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Abstract— This paper proposes a layered networked SIWS
(Susceptible-Infected-Water-Susceptible) model, for an SIS-type
waterborne disease spreading over a human contact network
connected to a water distribution network that has a pathogen
spreading in it. Conditions for local and global stability of the
healthy state, where no one is sick and the water network is
not contaminated, are provided. We also pose an observability
problem, and show under certain conditions if you observe some
of the human contact network you can recover the pathogen
levels in the water network.

I. INTRODUCTION

Diseases and other health problems have been caused
by waterborne pathogens worldwide [1]. These pathogens
spread through the water distribution systems (e.g., rivers,
groundwater, and reservoirs) [2]. While water quality issues
are very prevalent in developing countries with less advanced
plumbing and sewage infrastructure, there are still problems
in more ‘developed’ countries. For example, in Östersund in
Northern Sweden, approximately 27,000 people (∼45% of
the population) became ill and had a water-boil order for over
two months as the result of Cryptosporidium contamination
of the drinking water [3].

Recent work has considered adding a water compartment
in traditional epidemic models. In [4], a SIWR (Susceptible-
Infected-Water-Removed) model was proposed by adding a
water compartment W in the classical SIR model. Extending
this work, [5] proposed a cholera model that considers
infection via a water compartment through both direct and
indirect disease transmission pathways. In [6], the model
from [4] is extended/modified by proposing a multi-group
SIWS model, that is, there adding network-dependence in the
human contact network but with only a single water compart-
ment. In [7], the model from [4] is extended by proposing a
network-dependent SIWR model, which, similarly, includes
a human-contact network and a single water component that
may be contaminated.

The above discussion considers the spread of waterborne
pathogens through natural causes. However, the source of
the outbreak could be the result of an attack by an adversary.
Vulnerabilities of water networks have been highlighted from
a cyber-physical systems perspective in the literature [8]–
[10]. If an adversary attacks the water network of a city one
would want to minimize the effect. Regardless of the source
of the outbreak, observing the source of the contamination
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of the water so that the population can be protected as soon
as possible is of utmost importance.

In this paper, we propose an extension of the networked
SIWS model from [6] by adding a water distribution net-
work, where, in addition to person-person and person-water-
person transmissions, there exists water-water transmission
of the pathogen, and thus we call it the layered networked
SIWS model. There are two interpretations of networked SIS
(Susceptible-Infected-Susceptible) models: 1) each node in
the network is a group of fully connected individuals and
the corresponding state variable represents the proportion of
infected individuals in the corresponding group, or 2) each
node is a single agent and the corresponding state variable
represents the probability of the corresponding agent being
infected. Both interpretations require the state variables to
take values between zero and one. In this paper we study
the epidemic spreading of a waterborne disease over multiple
groups of individuals, mainly households, and therefore we
employ the first interpretation.

Networked SIS spread models have been studied quite
widely by the controls community in recent years [11], [12].
Recently it has been shown that these models capture real
spread behavior in at least some applications [13], [14].
There has also been an interesting thread of research looking
at competing/coupled viruses spreading on layered networks
[15]–[17]. In addition to layered spread networks, there has
also been layered network models proposed that explore the
spread of products (modeled as an SIS process) coupled with
a consensus, opinion dynamics, network model [18], [19]. To
the best of our knowledge this is the first layered networked
model comprised of a networked SIS spread component
coupled with a water distribution network.

We use this model to formulate an interesting observability
problem. If there is a water pathogen spreading in the water
network but no sensors for detecting it, due to high costs,
can you recover the water infection levels in the water
distribution network by only measuring the level of sickness
in the population? To the best of our knowledge the only
work that has explored observability of SIS spread models
is in [20], where the authors employ an empirical gramian
approach.

The contributions of this paper are two fold: 1) we derive
and analyze the layered networked SIWS model, and 2)
we are interested in observing the spread of the pathogen
and disease in the networks. More formally, we study the
observability problem on this nonlinear system. Due to space
limitations, some of the proofs are omitted in this version.

