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Abstract— This paper studies the estimation of network
weights for a class of systems with binary-valued observations.
In these systems only quantized observations are available for
the network estimation. Furthermore, system states are coupled
with observations, and the quantization parts are unknown
inherent components, which hinder the design of inputs and
quantizers. In order to deal with the temporal dependency of
observations and achieve the recursive estimation of network
weights, a deterministic objective function is constructed based
on the likelihood function by extending the dimension of obser-
vations and applying ergodic properties of Markov chains. By
imposing an independent Gaussian assumption on disturbances,
we show that the function is strictly concave and has a unique
maximum identical to the true parameter vector, so in this
way the estimation problem is transformed to an optimization
problem. A recursive algorithm based on stochastic approxi-
mation techniques is proposed to solve this problem, and the
strong consistency of the algorithm is established. Our recursive
algorithm can be applied to online tasks like real-time decision-
making and surveillance for networked systems. This work also
provides a new scheme for the identification of systems with
quantized observations.

I. INTRODUCTION

The estimation problem of networks for dynamical sys-
tems is fundamental in diverse domains such as bioinformat-
ics, communication, as well as social networks. For example,
the knowledge of gene regulatory networks can deepen our
understanding of diseases and development [1]. Besides,
relationship networks among individuals contain information
of group structures, which is crucial for the prediction of
group behavior [2]. There are various formulations for the
network estimation, e.g., topological inference [3], latent
node identification [4], etc. This paper focuses on the first
one, and we define networks as weighted graphs.

The estimation of network weights has attracted multidis-
ciplinary attention for the last decades. [3] reviews methods
of recovering complex networks from nonlinear dynamics.
Also for nonlinear systems, [5] utilizes input design and a
passivity approach to solve the estimation problem. Network
estimation for consensus dynamics is considered in [6],
in which the estimation problem is converted to a convex
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optimization one. Plenty of network estimation methods for
opinion dynamics, such as DeGroot and Friedkin-Johnsen
models, have also been investigated, such as compressed
sensing [2], vector autoregressive processes [7], and least
square algorithms [8]. Additionally, vast papers study the
topic of graph signal processing, e.g., [9], [10], which focuses
on processing signals from graphs and learning network
topologies.

Most existing works concentrate on systems with contin-
uous observations. In practical scenarios, however, agents
often present discrete outputs rather than continuous ones
[11], [12]. For instance, binary-valued signals may be the
only information transmitted and observed in communica-
tion networks because of limited storage and bandwidth
resources. Therefore, the study of network estimation for sys-
tems with quantized observations is necessary. To tackle this
challenge, we resort to identification methods for quantized
output systems.

The parameter estimation of quantized systems has de-
veloped rapidly in recent years. Based on full-rank periodic
inputs, [13] introduces the optimal quasi-convex combination
estimator. [14] replaces the assumption of full-rank periodic
inputs by the one based on general quantized inputs. Under
conditions of sufficiently rich inputs and prior knowledge of
parameters, [15], [16] study a recursive projection algorithm
for finite impulse response (FIR) systems. Besides, input
conditions can be relaxed by designing adaptive quantizers
[17], [18]. The expectation maximization (EM) algorithms
are utilized to solve maximum likelihood estimation (MLE)
problems for FIR systems in [19] and for ARX systems in
[20], but they are batch algorithms. Finally, [21] investigates
recursive identification of systems with binary outputs and
ARMA noises by using stochastic approximation (SA) algo-
rithms.

In this paper, we study the estimation of network weights
for a class of binary-valued observation systems, which may
not allow the design of inputs and quantizers. In these
systems, agents present binary-valued outputs, which can be
interpreted as true/false or active/inactive signals, and update
their states based on these binary outputs. This update rule
makes system states coupled with observations that cannot
be modeled as selected or i.i.d. inputs as in [14], [15],
[21]. Additionally, the quantization parts of the systems are
unknown inherent components and cannot be designed like
in [17], [18].

Our contributions are summarized as follows. We formu-
late a dynamical model over networks with binary-valued
observations. The stability of outputs and the identifiability
of the model are investigated in detail. To estimate network
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weights for this model, a recursive algorithm based on SA
techniques is proposed.

