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Abstract— In this paper we study a discrete-time SIS
(susceptible-infected-susceptible) model, where the infection
and healing parameters and the underlying network may
change over time. We provide conditions for the model to be
well-defined and study its stability. For systems with homo-
geneous infection rates over symmetric graphs, we provide a
sufficient condition for global exponential stability (GES) of the
healthy state, that is, where the virus is eradicated. For systems
with heterogeneous virus spread over directed graphs, provided
that the variation is not too fast, a sufficient condition for GES
of the healthy state is established. Appealing to the first stability
result, we present two data-driven mitigation strategies that
set the healing parameters in a centralized and a distributed
manner, respectively, in order to drive the system to the healthy
state.

I. INTRODUCTION

In December 2019, a novel coronavirus (COVID-19) was
detected in Wuhan, China. This virus quickly spread through-
out China, and before long, cases were reported across
Asia. In March 2020, the World Health Organization (WHO)
officially declared COVID-19 a pandemic [1]. While the eco-
nomic ramifications of COVID-19 have been significant [2],
the biggest cause of concern remains the growing number of
fatalities worldwide, with over 35, 000 deaths being reported
[3] as of March 30, 2020, and more fatalities daily. One of the
factors that contributed to COVID-19 becoming a pandemic
was the ability of individuals who were asymptomatic, or
only slightly sick, to travel easily and great distances while
being contagious. In this work we propose a model that
allows for time-varying graph structure as well as mutating
virus parameters. While COVID-19 does not appear to be
a susceptible-infected-susceptible (SIS) virus, since infected
individuals do not appear to become susceptible once they
recover, other viruses and diseases such as the common cold,
influenza, gonorrhea, and chlamydia, are of an SIS-type.
Similar to influenza, it is possible that the novel coronavirus
will mutate and therefore become more of an SIS virus.
Consequently, we focus on mutating SIS models in this
paper.

Network-dependent SIS models with static graphs have
been studied extensively in the literature in continuous-
time [4]–[6] and discrete-time [7]–[10]. These models have
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been extended to include time-varying graph structure for
continuous-time models [11]–[14] and discrete-time models
[15]–[17]. The work that most closely relates to the present
paper is [17], wherein discrete-time periodic SIS models have
been considered. Unlike [17], here we do not impose any
periodicity assumptions. However, for heterogeneous virus
spread over directed graphs, we assume that the variations
in the topology are not too fast, whereas in [17] no such
restrictions are imposed.

With respect to mitigating virus spread, there are a number
of works in the literature [17]–[25]. The main goal of these
works is to drive the system to the healthy state, the disease-
free equilibrium (DFE), or the origin; note, we use these
terms interchangeably throughout the paper. Many of the pre-
vious techniques devise strategies for adjusting the healing
rate in order to eradicate the virus, which can be interpreted
as treatment efforts and/or antidote administration. We follow
in the same vein and propose a technique that is inspired
by [17]; however that technique required knowledge of the
infection parameter, which we relax here. The strategies
proposed in this paper depend on local network structure,
the sampling parameter, and the state of the system (global
knowledge for one algorithm and only local for the second),
and are therefore driven by the virus spread data.

Paper Contributions

The overarching goal of the paper is to develop a data-
driven control strategy which ensures that a mutating epi-
demic spreading over a time-varying network is eradicated.
Towards this end, we first establish sufficient conditions
for global – i.e., with respect to the physical meaning of
the model considered – exponential stability (GES) of the
DFE, and subsequently exploit the conditions to devise
control algorithms. Consequently, the main contributions of
the present paper are as follows:

i) We establish sufficient conditions for GES of the healthy
state, that is, the origin or where the virus dies out; see
Theorems 1 and 2.

ii) We also provide two data-driven mitigation strategies
for adjusting the healing rates, one that requires cen-
tralized state information and one distributed technique,
that ensure the virus is eradicated asymptotically; see
Theorems 3 and 4.

Paper Outline

The paper is organized as follows. We conclude this
section by listing the notation that is used in the paper.
The problems being investigated are formally presented in



Section II. The main findings of this paper are spread out
over Sections III and IV: Section III establishes sufficient
conditions for GES of the DFE, whereas Section IV presents
the control algorithms – both centralized and distributed –
for ensuring that the disease dies out. The theoretical findings
are illustrated via simulations in Section V. Finally, we
summarize our main contributions and shed light on some
problems of possible interest for the automatic control and
mathematical epidemiology communities in Section VI.