Notation: For any positive integer n, we use [n] to denote
the set {1, 2, . . . , n}. We use A> for the transpose of a matrix
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A. The ith entry of a vector x will be denoted by xi. We
use 0 and 1 to denote the vectors whose entries all equal 0
and 1, respectively, and use I to denote the identity matrix,
while the sizes of the vectors and matrix are to be understood
from the context. For any vector x ∈ IRn, we use diag(x) to
denote the n × n diagonal matrix whose ith diagonal entry
equals xi. For any two sets A and B, we use A\B to denote
the set of elements in A but not in B. For any two real vectors
a, b ∈ IRn, we write a ≥ b if ai ≥ bi for all i ∈ [n], a > b
if a ≥ b and a 6= b, and a� b if ai > bi for all i ∈ [n]. For
a square matrix M , we use σ(M) to denote the spectrum of
M , use ρ(M) to denote the spectral radius of M , and s(M)
to denote the largest real part among the eigenvalues of M ,
i.e., s(M) = max {Re(λ) : λ ∈ σ(M)}.

II. THE MODEL

In this section, we propose a distributed continuous-time
waterborne pathogen model, called the layered networked
SIWS model depicted in Figure 1.

Consider an SIS-type waterborne pathogen spreading over
a two-layer network consisting of n > 1 groups of in-
dividuals and m > 1 water compartments which can be
contaminated by infected individuals shedding the pathogen
into them. We assume that the water compartments are
reservoir-like water systems with homogeneous water quality
and an instantaneous pathogen diffusion processes. An indi-
vidual can be infected either by coming into contact with
contaminated water or infected individuals.

Let Ii(t) and Si(t) respectively denote the number of
infected and susceptible individuals in group i at time t ≥ 0.
We assume that the total number of individuals in each
group i, denoted by Ni, does not change over time, i.e.,
Si(t) + Ii(t) = Ni for all i ∈ [n] and t ≥ 0, which implies
that the birth and death rates for each group are equal. This
assumption simplifies the model and has been adopted in
[21]. We associate with each group i curing rate γi, birth
rate µi, death rate µ̄i (which equals µi), person-to-person
infection rates aij and water-to-person infection rates awij .
It is assumed that individuals are susceptible at birth even
if their parents are infected. The evolution of the numbers
of infected and susceptible individuals in each group i is as
follows (which follows the ideas in [21] and [4]):

Ṡi(t) = µiNi − µ̄iSi(t) + γiIi(t)−
n∑

j=1

aij
Si(t)

Ni
Ij(t)

−
m∑
j=1

awijwj(t)Si(t)

= (µi + γi)Ii(t)−
n∑

j=1

aij
Si(t)

Ni
Ij(t)

−
m∑
j=1

awijwj(t)Si(t), (1)

İi(t) = −γiIi(t)− µ̄iIi(t) +

n∑
j=1

aij
Si(t)

Ni
Ij(t)

(2)

+

m∑
j=1

αw
ijwj(t)Si(t)

= (−γi − µi)Ii(t) +

n∑
j=1

aij
Si(t)

Ni
Ij(t)

+

m∑
j=1

awijwj(t)Si(t), (3)

where wj(t) denotes the pathogen concentration in the jth
water reservoir and evolves as

ẇj = −δwj wj +

n∑
k=1

ζwjkIk +

m∑
k=1

αkjwk − wj

m∑
k=1

αjk, (4)

where δwj denotes the decay rate of the pathogen in the water,
ζwjk denotes the person-water contact rate of group k to water
node j, and αkj represents the flow of the pathogen from
node k to node j in the water network. It is easy to check
from (1) and (3) that Ṡi(t) + İi(t) = 0, which is consistent
with the assumption that Ni is a constant.

To simplify the model, we define the portion of infected
individuals in each group i by

xi(t) =
Ii(t)

Ni
.