More precisely, in order to deal with the temporal depen-
dency of observations and achieve the recursive estimation
of network weights, a deterministic objective function is con-
structed based on the likelihood function, by extending the
dimension of observations and applying ergodic properties
of Markov chains. By imposing an independent Gaussian
assumption on disturbances, we show that the function is
strictly concave and has a unique maximum identical to the
true parameter vector. In this way, the estimation problem
is transformed to an optimization problem. A recursive
algorithm based on stochastic approximation techniques is
proposed to solve this problem, and the strong consistency
of the algorithm is established.

Unlike batch algorithms solving MLE problems in [19],
[20], [23], our recursive algorithm can be applied to online
tasks like real-time decision-making and surveillance for
networked systems. This work also provides a new scheme
for the identification of systems with quantized observations.

The remainder of this paper is organized as follows.
Section II introduces some notations. We formulate the
estimation problem in Section III, and study the model and
its identifiability in Section IV. The estimation algorithm and
numerical simulations are given in Section V. Section VI
concludes the paper.

II. NOTATIONS

We represent column vectors by boldfaced lower-case or
Greek letters, and their entries by lower-case letters with
subscripts, e.g., ai is the i-th entry of a. By ‖ · ‖ we denote
the Euclidean norm of a vector. Matrices and random vectors
are written as upper-case letters such as A and X , but we will
not emphasize the meaning unless this causes ambiguity. For
a matrix A, its entries, rows, and transpose are denoted by
aij , Ai, and AT , respectively. The expectation of a random
variable X is denoted by E[X]. For a sequence of random
vectors, say {Xk, k ≥ 0}, Xk,i is used to represent the i-th
entry of Xk.

Denote |a| = (|a1|, . . . , |an|)T and |A| = (|aij |), where
|x| is the absolute value of a real number x. The n-length
all-zeros and all-ones vectors are written as 0n and 1n,
or simply 0 and 1. The symbol ei denotes a unit vector
with i-th entry being 1. A matrix A is called stochastic
if A1 = 1, and called absolutely stochastic if |A|1 = 1.
Let Rn be the n-dimensional Euclidean space. For a vector
x = (x1, x2, . . . , x2m)T ∈ R2m, we define two projections
from R2m to Rm: hF (x) = (x1, . . . , xm)T and hL(x) =
(xm+1, . . . , x2m)T . That is to say, hF collects the first m
entries of x, and hL collects the last m entries of x. Let
a ∨ b := max{a, b} and a ∧ b := min{a, b}. We use
Sm :=×m

i=1
Ui, Ui = {0, 1}, to represent the Descartes

product of m identical binary sets {0, 1}.
For a homogeneous and finite-state Markov chain {Xk}

taking values in a state space Ω, the transition probability
from x to y is P (x, y) = P{X1 = y|X0 = x}, and the k-step
transition probability from x to y is P k(x, y) = P{Xk =

y|X0 = x}, ∀x, y ∈ Ω. We say that y is reachable from x, if
there exists k ≥ 1 such that P k(x, y) > 0. The Markov chain
is said to be irreducible, if y is reachable from x for all x, y ∈
Ω. The greatest common divisor of set {k ≥ 1 : P k(x, x) >
0} is called the period of x, denoted by d(x). The Markov
chain is aperiodic if d(x) = 1 for all x ∈ Ω. We call a
probability distribution π on Ω as a stationary distribution, if
∀y ∈ Ω, π(y) =

∑
x∈Ω π(x)P (x, y). The probability density

function of the standard normal is represented by φ(x), and
the cumulative density function by Φ(x), x ∈ R.

III. PROBLEM FORMULATION

A. Motivation

In this paper, we consider the network estimation prob-
lem for a class of networked dynamics in which agents
exchange binary-valued outputs and update according to
these observations. The binary outputs can be viewed as two
alternative actions of a person [24], good/failure conditions
for a physical infrastructure or an economic unit [25], etc.

The dynamics have two significant characteristics: the out-
puts of an agent’s neighbors generate a network cost for this
agent, and the agent then changes its output by comparing
this cost with a threshold of its own. For instance, in a
collective behavior model called the threshold model [24], if
for an individual, the number of people taking certain action
exceeds a particular portion, generating a social cost, then
this person will follow the others’ actions. Other examples
are cascade dynamics over networks [25], the model of
binary decision with externalities in economics [26], and
so on. The action generating process, specifically, updating
outputs according to the average of neighbors’ actions and
one’s threshold, can also be viewed as an optimal choice of
a quadratic network utility function [27].