Notations

Let R and Z≥0 denote the set of real numbers and non-
negative integers, respectively. For any positive integer n,
we have [n] = {1, . . . , n}. Given a matrix A ∈ Rn×n,
the spectral radius is ρ(A). A diagonal matrix is denoted
as diag(·). Given a vector x ∈ Rn, its transpose is denoted
as x>. The Euclidean norm is denoted by ‖·‖, whereas the
infinity norm is indicated by ‖·‖∞. The notation {A(k)}ba
denotes a sequence of matrices A(k), where k ∈ {a, a +
1, . . . , b− 1, b}.

II. PROBLEM FORMULATION

Consider a time-varying network of n agents, where the
set of agents remains the same at all times, while the inter-
connection among the agents are possibly time-dependent.
Each agent has its own infection rate, denoted by βi, and
healing rate, denoted by δi. It is possible that the infection
and healing rates are also time-dependent. At time t ∈ R,
let xi(t) denote the infection level of agent i, and let aij(t)
denote the intensity of interconnection between agents i and
j. The evolution of the infection level of an agent i can, then,
be represented as follows:

ẋi(t) = (1− xi)βi(t)
n∑

j=1

aij(t)xj − δi(t)xi(t). (1)

For every t ∈ R, βi(t) > 0, δi(t) ≥ 0 and aij(t) ≥ 0.
Note that for the SIS model considered above, the state
xi(t) may correspond to an approximation of the probability
of infection of ith agent [26], or the infected proportion of
group i [27].

While the spread of an epidemic is a continuous process,
the data relating to the epidemic is often collected periodi-
cally. For instance, during the recent outbreak of the novel
coronavirus, Italy compiles its reports once every 24 hours.
Such a sampling of the system behavior prompts us to
look at discrete-time time-varying SIS models. The model
is obtained by applying Euler’s method [28] to (1):

xi(k + 1) = xi(k) + h

(
(1− xi(k))βi(k)

n∑
j=1

aij(k)xj(k)

− δi(k)xi(k)

)
, (2)

where h > 0 is the sampling parameter.
Observe that, particularized for the time-invariant case, the

continuous-time dynamics (as in (1)) is developed by using
mean-field approximation of a Markov chain model; see

[10], [26]. Since the discrete-time version of (1), is obtained
by applying Euler discretization, (2) is an approximation
of an approximation [10, Remark 1]. The approximation
accuracy of (2) has been addressed, via simulations, in [29,
Section 2.2.2].

In matrix form, we can rewrite (2) as:

x(k+1) = x(k)+h((I−X(k))B(k)A(k)−D(k))x(k) (3)

where X(k) = diag(x(k)), B(k) = diag(βi(k)), and
D(k) = diag(δi(k)). A(k) = [aij(k)], for every i =
1, 2, . . . , n and for every j = 1, 2, . . . , n. Let us define
B̄(k) := B(k)A(k), with its entries being denoted as β̄ij(k).
With this notation in place, (3) can be rewritten as:

x(k + 1) = x(k) + h((I −X(k))B̄(k)−D(k))x(k). (4)

The spread of a virus over a network can be captured
using graphs, where the nodes represent the agents, and
the edges denote the interaction among the agents. More
precisely, let Gk = (V,Ek) represent this network, where
V = 1, 2, . . . , n, and Ek = {(xi, xj) | β̄ij(k) 6= 0}. Note
that the subscript k indicates that we allow for different
edges at each time step k, that is, time-varying graphs, which
provides a more realistic model.

We define the healthy state as the state where xi(k) = 0
for all i, which, from (4), implies that, for all i, xi(k1) = 0
for all k1 > k. Given that a population is infected with
a virus, our main interest lies in ensuring that each agent i,
regardless of whether it is initially healthy or sick, converges
to the healthy state. Towards this end, we adopt a two-
pronged approach. First, we seek to establish conditions
that ensure GES of the DFE. Second, we exploit these
conditions to develop control strategies that eradicate the
epidemic asymptotically. More formally, we can summarize
our objectives as follows:

(i) For the system with dynamics as given in (4), under
what conditions is the healthy state GES?

(ii) Given the knowledge of the conditions that ensure GES
of the healthy state, devise a data-driven approach that
employs state information to set the healing rates and
ensures that epidemic is eradicated asymptotically.

We make the following assumptions.
Assumption 1: For every i ∈ [n], hδi(k) ≥ 0 and for all

j ∈ [n], β̄ij(k) ≥ 0, for every k ∈ Z≥0.�
Assumption 1 ensures that the healing (resp. infection) rate
of each agent is non-negative.