By defining the following parameters

δi = γi+µi, βij = aij
Nj

Ni
, βw

ij = Nia
w
ij , cwjk = ζwjk/Nk

and from (1), (3), and (4), it follows that

ẋi = −δixi + (1− xi)

 n∑
j=1

βijxj +

m∑
j=1

βw
ijwj

 (5)

ẇj = −δwj wj +

m∑
k=1

αkjwk − wj

m∑
k=1

αjk +

n∑
k=1

cwjkxk, (6)

Note that depending on the pathogen δwj may be zero. Note
also that if there is only one node in the water network,
the model reduces to a slightly more general version of the
model proposed in [6]. Finally if wj(t) = 0 for all t and
all j ∈ [m], or equivalently, there is no water distribution
network, the model reduces to the regular networked SIS
model [11].

We impose the following assumptions on the system
parameters.

Assumption 1. Suppose that δi > 0 for all i ∈ [n], δwj 6=∑
k αkj for all j ∈ [m], βij ≥ 0 for all i, j ∈ [n], and

βij > 0 whenever group j is a neighbor of group i.

The model from (5)-(6) in vector form becomes:

ẋ = (B −XB −D)x+ (I −X)Bww (7)
ẇ = −Dww +Aww + Cwx, (8)

where B = [βij ]n×n, X = diag(x), Bw = [βw
ij ]n×m, Aw

has off-diagonal entries equal to αkj and diagonal entries
equal to −

∑
k αkj , and Cw = [cwjk]m×n. Therefore, the

columns of Aw sum to zero.
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Human	Contact	
Network	

Water	
Network	

Fig. 1: Multi-layered SIWS model: The disease (depicted by
red) spreads between household nodes (squares) through the
human contact network and the pathogen (green) spreads
through water network (nodes depicted by circles. Blue
indicates healthy and the model allows for transmission from
the water network to the human contact network, vice versa,
and not necessarily symmetrically.

Since each xi represents the proportion of infected indi-
viduals in group i, it is natural to assume that the initial
value of xi is in [0, 1], or the value of xi will lack physical
meaning of the epidemic model considered here. Similarly,
it is also natural to assume that the initial value of wj is
nonnegative.

Lemma 1. Suppose that Assumption 1 holds. Suppose that
xi(0) ∈ [0, 1] for all i ∈ [n] and wj(0) ≥ 0 for all j ∈ [m].
Then, xi(t) ∈ [0, 1] for all i ∈ [n] and wj(t) ≥ 0 for all
j ∈ [m], for all t ≥ 0.

Proof: Suppose that at some time τ , xi(τ) ∈ [0, 1] for
all i ∈ [n] and wj(τ) ≥ 0 for all j ∈ [m]. First consider
any index j ∈ [m]. If wj(τ) = 0, then from (6) and
Assumption 1, ẇj(τ) ≥ 0. Therefore wj(t) ≥ 0 for all t ≥ τ .

Now consider any index i ∈ [n]. If xi(τ) = 0, then from
(5) and Assumption 1, ẋi(τ) ≥ 0. If xi(τ) = 1, then again
from (5) and Assumption 1, ẋi(τ) < 0. Therefore, xi(t) will
be in [0, 1] for all times t ≥ τ .

Since the above arguments hold for any i ∈ [n] and any
j ∈ [m], we have that xi(t) ∈ [0, 1] for all i ∈ [n] and
wj(t) ≥ 0 for all j ∈ [m], t ≥ τ . Since it is assumed that
xi(0) ∈ [0, 1] for all i ∈ [n] and wj(0) ≥ 0 for all j ∈ [m],
the lemma follows by setting τ = 0.

In the next section we solve the following problem.

Problem 1. Given the model in (5)-(6), find conditions for
convergence to the healthy state, that is, where all nodes in
both the human contact network and the water distribution
network are healthy.

III. ANALYSIS

In this section we analysis the new proposed model both
locally and globally to solve Problem 1.

A. Local Stability of the Healthy State

Consider (x̃, w̃), an equilibrium of (7)-(8). The Jacobian
matrix of the equilibrium, denoted by J(x̃, w̃), is

J(x̃, w̃) =

[
B − X̃B −D − F1 − F2 (I − X̃)Bw

Cw −Dw +Aw

]
,

where X̃, F1, F2 are diagonal matrices given by

X̃ = diag {x̃1, x̃2, · · · , x̃n} ,

F1 = diag

{
n∑

j=1

β1j x̃j ,

n∑
j=1

β2j x̃j , · · · ,
n∑

j=1

βnj x̃j

}
,

F2 = diag


n∑

j=1

βw
1jw̃j ,

n∑
j=1

βw
2jw̃j , · · · ,

n∑
j=1

βw
njw̃j

 .