Since this kind of dynamics with binary-valued output
and threshold rule are able to capture many realistic sce-
narios, a significant problem is whether we can estimate
the underlying network weights from the limited binary-
valued observations. This problem is crucial because one
can further detect community or look for key nodes in
the network, which deepens the understanding of the group
and contributes to decision-making issues related to the
networked dynamics.

B. Problem Formulation

Mathematically, we formulate the dynamics with binary-
valued observations as follows, supposing that the network
size n ≥ 2,

Yk = ASk−1 +Dk,

Sk = Q(Yk, c),
(1)

where k ≥ 1, Yk = (Yk,1, . . . , Yk,n)T , Dk = (Dk,1, . . . ,
Dk,n)T , Sk = (Sk,1, . . . , Sk,n)T are the state vector, the
disturbance, and the observation vector at time t respectively.
A is the weight matrix of the network, and c = (c1, . . . , cn)T

is the unknown quantized threshold vector. Q(Yk, c) =
(I[Yk,1>c1], . . . , I[Yk,n>cn])

T is the quantizer. Here I[inequality]
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is an indicator function equal to 1 if the inequality in the
bracket holds and equal to 0 otherwise.

Our main goal is to estimate the network weight matrix
A and the quantization threshold vector c. Denote these
parameters by θ := vec

{
(A c)

}
, where (A c) is a matrix of

dimension n× (n+ 1), and the vec{·} operator generates a
vector from a matrix by stacking the transpose of its rows
on one another. We propose a recursive algorithm based on
SA techniques, and study the strong consistency.

For the weight matrix A, the ij-th entry represents the
influence weight of j to i. To cover more situations, we
do not assume that the row sums of A are 1, but if the
assumption that A is stochastic or absolutely stochastic is
made, then conditions on the disturbance can be relaxed,
which is shown in Section IV-B. Negative weights are also
permitted, which represent antagonistic relationships. We
assume that |A| has no row with zero sum, i.e., |Ai|1 > 0
for all i. This means that every agent has certain connections
with others.

The disturbance Dt can be interpreted as an unknown
external disturbance to the agents. In the following we follow
an MLE approach, so we give the following standard normal
assumption for the disturbance. The normal distribution
assumption is not unusual for quantized systems, since it
facilitates the computation of the MLE [19], [20], [23].
Furthermore, in Section V-A we show that, by imposing
the Gaussian assumption, the estimation problem can be
transformed to an optimization problem that can be solved
via standard stochastic approximation algorithms. Addition-
ally, if further assumption on the network weight matrix is
made, then the variance of the Gaussian disturbances can be
unknown, which is discussed in Section IV-B.

Assumption 1: {Dk,i}1≤i≤n,k≥1 are independent and
identically distributed (i.i.d.) standard normal random vari-
ables, and independent of S0.

IV. THE MODEL AND THE IDENTIFIABILITY

A. Stability of the Observation Sequence

This section investigates the stability of the observation
sequence and the identifiability of the corresponding model
set.

As in (1), the observation sequence {Sk, k ≥ 0} is a
Markov chain with finite states. The existence of stationary
distributions is a significant aspect of stochastic stability of
Markov chains [28], and we have a straightforward result as
follows.

Theorem 1: (Stability) Suppose that Assumption 1 holds.
Then the Markov chain {Sk} defined by (1) is irreducible
and aperiodic, and hence converges in distribution to a
unique stationary distribution positive on Sn from any initial
condition.

Proof: See the Appendix.
This theorem shows that the observation sequence can

exhibit sufficient diversity for our estimation as long as the
disturbance can surpass the influence of others to an agent,
and make this agent display a different choice.

Define S̃k := (STk S
T
k−1)T , k ≥ 1. This chain is critical for

our estimation. Note that {S̃k, k ≥ 1} taking values in S2n

is also a Markov chain. For k ≥ 1 and sk−1, sk, sk+1 ∈ Sn,
there holds that

P

{
S̃k+1 =

(
sk+1

sk

) ∣∣∣S̃k =

(
sk

sk−1

)}
= P{Sk+1 = sk+1|Sk = sk}.

(2)

So {S̃k} is aperiodic. For states (sT uT )T , (xT yT )T ∈
S2n, since {Sk} is irreducible, there exists k ≥ 1 such that
P k(x,u) > 0. Moreover, from the proof of Theorem 1,
P (u, s) > 0 holds. Hence it follows from (2) that

P

{
S̃k+1 =

(
s
u

) ∣∣∣S̃0 =

(
x
y

)}
> 0,

which implies that {S̃k} is also irreducible, and further we
have the following result:

Theorem 2 (Ergodicity): Suppose that Assumption 1
holds. The Markov chain {S̃k} is irreducible and aperiodic,
and converges in distribution to a unique stationary distribu-
tion positive on S2n, from any initial condition.