Assumption 2: For every i ∈ [n], hδi(k) ≤ 1 and
h
∑
j

βij(k) ≤ 1, for every k ∈ Z≥0.�

Assumption 2 is essential for the model to be well-defined.
Note that xi is an approximation of the probability of

agent i being sick, or can be interpreted as the percentage
of subpopulation i that is infected. Therefore, for the model
to be well-defined we need the following lemma.

Lemma 1: Assume xi(0) ∈ [0, 1], for all i ∈ [n]. For (4),
under the conditions of Assumptions 1 and 2, xi(k) ∈ [0, 1]
for all i ∈ [n] and k ∈ Z≥0. �



Proof: The proof is quite similar to that of [10, Lemma 1],
and is, in the interest of space, omitted. �
Lemma 1 ensures that, with respect to system (4), the set
[0, 1]n is positively invariant, i.e., once a trajectory of (4)
enters the set [0, 1]n, it never leaves the set. Therefore for the
rest of the paper we assume that the condition in Lemma 1
is satisfied, that is, xi(0) ∈ [0, 1], for all i ∈ [n].

Preliminaries

In this subsection, we will briefly recall some stability
notions and results that are essential for understanding the
findings in this paper.

Consider a system, described as follows:

x(k + 1) = f(k, x(k)), (5)

where f : Z≥0 × Rn → Rn is locally Lipschitz. An
equilibrium of (5) is said to be (uniformly) asymptotically
stable if it is (uniformly) stable and (uniformly) attractive.
Furthermore, an equilibrium of (5) is endowed with the
property of GAS (resp. globally uniformly asymptotically
stable (GUAS)) if, besides being asymptotically stable (resp.
uniformly asymptotically stable), the system converges to
that equilibrium for any initial state.

A stronger property is that of GES, which is defined as
follows:

Definition 1: An equilibrium point of (5) is GES if there
exist positive constants α and ω, with 0 ≤ ω < 1, such that

‖x(k)‖ ≤ α ‖x(k0)‖ω(k−k0) ∀k, k0 ≥ 0,∀xk0
∈ Rn.

We recall a sufficient condition for GES of an equilibrium
of (5) in the following proposition:

Lemma 2: [30, Theorem 28, Section 5.9] Suppose there
exists a function V : Z+ × Rn → R, and constants
a, b, c > 0 and p > 1 such that a ‖x‖p ≤ V (k, x) ≤ b ‖x‖p,
∆V (k, x) := V (x(k+1))−V (x(k)) ≤ −c ‖x‖p, ∀k ∈ Z≥0,
and ∀x ∈ Rn, then x = 0 is an exponentially stable
equilibrium of (5). �
The initial values are in the domain [0, 1]n, since otherwise
they lack physical meaning; see Lemma 1. Therefore, it
follows that the DFE of system (4) is GES if the condition in
Definition 1 (resp. Lemma 2) is satisfied for all xk0 ∈ [0, 1]n.

III. STABILITY ANALYSIS

This section addresses Objective (i) stated in Section II.
That is, we establish sufficient conditions for GES of the
DFE. Towards this end, we first consider undirected graphs
with homogeneous virus spread, and subsequently the more
general case, which accounts for directed graphs and hetero-
geneous virus spread.

We begin by defining the following:

M(k) : = I − hD(k) + hB̄(k)

M̂(k) : = I + h((I −X(k))B̄(k)−D(k))

Observe that M(k) is the state matrix obtained by lineariz-
ing (4) around the DFE, and will play a crucial role in our
main results.

A. Homogeneous virus spread and undirected graph

In this subsection, under the assumption that the infection
rate is the same for every agent, and that the underlying
graph is undirected, we provide a sufficient condition for
exponential convergence to the healthy state.