In the case when x̃ = 0 and w̃ = 0, i.e., at the healthy state,

J(0,0) =

[
B −D Bw

Cw Aw −Dw

]
.

If either Bw = 0 or Cw = 0, i.e., the water does not affect
the population or humans will not contaminate the water
network by using it, we have the following result.

Proposition 1. If s(B − D) < 0, s(Aw − Dw) < 0, and
Bw = 0 or Cw = 0, then the healthy state (0,0) of (7)-(8)
is locally exponentially stable.

Proof: If Bw = 0 or Cw = 0 then J(0,0) is a triangular
matrix (lower or upper, respectively), and therefore the
spectrum of the matrix is equal to the union of the spectrum
of the two block matrices on the diagonal. Consequently,
if s1(B − D) < 0 and s1(Aw − Dw) < 0 then J(0,0) is
Hurwitz and by Lyapunov’s indirect method [22] the healthy
state (0,0) of (5)-(6) is locally exponentially stable.

Note that J(0,0) = Bf −Df where

Bf =

[
B Bw

Cw Aw − diag(Aw)

]
, (9)

Df =

[
D 0
0 Dw − diag(Aw)

]
. (10)

For nonzero Bw and Cw, we have the following result.

Proposition 2. Let Assumption 1 hold. If ρ(D−1f Bf ) < 1
and Bf is irreducible, then the healthy state (0,0) of (7)-
(8) is locally exponentially stable.

To prove the proposition, we need the following lemma.

Lemma 2. [Proposition 1 in [17]] Suppose that N is an
irreducible nonnegative matrix in IRn×n and Λ is a negative
diagonal matrix in IRn×n. Let M = N + Λ. Then, s(M) <
0 if and only if ρ(−Λ−1N) < 1, s(M) = 0 if and
only if ρ(−Λ−1N) = 1, and s(M) > 0 if and only if
ρ(−Λ−1N) > 1.
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Proof of Proposition 2: From Lemma 2, the condition
ρ(D−1f Bf ) < 1 is equivalent to s(Bf − Df ) < 0, which
implies that J(0,0) is a continuous-time stable matrix. Thus,
by Lyapunov’s indirect method the healthy state (0,0) of
(5)-(6) is locally exponentially stable.

B. Global Stability of the Healthy State

To state our main result, we need the following concept.
Consider an autonomous system ẋ(t) = f(x(t)), where f :
D → IRn is a locally Lipschitz map from a domain D ⊂ IRn

into IRn. Let x∗ be an equilibrium of the system and E ⊂ D
be a domain containing x∗. The equilibrium x∗ is called
asymptotically stable with the domain of attraction E if for
any x(0) ∈ E , there holds limt→∞ x(t) = x∗.

The global stability of the healthy state is characterized
by the following theorem.

Theorem 1. Let Assumption 1 hold. If ρ(D−1f Bf ) ≤ 1 and
Bf is irreducible, then the healthy state (0,0) of (7)-(8)
is asymptotically stable with the domain of attraction x ∈
[0, 1]n and w ∈ [0,∞)n.

C. Reproduction Number

In epidemiology the reproduction number, R0, is the
average number of people that become infected from one
infected individual. If R0 > 1 the disease will lead to
an outbreak; if R0 ≤ 1 the disease will die out. For the
networked SIS model with no water compartments, it is
has been shown that ρ(D−1B) is the reproduction number,
and that if ρ(D−1B) ≤ 1, the model will asymptotically
converge to the healthy state for all initial conditions, and if
ρ(D−1B) > 1, the model will asymptotically converge to a
unique epidemic state for all initial conditions except for the
healthy state [21].