The next lemma illustrates the relation between {Sk}
and the stationary distribution of {S̃k}. It says that for the
stationary distribution of S̃k, the conditional probability, of
its first n entries taking the value of sF given its last n
entries equal to sL, is the same as the transition probability
of {Sk} from sL to sF , which intuitively accords with the
definition of {S̃k}.

Lemma 1: Suppose that Assumption 1 holds, and S̃ is
subject to the stationary distribution of {S̃k}. Then

P{hF (S̃) = sF |hL(S̃) = sL} = P (sL, sF ),

for all sF , sL ∈ Sn, where hF and hL are defined in Section
II and P (·, ·) is the transition matrix of {Sk}.

Proof: The proof is omitted because of space limitation.

B. IDENTIFIABILITY

One of the central concerns in system identification is
whether parameters of different values can determine an
identical model [29]. For model (1), when we fix the dis-
tribution of disturbances in advance, the answer is negative
by considering the following result.

Theorem 3: (Identifiability) Suppose that Assumption 1
holds. Then distinct parameter vector θ corresponds to a
distinct Markov chain {Sk} defined by (1). That is to say,
for two parameter vectors θ and θ̂ such that aij 6= âij or
ci 6= ĉi for some i, j ∈ {1, 2, . . . , n}, Markov chains {Sk}
and {Ŝk}, defined by θ and θ̂ respectively, have different
transition probability matrices.

Proof: See the Appendix.
If the noise assumption is relaxed to i.i.d. normal random

variables with zero mean and unknown variance σ > 0, then
the noise distribution function is F (x) = Φ( xσ ), where Φ(·)
is the cumulative density function (c.d.f.) of the standard nor-
mal random variable. It follows from the proof of Theorem 3
that ci/σ = ĉi/σ̂, aij/σ = âij/σ̂, for all 1 ≤ i, j ≤ n. This
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implies that the model (1) is unique up to constant multiples
of the parameters.

In the literature, the influence weight matrix is often as-
sumed to be row stochastic (Ai1 = 1, ∀1 ≤ i ≤ n, and aij ≥
0, ∀1 ≤ i, j ≤ n) or absolutely row stochastic (|Ai|1 =
1, ∀1 ≤ i ≤ n). Under this assumption, the unknown
variance can also be estimated, because the model under
these assumptions is equivalent to the original one under
Assumption 1. To see this, denoting B = diag(a1, . . . , an)
as the diagonal matrix with diagonal entries a1, . . . , an with
ai = |Ai|1, (1) can be written as

Ỹk = ÃSk−1 + D̃k,

Sk = Q̃(Ỹk),
(3)

where Ỹk = B−1Yk, Ã = B−1A, D̃k = B−1Dk, and
Q̃(Ỹk) = (I[Ỹk,1>c̃1], . . . , I[Ỹk,n>c̃n])

T . Here c̃i = (ai)−1ci,
and B−1 exists since |Ai|1 > 0. So Ã is absolutely row
stochastic in (2), and D̃t,i, 1 ≤ i ≤ n, become heteroge-
neous Gaussian noises with different variances. Under this
condition, the identifiability still holds.

V. THE IDENTIFICATION ALGORITHM

A. The Objective Function and Its Concavity

Recall that θ = vec
{

(A c)
}

is the parameter
vector to be estimated, and further denote θ(i) =
(Ai ci)

T . To avoid ambiguity, θ∗ := vec
{

(A∗ c∗)
}

=
(((θ∗)(1))T , . . . , (θ∗)(n))T )T is used to represent the true
parameters. Given observation data {sk, 0 ≤ k ≤ T}, where
sk is the observation vector at time k, the log likelihood
function is

l(T ; θ)