Theorem 1: Let Assumptions 1 and 2 hold. Suppose that,
for all k ∈ Z≥0, βi(k) = β(k) for every i ∈ [n], and that, for
all k ∈ Z≥0, A(k) is symmetric. If supk∈Z≥0

ρ(M(k)) < 1,
then the healthy state of (4) is GES. �
In words, Theorem 1 says that for a virus with homogeneous
infection parameters spreading over undirected graphs, under
Assumptions 1 and 2, if each pointwise eigenvalue of M(k)
lies strictly within the unit disk, then the healthy state is
GES.
Proof: Consider the following Lyapunov function, V (k, x) =
1
2x
>x. For x 6= 0 and for each k ∈ Z≥0, we obtain the

following:

∆V (k, x) =
1

2
(x>M̂(k)>M̂(k)x− x>x)

=
1

2
x>(M(k)>M(k)− I − 2hB̄(k)>X(k)M(k)

+ h2B̄(k)>X(k)X(k)B̄(k))x. (6)

By assumption, βi = β for all i ∈ [n], and A(k) is symmet-
ric. This implies that B̄(k) is symmetric, and hence M(k) is
symmetric. Hence the matrix M(k)>M(k)−I is symmetric.
Therefore, by applying the Rayleigh-Ritz Quotient (RRQ)
Theorem [31], we obtain

x(k)>(M(k)>M(k)−I)x(k) ≤ ρ(M(k)>M(k)−I) ‖x‖2 .
(7)

Since M(k) is symmetric, ρ(M(k)>M(k)) = (ρ(M(k)))2.
By assumption supk∈Z≥0

ρ(M(k)) < 1, which implies, by
the definition of the supremum, that for every k ∈ Z≥0,
ρ(M(k)) < 1 and hence (ρ(M(k)))2 < 1, thereby implying
ρ(M(k)>M(k)) < 1.

Applying Weyl’s inequalities [31, Corollary 4.3.15] to
M(k)>M(k) − I , we obtain λi(M(k)>M(k) − I) ≤
λi(M(k)>M(k)) − 1, for i = 1, 2, . . . n. Since, for every
k ∈ Z≥0, ρ(M(k)>M(k)) < 1, it follows that, for each
k ∈ Z≥0, ρ(M(k)>M(k) − I) < 0. Plugging this back
into (7) yields: x(k)>(M(k)>M(k)−I)x(k) < 0 for x 6= 0
and for each k ∈ Z≥0. Therefore, from (6), it follows that

∆V (k, x) < h2x(k)>B̄(k)>X(k)X(k)B̄(k)x(k)

− 2hx(k)>B̄(k)>X(k)M(k)x(k) (8)

= h2x(k)>B̄(k)>X(k)X(k)B̄(k)x(k)

− 2h2x(k)>B̄(k)>X(k)B̄(k)x(k)

− 2hx(k)>B̄(k)>X(k)(I − hD(k))x(k)

≤ h2(x(k)>B̄(k)>X(k)X(k)B̄(k)x(k)

− 2x(k)>B̄(k)>X(k)B̄(k)x(k)) (9)

≤ −h2x(k)>B̄(k)>X(k)(I −X(k))B̄(k)x(k)

≤ 0 (10)



where (9) is due to Assumptions 1 and 2, and (10) comes
from Assumption 1 and Lemma 1. Thus, from Lemma 2 the
DFE is GES, thereby concluding the proof. �
Note that Theorem 1 is the discrete-time counterpart of [14,
Theorem 1].

In practice, it is not necessarily the case that each agent
in a population has the same infection rate at each time
step, since, for instance, different agents could have different
immunity levels. Moreover, the underlying graphs could also
be directed. That is, node i being connected to node j does
not necessarily imply that the converse is true, or that the
edge weightings are equal. Hence, in the next section we
focus on finding conditions that also factor in heterogeneous
virus spread over directed graphs.

B. Heterogeneous virus spread and directed graphs

In this section, we establish a sufficient condition for
exponential convergence to the healthy state without the
assumptions of homogeneous infection rates and symmetric
interaction weights. Towards this end, we make the following
assumption: the variation in the virus spread parameters and
the topology is slow. A practical motivation for imposing
such an assumption stems from the observation that one of
the accelerating factors in the spread of an epidemic is the
mobility of agents across large distances in a short amount of
time, as shown during the recent COVID-19 pandemic [32].
That is, if these slow time-varying measures had been put
into place, the pandemic possibly could have been prevented.

Theorem 2: Let Assumptions 1 and 2 hold. Suppose that
i) for some α1 > 0, supk∈Z≥0

ρ(M(k)) ≤ α1 < 1;
ii) there exists L ∈ R+ such that, for all k ∈ Z≥0,
||M(k)||≤ L; and

iii) there exists κ ∈ R+ such that supk∈Z≥0
||M(k + 1) −

M(k)||≤ κ.
If κ is sufficiently small, then the healthy state of (4) is
GES. �
In words, Theorem 2 says that under Assumptions 1 and 2,
if the topology of Gk is not changing too quickly, each
pointwise eigenvalue of M(k) strictly lies within the unit
disk, and the sequence of matrices {M(k)}∞0 is bounded,
then the healthy state is GES.