For the layered networked SIWS model (7)-(8), The-
orem 1 implies that when ρ(D−1f Bf ) ≤ 1, the model
will asymptotically converge to the healthy state for all
initial conditions, which implies that the healthy state is the
unique equilibrium. Extensive simulations (some of which
are included in Section V) show that when ρ(D−1f Bf ) > 1,
the model has an epidemic equilibrium. Therefore, we call
ρ(D−1f Bf ) the basic reproduction number of the layered
networked SIWS model (7)-(8), and compare its value with
that of the networked SIS model, ρ(D−1B), to illustrate the
effect of the water distribution network. Note that

D−1f Bf =

[
D−1 0

0 (Dw − diag(Aw))−1

]
×
[
B Bw

Cw Aw − diag(Aw)

]
=

[
D−1B D−1Bw

(Dw − diag(Aw))−1Cw F3

]
,

where F3 = (Dw − diag(Aw))−1Aw − diag(Aw). We need
the following lemma.

Lemma 3. [Lemma 2.6 in [23]] Suppose that N is an
irreducible nonnegative matrix. If M is a principal square

submatrix of N , then ρ(M) < ρ(N).

Since D−1w Bw is an irreducible nonnegative matrix by
Assumption 1, ρ(D−1w Bw) > ρ(D−1B). Therefore we have
the following result.

Proposition 3. Suppose that Assumption 1 holds. Then, the
basic reproduction number of the layered networked SIWS
model (7)-(8) is greater than that of the networked SIS model.

The proposition implies that the water distribution network
makes the system more vulnerable to SIS-type diseases.

IV. OBSERVABILITY PROBLEM

The problem we want to solve is motivated by the question
of when, if you do not have sensors to detect waterborne
pathogens in your water network, can you use measurements
of the sickness level of people, or households, who drink the
water to discover the contamination level of the water, or the
source of the contamination (the initial condition of the water
pathogen levels). We introduce the following notation:

y = Cx, (11)

where C is a measurement matrix.

Problem 2. Given B, D, Aw, Bw, Cw, Dw, C, and mea-
surements y, find conditions for when w(0) can be recovered.

We derive conditions for when the system is locally
weakly observable appealing to the rank of the Jacobian of
the Lie derivatives applying the results from [24]. Conse-
quently, here are the Lie derivative calculations:

y = Cx

ẏ = Cẋ = C[(B −XB −D)︸ ︷︷ ︸
Fx

x+ (I −X)Bw︸ ︷︷ ︸
Fw

w]

ÿ = Cẍ = C[Fxẋ+ Fwẇ − Ẋ(Bx+Bww)]

y(3) = Cx(3) = C[Fxẍ+ Fwẅ − Ẍ(Bx+Bww)

− 2Ẋ(Bẋ+Bwẇ)]

...

y(m+n) = Cx(m+n) = C[Fxx
(m+n−1) + Fww

(m+n−1)

−X(m+n−1)(Bx+Bww)− · · · ],

where ẋ and ẇ are defined in (7) and (8),

ẅ = (Aw −Dw)ẇ + Cwẋ,

Ẋ = diag(ẋ),

Ẍ = (B̃x + B̃w)(Fx − B̃xw),

with B̃x = diag(Bx) and B̃w = diag(Bww).
We explore the case when we assume that all nodes in

the human contact network are initially healthy, that is,
x(0) = 0. Therefore, we explore the Jacobian of the above
Lie derivatives evaluated at x(0) = 0, called O,
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

C 0

C[Fx0
− B̃w︸ ︷︷ ︸
Xx

] CBw

C[X2
x − B̃wB − B̃︸ ︷︷ ︸

Xxx

] C[BwFw0
+XxBw − B̃wBw︸ ︷︷ ︸

Ww

]

C[Fx0
Xxx − D̃B − D̃w C[BwF

2
w0

+XxWw − 2B̃2
wBw

−2B̃2
wB − 2B̃wBXx −B̃w(BwFw0

+BBw)

−2B̃Xx − diag(BBww) −2B̃Ww − D̃Bw +BwCwBw]
+Bw(Fw0Cw + CwXx)]

...
...


,

(12)
where

Fx0
= (B −D)

Fw0
= (Aw −Dw),

B̃ = diag(BBww +BwFw0w),

D̃ = diag(Fx0
Bww),

D̃w = diag(BXxBww −B2Fw0
w

+BwF
2
w0
w +BwCwBww).