= logP{Sk = sk, 0 ≤ k ≤ T}

= log
∏

1≤k≤T

P{Sk = sk|Sk−1 = sk−1}P{S0 = s0}

= logP{S0 = s0}+
∑

1≤k≤T

logP{Sk = sk|Sk−1 = sk−1}

= logP{S0 = s0}+
∑

1≤k≤T

∑
1≤i≤n

log gi(s̃
k|θ(i)), (4)

where

gi(x̃|θ(i)) := (1−Φ(ci−AihL(x̃)))x̃iΦ(ci−AihL(x̃))1−x̃i ,
(5)

x̃ ∈ S2n, and (s̃t)T := ((st)T (st−1)T ).
For fixed θ, gi(x̃|θ(i)) and ∇θ(i)gi(x̃|θ(i)) are bounded

since x̃ takes values in S2n. Thus, from the ergodicity of
Markov chains (Theorem 17.1.7 in [28]), the following equa-
tions hold for the chain {S̃k} and fixed θ almost surely(a.s.):

lim
T→∞

1

T

∑
1≤k≤T

∑
1≤i≤n

log gi(S̃k|θ(i))

= E

[∑
1≤i≤n

log gi(S̃|θ(i))

]
,

lim
T→∞

1

T

∑
1≤k≤T

∑
1≤i≤n

∇θ(i) log gi(S̃k|θ(i))

= E

[∑
1≤i≤n

∇θ(i) log gi(S̃|θ(i))

]
,

where S̃ is subject to the stationary distribution of {S̃k}.
Therefore, the function of θ

E

[∑
1≤i≤n

log gi(S̃|θ(i))

]
(6)

will be used as an objective function to fulfill the estimation
of θ∗. It has a good property:

Theorem 4: (Strictly concavity of (6)) Under Assumption
1, the function (6) is strictly concave with respect to θ over
Rn(n+1), and the true parameter vector θ∗ is the unique
maximum point of (6).

Proof: Because of the space limitation, we only provide
a sketch of the proof. For the first step, one need to show that
the derivative can be passed under the expectation for both
(6) and its gradient. Next, we have to show that the Hessian
of (6) is negative definite over Rn(n+1). Finally, that θ∗ is a
maximum point of (6) needs to be proved.

Remark 1: This theorem is the key result of our paper.
It shows that under the independent Gaussian assumption
the network weight estimation algorithm can be transformed
to an optimization problem, which can be addressed by
using standard methods such as stochastic approximation
algorithms.

Therefore, our estimation task turns to seeking the unique
maximum point of this strictly concave function. However,
S̃ cannot be directly obtained, so the observations {S̃k} are
used to replace it. An SA algorithm is introduced in the next
section, and it is verified that the true network can be indeed
estimated by using the observation sequence.

B. Network Estimation Algorithm

We use the SA algorithm to deal with the estimation
problem. For 1 ≤ i ≤ n and k ≥ 1, denote

Ki(θ
(i), S̃k+1) := ∇θ(i) log gi(S̃k+1|θ(i)),

K(θ, S̃k+1) := (K1(θ(1), S̃k+1), . . . ,Kn(θ(n), S̃k+1))T ,

where θT = ((θ(1))T , . . . , (θ(n))T ), and gi is defined in (5).
The estimation algorithm is as follows:

θk+1 = θk + akK(θk, S̃k+1), (7)

where θTk = ((θ
(1)
k )T , . . . , (θ

(n)
k )T ) is the estimate of θ∗ at

time k, which is the root of E{K(θ, S̃)} as in Theorem 4,
and ak is the step size.

Remark 2: In this algorithm, we assume that θk is
bounded. If this assumption does not hold, one can apply
stochastic approximation algorithms with expanding trun-
cations [30], in which the estimate θk is also bounded
because of truncations. It is also verified that the number
of truncations is finite a.s.
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Fig. 1. The true network.

Fig. 2. The estimated network.

C. Strong Consistency of Estimation

In this section we show the strong consistency of the
proposed algorithm, i.e., the estimate sequence converges
to the true parameter vector with probability one. First, we
introduce the following step-size condition, which is standard
for SA algorithms.

Assumption 2: Let ak be the step size in (7), satisfying
ak > 0,

∑∞
k=1 ak =∞, and

∑∞
k=1 a

2
k <∞.

Under Assumptions 1 and 2, we have the following strong
consistency result, indicating that the algorithm (7) converges
to the true parameter vector θ∗.

Theorem 5: (Strong consistency) Suppose that Assump-
tions 1 and 2 hold. Then the estimates θk of the algorithm
(7) converges to θ∗ a.s. from any fixed initial value, i.e.,

P

{
lim
k→∞

θk = θ∗
}

= 1,

where θ∗ is the true parameter vector.
Proof: Because of the limitation of space, we omit the

proof here. The theorem is verified mainly by validating the
conditions of Theorem 2.5.1 in [30].

