43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

FrCo03.2

Making retransmission delays in
wireless links friendlier to TCP

Niels Moller, Karl Henrik Johansson and Hakan Hjalmarsson
{niels|kallej|hjalmars}@s3.kth.se

0-7803-8682-5/04/$20.00 ©2004 IEEE

Abstract— Heterogeneous communication networks with
their variety of application demands, uncertain time-varying
traffic load, and mixture of wired and wireless links pose
several challenging problem in modeling and control. In this
paper we focus on the packet delay, which is an important
variable for efficient end-to-end congestion control. In partic-
ular, we study the delay effects of radio links which use power
control and link-layer retransmissions.

Link-layer retransmissions induce delays which do not
conform to the assumptions on which the transport protocol is
based. This causes undesired TCP control actions which reduce
throughput. A link-layer solution based on adding carefully
selected delays to certain packets is proposed to counteract this
problem. All information needed for this is available locally
at the link.

I. INTRODUCTION

Congestion control is one of the key components that has
enabled the dramatic growth of the Internet. The original
idea [1] was to adjust the transmission rate based on the loss
probability. The first implementation of this mechanism,
denoted TCP Tahoe, was later refined into TCP Reno. This
algorithm (together with some of its siblings) is now the
dominating transport protocol on the Internet. The through-
put and delay experienced by individual users depend on
several factors, including the TCP protocol, link capacity,
and competition from other users. As illustrated in Figure 1,
there are also lower layers that may affect the achieved
delay and bandwidth, if part of the end-to-end connection
is a wireless link.

Poor TCP performance over wireless links is a well-
known problem. The traditional explanation for poor TCP
performance is that the wireless link drops packets due to
noise on the radio channel, and that TCP interprets all packet
losses as indications of network congestion. This explana-
tion is a little too simplistic when considering wireless links
that employ link-layer retransmissions, which is common
in cellular systems. The link-layer retransmission scheme
transforms a lossy link, with fairly constant delay, into a link
with few losses but random delays. The resulting delays, it
turns out, are also problematic for TCP [10].

Several approaches to improve wireless TCP behavior
have been suggested in the literature. Modifications of TCP
have been proposed [2], [3]. Other methods try to more
directly differentiate loss as being either due to conges-
tion or due to lossy wireless transmissions [4], [S], [6].

This work was supported by European Commission through the project
EURONGI and by Swedish Research Council.

Performance-enhancing proxies is an alternative in which
either split connection schemes or interception schemes
are used. The first approach introduces a virtual user at
the link which acts as receiver to the source and source
to the receiver. In the latter approach, acknowledgments
are monitored and dropped if they indicate packet loss
due to link-layer retransmissions. Finally, it is possible to
counteract the influence from the wireless link by letting the
receiver control the transmission via its advertised window.
See [7], [8] for further details on these schemes.

We believe that, as far as possible, the link-layer should
be engineered to be TCP-friendly, reducing the differences
between wired and wireless links. The main contribution
of this paper is an optimization procedure that improves
TCP performance by adding carefully selected delays to
certain packets. There will naturally be some residual
idiosyncrasies of wireless channels that cannot be dealt
with in the link-layer; our approach should be viewed
as complementing both developments to make TCP more
robust to “strange” links, and cross-layer developments that
let the link and the end-nodes exchange information about
link and flow properties.

This article is organized as follows. Section II describes
our models for the lower layers of the system. In Section III
we use these models to derive IP-level properties, in par-
ticular the 1P-packet delay distribution, and implications for
TCP performance. In Section IV we argue that we should
use the engineering freedom we have in the link-layer to
make the radio link more friendly to TCP, and we describe
our delay optimization procedure and its impact on TCP.

II. SYSTEM MODEL

When using TCP over a wireless link, there are several
interacting control systems stacked on top of each other,
illustrated in Figure 1. At the lowest layer, the transmission
power is controlled in order to keep the signal to inter-
ference ratio (SIR) at a desired level. This is a fast inner
loop intended to reject disturbances in the form of varying
radio conditions. Next, we have an outer power control loop
that tries to keep the block error rate (BLER) constant, by
adjusting the target SIR (measured in dB) of the inner loop.

On top of power control, we have local, link-layer,
retransmissions of damaged blocks. Finally, we have the
end-to-end congestion control of TCP.

By modeling the lower layers, we can investigate the
effects the link layer control have on TCP performance. We

5134



ACK 4)

|
Trans./pleecv.H TCP |

TCP Network

Fig. 1.  End-to-end congestion control is affected by the delay and
the bandwidth of the wired part of the network, but also by feedback
mechanisms in lower layers of the wireless links.

refer to our previous paper [10] for further details on the
radio model.

