes used in the
simulations.

Note that the algorithm is implemented under the assump-
tion that each node is able to compute and communicate data
within the sampling instance.

VI. NUMERICAL RESULTS

Numerical simulations have been carried out in order to
validate performance of different solutions. In particular we
have compared the estimator proposed in this paper with an
estimator that takes as estimate an average of the received
information from the neighbors, which we call here average
estimator and the estimator previously proposed in [8]. We
have simulated a network with N = 25 nodes randomly
deployed on a squared area of size N/2 and such that two
nodes were able to communicate if and only if their relative
distance was less or equal to 1.6

√
N . The generated network

is shown in Figure 2. The average number of neighbors for
each node is about 6.2. The signal to track was

d(t) = 3 sin
(

2πt

1000

)
− 2.5 cos

(
2πt

1500

)
· sin

(
2πt

1000

)2/3

.



The measurement noise was with variance σ2 = 1.2.
The realizations for all 25 nodes are shown in Figure 3. The

first plot shows the raw measurements, the second the output of
the average estimator, the third the output of the decentralized
estimator proposed in [8], and in the last plot the output
of the new proposed estimator is reported. The performance
improvement is clearly visible in Figure 4, where the same
realizations are shown between t = 1000 and t = 2000.
Numerical comparisons give:

Estimator Std. dev. MSE β ρ
Average 0.276 - -
Previous ([8]) 0.178 0.0 -
Present paper 0.139 0.03 0.7

Thus the proposed decentralized estimator yields an improve-
ment of about 50% with respect to the average estimator, and
of about 21% with respect to the estimator we proposed in [8].
The choice of the filter parameters β and ρ is in general de-
pendent on the maximum signal variation. Simulations shows
the following rules of thumb:

i) Choose β so that the maximum singular value of K(t)
is bounded away from 1. In particular some preliminary
tests shows that β = 0.01 to 0.05 bounds the value of
γ̄(K(t)) in the range 0.65 to 0.8 rather independently on
the size of the graph and its connectivity for a given ∆.

ii) The computation of ν might be demanding on resource
limited sensor nodes. However, observe that the matrix
(AT A + νBT B)−1 can be computed in closed form, so
one can create a lookup table of φ(ν) for different values
of ν. Notice that the matrix is small, (Mi +1)×(Mi +1)
and that it can be stored efficiently because of is particular
structure. Given a xi and ui one can then search for the
minimum ν in an efficient way.
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Fig. 3. Realization of all the estimates of the N = 25 nodes of the network,
versus time. The first plot show the measurements. The second shows the
average estimator, the second the distributed estimator proposed in [8] and
the last shows the new proposed estimator. The noise variance is of 1.2.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an improved version of
the decentralized cooperative estimation algorithm proposed
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Fig. 4. Zoom of the realizations in Figure 3 in the interval t ∈ [1000, 2000].

in [8], for the estimation of time-varying signal using a wire-
less sensor network. A mathematical framework is proposed
to design a cascade structured filter. The filter is supposed to
run locally in each node. The proposed estimator depends on
two parameters. Some rule-of-thumb and numerical procedure
are suggested in order to choose the parameter values.

Future work includes the refinement of some of the bounds
we have used in the design in order to provide a more precise
guidance in the choice of the filter parameters. Stability anal-
ysis of the filter and robustness to packet-losses are currently
under investigation.
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