D. NUMERICAL SIMULATIONS

We use an influence weight matrix with four individuals
from an empirical study [31] to illustrate the consistency of

0 2 4 6 8

Time 10
4

0

0.2

0.4

0.6

0.8

M
S

E

Fig. 3. The MSE of the proposed algorithm.

the above algorithm. The weight matrix Ã is given by

Ã =


0.220 0.120 0.360 0.300
0.147 0.215 0.344 0.294

0 0 1 0
0.090 0.178 0.446 0.286

 .
The noise is set to be independent white Gaussian with
zero mean and variance 4, and c̃ is randomly selected
as c̃ = (0.13 0.28 0.08 0.24)T . Therefore, as previ-
ous discussions, the parameters are identical to that c =
(0.065 0.14 0.04 0.12)T and A = Ã/2 in our model.

We set the step size ak = 10/(k + 200), and run the
algorithm for 100 trials. In Figs. 1 and 2, the true network and
the estimated network are presented with self-loop omitted.
The two figures illustrate that the estimated network is close
to the true one. It should also be noted that the estimates
of a31, a32, and a34 are close to 0, indicating the network
has no corresponding edges. Fig. 3 shows the mean square
error (MSE), which at time k is defined as 1

N

∑N
i=1 ‖θk(i)−

θ∗‖2 with the number of trials N = 100, where θk(i) is the
estimate of the i-th trial at time k.

VI. CONCLUSION
In this paper we study the estimation of network weights

for a class of binary observation systems. These systems are
distinctly different from models studied in the literature of
quantized identification, because there is no room for the
design of inputs and quantizers. We propose a recursive
algorithm based on stochastic approximation techniques, and
prove its consistency. Future work includes investigation of
the convergence rate and asymptotical efficiency, generaliza-
tion of the model and noise conditions, for example, discrete
disturbances, and applications of the algorithm in practice.

APPENDIX
Proof of Theorem 1:
Under Assumption 1, the probability transition matrix can

be obtained via the following way:

P{S1 = s|S0 = u}
= P{AiS0 +D1,i > ci,∀i s.t si = 1, AjS0 +D1,j ≤ cj ,

∀j s.t. sj = 0|S0 = u}
= P{Aiu +D1,i > ci,∀i s.t si = 1, Aju +D1,j ≤ cj ,

∀j s.t. sj = 0|S0 = u}
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= P{Aiu +D1,i > ci,∀i s.t si = 1, Aju +D1,j ≤ cj ,
∀j s.t. sj = 0}

=
∏

1≤i≤n

(1− Φ(ci −Aiu))siΦ(ci −Aiu)1−si > 0, (8)

for all s,u ∈ Sn, 1 ≤ i ≤ n. Therefore, the transition matrix
of {Sk} is irreducible and aperiodic, and the conclusion
holds by Corollary 1.17 and Theorem 4.9 in [32]. �

Proof of Theorem 3:
From (8) in the proof of Theorem 1, we have the following

P{S1 = ei|S0 = ej} = (1− Φ(ci − aij))
∏
l 6=i

Φ(cl − alj),

P{S1 = 0|S0 = ej} =
∏

1≤l≤n

Φ(cl − alj),

P{S1 = ei|S0 = ej + ek} = (1− Φ(ci − aij − aik))·∏
l 6=i

Φ(cl − alj − alk)

P{S1 = 0|S0 = ej + ek} =
∏

1≤l≤n

Φ(cl − alj − alk),

where 1 ≤ i, j, k ≤ n and k 6= j, and the same for {Ŝt}.
Here Φ is the c.d.f. of standard normal distribution.

Suppose that {St} and {Ŝt} have the same probability
transition matrices. From Assumption 1 and the above equa-
tions, it follows that

Φ(ci − aij) = Φ(ĉi − âij)
Φ(ci − aij − aik) = Φ(ĉi − âij − âik),

where 1 ≤ i, j, k ≤ n and k 6= j. Hence by the strictly
increasing property of Φ,

ci − aij = ĉi − âij
ci − aij − aik = ĉi − âij − âik,

where 1 ≤ i, j, k ≤ n and k 6= j. Therefore, if we set
j = k + 1 when k < n, and j = 1 when k = n, then
we have for all i, k ∈ {1, . . . , n}, aik = âik. Consequently
ci = ĉi holds for all i ∈ {1, . . . , n}. �
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