A. Power control Markov chain

The objective of the power control is to keep the block
error rate constant. The target BLER is a deployment trade-
off between channel quality and the number of required
base stations. For UMTS the reference block error rate is
often chosen to be about 10%, see [9], which is what we
will use. As there is no simple and universal relationship
between the SIR and the block error rate, the outer power
control loop uses feedback from the decoding process to
adjust SIR.. The outer loop uses a fixed step size A. It
decreases SIR,t by A for each successfully received block,
and increases SIR.f by 9A each time a block is damaged.

This process can be modeled as a discrete Markov chain,
where state & corresponds to SIRs = kA. Assuming that
the inner loop power control manages to keep the actual SIR
close to SIR;y, and using an appropriate channel model,
we get a threshold shaped function f(r) which gives the
probability of block damage for any SIR;s = r. There are
two transitions from state k£ of the Markov chain: To state
k + 9, with probability f(kA), and to state k — 1 with
probability 1— f(kA). The operating point of the outer loop
power control is close to the point where f(r) = 10%, i.e.,
the desired block error rate.

From f(r) and A, it is straightforward to compute the
stationary distribution of the Markov chain. Figure 2 shows
the stationary distribution for a BPSK channel (see [10] for
the parameters) for three different values for A.

B. Link-layer retransmission

Since a packet loss probability on the order of 10%
would be detrimental to TCP performance, the link detects
block damage (this is the same feedback signal that is used
for the outer loop power control), and damaged blocks
are scheduled for retransmission. We will consider one
simple retransmission scheme, the (1,1,1,1,1)-Negative Ac-
knowledgment scheme [11], which means that we have five

“Prob. ‘ ‘ ‘ ()

0.2dB
0.09f x + 0.06dB
- 0.02dB

x

Fig. 2. Stationary distribution for the power control. Each mark represents
one state of the power control, the corresponding value of SIRyf, and its
stationary probability. The dotted curve is the threshold-shaped function
f(r), scaled to fit in the figure, which represents the block error probability
as a function of SIRef.

e(k)
Delay (=
! ‘
ok iScheduling t<ky Channel » Sorting y(k

!

Delay (=

Fig. 3. Retransmission model

“rounds”, and in each round we send a single retransmission
request. When the receiver detects that the radio block in
time slot k is damaged, it sends a retransmission request to
the sender. The block is scheduled for retransmission in slot
k+3 (where the delay 3 is called the RLP NAK guard time).
If also the retransmission results in a damaged block, a new
retransmission request is sent and the block is scheduled for
retransmission in slot k£ 4 6. This goes on for a maximum
of five retransmissions.

C. Retransmission as feedback

To be able to analyze the impact of the scheduling mech-
anism on link properties such as the delay distribution, it is
of interest to model the retransmission scheme. Feedback
is an intrinsic property of the retransmission mechanism.
Below we propose a model for the relationship between
the input blocks, the block error process, and the in-order
output blocks, where this feedback is explicitly shown. We
believe that this model will be useful for further studies of
retransmission scheduling.

Let k£ denote time in units of the transmission time
interval (TTI), and consider the following input and output

5135



signals, also shown in Figure 3.

x(k) = # of input blocks up to time k
e(k) = # of errors up to time k

y(k) = # of in-order output blocks up to time k

These are accumulated rate functions, also used in network
calculus, and increasing. Let

t(k) = Index of block transmitted at time &

which is not an increasing function. Consider a simple one-
parameter family of retransmission schemes, where each
damaged block is retransmitted g slots later, and there is no
limit on the number of times a block may be resent. The
parameter g corresponds to the RLP NAK guard time.

To describe the process mathematically, we start with
the queue at the input to the scheduler. Let s(k) be the
number of time slots up to time k that are not used for
retransmissions, and let f(k) be the number of blocks
that have been transmitted (but not necessarily received
successfully) up to time k. Then

s(k) =k —e(k—g)
F k) = min (x(6) + (k) — 5(0))

where the minimum in the latter equation is obtained when
¢ is the start of the current busy period.
The scheduling can be described as

5w
1= {t(k ~9)

The first case corresponds to an original transmission, and
the second case to a retransmission. Finally, y(k) is defined
by y(k) = n if all blocks up to n have been received
properly at time k, but block n + 1 has not. In symbols,

y(k) =max{n : V0 <n,3j <k, t(j) =L, e(j) =e(j—1)}

ife(lk—g)=elk—g—-1)

ife(k—g)>e(k—g—1) M

So where is the feedback? It is included explicitly, in
Equation 1. This model, together with a model for the
stochastic process e(k), lets us optimize the parametrized
retransmission scheme. The delay at time k is defined by

d(k) =min{r > 0:y(k+7) > x(k)}

If x and e are stationary processes, with average rates that
sum to less than one, then also d(k) is a stationary process,
and its properties can, at least in principle, be calculated
from z, e, and the retransmission model. If Q(d) is a
quality measure that depends on the properties of d, we can
formulate the optimization problem g* = argmax, Q(d)
which gives the optimal value for the retransmission delay.