Therefore, from Theorems 3.1 and 3.12 in [24], and since
the system is analytic, we have the following theorem.

Theorem 2. The layered networked SIWS model in (7)-(8)
with measurements in (11) is weakly locally observable at
x(0) = 0 if and only if O, as defined in (12), has full rank.

V. SIMULATIONS

For the simulations we depict healthy nodes (both human
and water) as blue. The water network and circle nodes are
depicted in blue for healthy water and the nodes are green
when the water is contaminated, and the spectrum between. If
the value of wj is greater than one, the node is all green and
the diameter of the node is increased proportionally to the
size of wj . The human, or household, nodes are depicted by
squares. Their color ranges between blue and red, indicating
healthy and sick, and the spectrum between. The human
contact network is depicted by gray edges. The connection
from the water network to the human network is depicted by
black edges.

The βij , βw
ij , and αkj are all binary. We set D = 2I ,

Dw = 0.5I , and Cw = 0, that is the people are not allowed
to contaminate the water network. In this simulation, the
B matrix is symmetric and the water network is a directed
tree graph flowing from the first node which represents the
reservoir. The initial condition has all the people healthy and
the reservoir (the first water node) contaminated, x(0) = 0
and w(0) = [1 0 · · · 0]>; see Figure 2a. The system has
ρ(D−1f Bf ) > 1. The system converges to a unique endemic
equilibrium with x(0)� 0 and w(0) = 0; see Figure 2b.

Using the same parameters as the above simulation except
allowing nonzero Cw with Cw = B>w gives noticeably
different results; see Figure 3. The contaminant remains in
the water system and the human contact network becomes

(a) Initial Condition

(b) Equilibrium

Fig. 2: The human contact network is depicted by gray
edges. The water network and nodes are depicted in blue
for healthy water and green when the water is contaminated.
The human, or household, nodes are depicted by squares.
Their color ranges between blue and red, indicating healthy
and sick, and the spectrum between. On the top is the initial
condition, x(0) = 0 and w(0) = [1 0 · · · 0]>, with the
reservoir contaminated, depicted by the green node. On the
bottom is the equilibrium with x(0)� 0 and w(0) = 0.

more infected than the system in Figure 2. Both sets of
simulations converged to the healthy state when D was
increased such that ρ(D−1f Bf ) ≤ 1, consistent with the
results in Section III.

Using the same parameters as the simulation in Figure 2,
except allowing the water network to be undirected changes
the dynamics significantly; see Figure 4. The contaminant
in the water system goes unstable very quickly (depicted by
the whole frame being green) and the human contact network
becomes completely infected. Increasing D did not decrease
the effect of the instability since C was zero. Increasing
Dw sufficiently did remove the stability and, if D was also
increased sufficiently such that ρ(D−1f Bf ) ≤ 1, the system
would converge to the healthy state, consistent with the
results in Section III.
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Fig. 3: Using the same parameters as the simulation in Fig-
ure 2 except allowing the internetwork links to be undirected
(Cw = B>w ) the system appears to have this unique endemic
state.

Fig. 4: Using the same parameters as the simulation in
Figure 2 except allowing Aw to be undirected, the water
states grow unboundedly and all the nodes in the human
contact network converge to 1.

VI. CONCLUSION

In this paper, we have proposed a multi-network-
dependent, continuous-time SIWS epidemic model, which
captures a networked system of multiple groups of in-
dividuals with a water distribution network that can be
contaminated. We have analyzed the stability of the healthy
state, compared the basic reproduction number of the model
with the standard networked SIS model without water, and
discussed an observability problem of the system. For future
work, we would like to analyze the number and stability of
epidemic equilibria. We also want to explore the possible
estimation and control techniques to detect and suppress a
waterborne disease outbreak in finite time.
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[6] J. Liu, P. E. Paré, E. Du, and Z Sun. A networked SIS disease dynamics
model with a waterborne pathogen. In Proceedings of the American
Control Conference (ACC), 2019.
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