The proof of Theorem 2 follows almost immediately from
that of the linear work in [33] and also, to a lesser extent,
that of [34, Theorem 24.8]). In the interest of space, we omit
the details; please see [35] for the complete proof.

Theorem 2 is the discrete-time counterpart of [14, Theo-
rem 2], and differs from [17, Theorem 1] since no periodicity
assumptions are imposed.

IV. DATA-DRIVEN DISTRIBUTED MITIGATION

In this section we address Objective (ii) stated in Section II
by proposing several control algorithms that eradicate the
virus, using both centralized and distributed techniques.
Notice that the eradication strategies developed in this sec-
tion only account for homogeneous spread over undirected
graphs. For the control inputs, we set the healing rates

locally, δ̂i(k). This approach can be interpreted as adminis-
tering antidote and/or other treatment methods. The control
inputs are designed, for all k ∈ Z0, i ∈ [n], as

δ̂i(k) = max
{
δ̂i(k − 1), ψi(k)

}
, (11)

where

ψi(k) = min

γi(k)

n∑
j=1

aij(k) + ηi, 1/h

 (12)

and γi(k) is a data-driven parameter, because it is updated
using state information, and ηi > 0, for each i ∈ [n].

The problem becomes the following:
Problem 1: Replace δi(k) in (2) with δ̂i(k, γi(k), aij(k))

defined in (11). Find f , where γi(k) = f(γi(k − 1), x(k)),
that drives the system to the healthy state.

From here on, we use δ̂i(k) as shorthand notation for
δ̂i(k, γi(k), aij(k)).

The first proposed solution to Problem 1 is a centralized
scheme that updates γ(k) = γi(k), for all i ∈ [n], as

γ(k + 1) = γ(k) +

n∑
i=1

xi(k), (13)

with γ(0) = 0. This algorithm, combined with (11), implies
that a central operator knows the sickness level of every node
in the network and broadcasts γ(k) to each node at every
time step. Each node then incorporates that into their healing
efforts.

Theorem 3: Consider the system in (2) and assume that,
for all i ∈ [n], k ∈ Z≥0,

i) hβ(k)
∑

j aij(k) < 1,
ii) βi(k) = β(k) > 0, and

iii) A(k) is symmetric and aii(k) > 0.
Then the algorithm in (11)-(12), with ψi(k) = ψ(k) for all
i ∈ [n], and (13) guarantees GAS of the healthy state. �
Proof: If there exists i ∈ [n] such that xi(0) > 0, by (13),
γ(k) will increase and, as a consequence of (11)-(12) and
the assumption that aii(k) > 0 for all i ∈ [n], k ∈ Z≥0,
δ̂i(k) will increase, for each i ∈ [n], unless ψ(k) = 1/h.
Hence, either the virus dies out asymptotically, or by (11)
and (13), since ηi > 0 for each i ∈ [n], each δ̂i(k) will equal
1/h. Thus, at some finite time T ≥ 0, M(T ) = hBA(T ).
Therefore, for all k ∈ Z≥T ,

ρ(M(k)) = ρ(hBA(k))

≤ ‖hBA(k)‖∞ (14)
< 1, (15)

where (14) holds by [31, Theorem 5.6.9] and (15) holds by
the definition of the infinity norm and the assumption that
hβ
∑
j

aij(k) < 1, for every k ∈ Z≥0. Thus by Theorem 1,

the healthy state is GES for k ∈ Z≥T . Therefore, since T is
finite, the healthy state is GAS. �
Note that the proof does not tell us anything about the
stability of the system for k < T . In fact, it is very probable
that there are many k < T where ρ(M(k)) > 1. That is to



say, in the time it takes to reach T , anything can happen,
but after time T we have exponential stability. Therefore,
exponential stability coupled with asymptotic time results in
asymptotic stability.

Next, we present another solution to Problem 1 that
updates γi(k) in a local, distributed fashion:

γi(k + 1) = γi(k) + xi(k) +
∑

j∈Ni(k)

xj(k), (16)

where γi(0) = 0 and Ni(k) denotes the set of neighbors of
node i at time k, that is, Ni(k) = {j | aij(k) 6= 0}. This
algorithm, combined with (11), implies that each node only
includes information of their own sickness level and that of
their neighbors, in their healing efforts. In practice, these are
people that do not take outbreaks seriously until they become
sick or someone they know becomes sick.