Intuitively, we expect that g* will depend on the autocor-
relation of e; it seems reasonable to use a retransmission
delay such that the correlation, between loss of the original
transmission and loss of the retransmission, is small.

This one parameter retransmission model is quite limited.
Other schemes can be modeled analogously, as long the

P input: [ T ] di 7 1da
Radio blocks: [T<II] [I<IZ212121 [ [ ]
IP output: T 1 [ Z ]
Fig. 4.

1P packets divided into radio blocks

relation between e and s is simple, and the scheme does
not need an additional queue for retransmitted packets. The
challenge is to find a powerful but simple parameterization
of an interesting class of schemes.

III. TCP/1P IMPLICATIONS

Consider the system at a randomly chosen start time,
with the state of the power control distributed according
to the stationary distribution. For any finite loss/success
sequence (for example, the second and the sixth block
damaged, the rest received successfully), we can calculate
the probability by conditioning on the initial power control
state and following the corresponding transitions of the
Markov chain. We can then use these probabilities to
investigate the experience of IP packets traversing the link.

A. TP packet delay

As a link employing link-layer retransmission yields
a very small packet loss probability, the most important
characteristic of the link is the packet delay distribution.
If the distribution is sufficiently “friendly” to TCP, then
the layering of the system works nicely, which means that
upper layers like TCP need not be aware of any particular
properties of individual links in the network.

We first compute the packet delay distribution explicitly
from the models described above. Later, we will also
assume that the calculated delay probabilities apply inde-
pendently to all packets, which should be fairly close to
reality as long as the power control is working.

When transmitting variable size IP packets over the link,
each packet is first divided into fixed size radio blocks, see
Figure 4. Let n denote the number of radio blocks needed
for the packet size of interest. Typically, 1 < n < 10.

The delay experienced by an IP packet depends on which,
if any, of the corresponding radio blocks are damaged, and
on the number and scheduling of the block retransmissions.
When all the blocks are finally received correctly, the IP
packet can be reassembled and passed on.

Delay (ms) | 0 40 60 100 120 160 180
Probability (%) | 806 88 93 06 06 003 003

TABLE 1

From the probabilities for all possible success/loss se-
quences at the radio block level, we can extract explicit
probabilities for the possible 1P packet delays. The resulting
delay distribution for our example channel (see Figure 5),
with a power control step size A = 0.06 dB and n = 2 is
shown in Table I. This table includes only the delays due
to radio block retransmissions, there is also a fixed delay
of 40 ms for the transmission of two radio blocks.

5136



B. TCP performance degradation

In observations and performance evaluations of TCP over
wireless links [11], the properties of a wireless link can
shine through to the TCP layer in three different ways:

e Genuine packet loss: With bad enough radio condi-
tions, packet drops are inevitable. We will not consider
such genuine packet loss here, as we assume that the
radio channel is good enough that the power control
and link-layer transmissions can get packets through.

o Packet reorder: For a link with highly variable delay,
packets can get reordered. Severe reordering can trig-
ger a spurious TCP fast retransmit.

o Spurious timeout: A packet that is not lost, only
severely delayed, can trigger a spurious TCP timeout.

If the product of the end-to-end roundtrip delay and the
available bandwidth is small, compared to the maximum
TCP window size, spurious timeouts and spurious fast
retransmit need not lead to any performance degradation. A
modest buffer before the radio link will be enough to keep
the link busy even when the sender temporarily decreases
its sending rate. On the other hand, if the bandwidth
delay product is larger than the maximum TCP window
size, throughput is decreased. The difference between these
two cases can be seen for example in the performance
evaluation [11]: In the scenarios that have a large maximum
window size compared to the bandwidth—delay product, we
get a throughput that is the nominal radio link bandwidth
times 1 — p (where p is the average block loss probability),
and there is no significant difference between different link
retransmission schemes. Only when bandwidth or delay is
increased, or the maximum window size is decreased, do
we see drastic changes in throughput when the BLER or
retransmission-scheme varies.

We therefore concentrate on the case of a large
bandwidth—delay product. Then both spurious fast retrans-
mit and spurious timeout leads to a degradation of TCP
performance, and we will consider them in turn.