Theorem 4: Consider the system in (2) and assume that

i) 0 ≤ hβ(k)
∑

j aij(k) < 1 for all i ∈ [n],
ii) βi(k) = β(k) for every i ∈ [n], and

iii) A(k) is symmetric, irreducible for every k ∈ Z≥0.

Then the algorithm in (11)-(12) and (16) guarantees GAS of
the healthy state. �
Proof: Consider an arbitrary node i. There are three pos-
sibilities: 1) node i and none of its neighbors ever become
infected 2) node i or one of its neighbors is infected initially,
or 3) one of node i’s neighbors becomes infected at some
time T1 > 0. Note that the irreducibility assumption on every
A(k) ensures that the underlying graphs, Gk, are strongly
connected for all k ∈ Z≥0. Therefore, in the first case, the
virus has died out. In the second and third cases, for each i, at
some point in time T2 ≥ 0, an infected agent will be in the
neighborhood of agent i and therefore γi(k) will increase
and, as a consequence of (11)-(12) and the irreducibility
assumption of A(k) for all k ∈ Z≥0, δ̂i(k) will increase,
for each i ∈ [n], unless ψ(k) = 1/h. Hence, since the virus
does not die out asymptotically, by (11)-(12) and (16), since
ηi > 0 for each i ∈ [n], δ̂i will equal 1/h, for each i ∈ [n] at
some finite time T ≥ 0. The rest of the proof is analogous
to that of Theorem 3. �

Note that the main data-driven aspect of the approaches
appears in the update of γi(k) (and γ(k)). However, the
control input is also determined by the time-varying graphs.
Therefore, the algorithm is shifting resources, as needed, to
the most congested areas, captured by the aij(k) term in
(11), as well as to the more sickly areas as captured by the
local updates in (16).

V. SIMULATIONS

In order to illustrate the results, we simulate a virus
spreading over a time-varying graph. The positions of the
agents are determined by piece-wise constant drifts and
the graph structure is determined by the relative locations,
similar to that used in [14] except with a discrete time
framework. Namely, this approach confines the agents to a
square of edge length l in R2, centered at some point zc.
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Fig. 1: Average infection level of the virus over time
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Fig. 2: ρ(M(k)) of the virus over time

So the position of each agent zi(k) of each agent is updated
using following dynamics:

zi(k + 1) = zi(k) + φi(k), (17)

where φi(k) is updated as

φij(k + 1) =


−φij(k), if zij(k) = zcj + l/2

or zij(k) = zcj − l/2
φij(k), otherwise,

(18)

for each dimension j ∈ [2]. That is, if an agent hits a bound-
ary, the velocity of the agent in the dimension corresponding
to that boundary flips sign. The initial positions are chosen
uniformly at random inside the square, each initial φi is
chosen uniformly at random, and the initially infected agents
are completely infected (xi = 1) and are chosen uniformally
at random. We set n = 1000 and β = 1 for all i ∈ [n]. For
the simulation without control, we set each δi by sampling
a uniform distribution between zero and one.

Using the aforementioned simulation parameters, we sim-
ulate three cases: 1) no control, 2) centralized control, as



in (13), and 3) distributed control, using (16). The average
infection level for each case and ρ(M(k)) are plotted in Fig-
ures 1 and 2, respectively. Consistent with Theorems 3 and
4, the control techniques eradicate the virus. As expected, the
centralized technique outperforms the distributed technique,
however, not significantly.

VI. CONCLUSION

In this paper, we considered the problem of eradicating
a mutating epidemic in a time-varying network. We first
established sufficient conditions for GES of the DFE: simpler
conditions for viruses with homogeneous infection rates over
symmetric graphs, and more involved conditions for het-
erogeneous virus spread over directed graphs. Subsequently,
by leveraging the first stability result, namely Theorem 1,
we devised two data-driven approaches, one centralised and
another distributed, which ensure that the epidemic is erad-
icated asymptotically. Finally, we illustrated our theoretical
findings via simulations.

For future work, we would like to extend the ideas
herein to SIR (susceptible-infected-recovered) and SEIRS
(susceptible-exposed-infected-recovered-susceptible) models
so as to possibly better capture the behavior of COVID-19.
Another possible extension is to derive data-driven mitigation
techniques that in addition to eradicating the virus simul-
taneously learn the infection parameter(s) of the system. It
would also be interesting to devise control techniques, similar
to those presented in Theorems 3 and 4, that also eradicate
heterogeneous viruses over directed graphs.
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