C. Spurious fast retransmit

Spurious fast retransmit has been observed as an impor-
tant factor in poor TCP performance over wireless links.
The probability of spurious fast retransmit can be estimated
from the loss/success-sequence probabilities. It turns out
that unless the link is configured to do “in-order delivery”,
the probability is significant for n = 1 (0.25%-0.8%). It
decreases rapidly with increasing n.

Fortunately, this problem is easy to solve: Let the radio
link receiver sort packets so that they are always passed
on in order. Typically, this is an option in the configuration
of radio link equipment, and it should be enabled on links
where TCP performance is important. (One may want to use
separate channels for TCP packets and real time streams, and
enable in-order delivery only for the TCP-packets.)

max cwin = 7500 bytes
MTU = 1500 bytes

.4384kb"’ps Recv. |—>’ TCP

Block
error

TCP
A

Delay = 0.2s

Fig. 5. Numerical example

D. Spurious timeout

A TCP timeout event occurs when a packet, or its
acknowledgment, is delayed too long. Let RTT; denote the
round-trip time experienced by packet k£ and its correspond-
ing acknowledgment. The TCP algorithm estimates the mean
and standard deviation of the round-trip time. Let RTT), and
01 denote these estimates, based on measurements up to
RTTy. TCP then computes the retransmission timeout value
for the next packet as RTO = RTT},+467, and the probability
that packet k causes a spurious timeout is given by

P(RTT), > RTT}_1 + 455_1)

An idealized model of TCP is to assume that the es-
timation is perfect, and that the timeout value is set to
1(RTT)+40 (RTT), where u(-) and o(+) denote the mean and
standard deviation. Then the spurious timeout probability is
given by

Pro(RTT) = P(RTT > u(RTT) + 40(RTT)) (2)

Note that Pyg is invariant under addition of constant delays.
From the delay distribution of Table I, we get RTO ~
103 ms and the probability that the delay is larger is Pyo ~
0.68%. When varying the parameters n and A, we typically
get a probability of spurious timeout on the order of 0.5%—
1% [10]. This probability might seem small, but as shown
next, it can have significant performance implications.

E. Performance implications

As explained above, we concentrate on the case of a large
bandwidth—delay product. We will also assume that in-order
delivery is enabled, so there is no spurious fast retransmit,
only spurious timeout. For a concrete example, consider
the scenario in Figure 5: radio link bandwidth 384 kbit/s,
packet size m = 1500 bytes, maximum TCP window size
w = 7500 bytes (i.e., five packets), and a constant round-
trip delay time, excluding the radio link itself, of 0.2 s.

The available radio bandwidth (excluding the 10% lost
radio blocks) is 42.2 Kbyte/s. Due to the limited window

5137



size, TCP cannot utilize the link fully. The ideal TCP
throughput is one maximum size window per RTT. For the
untweaked link, the mean total roundtrip time p(RTT) is
200 + 40 + 10.6 = 250.6 ms, implying an ideal throughput
of 29.2 Kbyte/s.

For each spurious timeout, the sending TCP enters slow
start. The window size is reset to 1 packet, and the slowstart
threshold is set to 2 packets. For the next four round-trip
times, we will send 1, 2, 3, and 4 packets, i.e., 10 packets
less than if we had kept sending a maximum window of 5
packets every RTT. This leads to

w

Th hput =
roughpy #(RTT)(1 + 10P1o(RTT))

(a more general formula is derived in [10]). Hence, over the
example radio link, we get a throughput of 27.4 Kbyte/s.

IV. IMPROVING THE LINK-LAYER

It is not trivial to define precisely what properties a link
should have in order to be friendly to TCP. It seems clear
that for example links with normal or uniformly distributed
and independent delays are friendly enough. We define
a measure of TCP-unfriendlyness by applying Equation 2
to an arbitrary stochastic variable X, representing the
independent and identically distributed packet delays. For
convenience, we also define RTO(X) as the corresponding
timeout value.

RTO(X) = u(X) + 40(X)
Pro(X) = P(X > RTO(X))

For some distributions of interest, we find

X uniform = Ppo(X) =0

X normal = Pro(X)~6.3-107*
X wireless = Pro(X) ~100-10"*
X arbitrary — Pro(X) <625-1074

The last value is derived from Chebyshev’s inequality,
assuming only that X has finite first and second moments.
We see that the first two distributions, which we know are
friendly to TCP, yield a Prp at least two orders of magnitude
below the worst case given by Chebyshev. The wireless
delay yields a significantly higher Prg, although still with
some margin to the worst case.

The motivation for this measure is the calculation of the
timeout value in TCP. Timeout is intended to be the last
resort recovery mechanism, and for TCP to work properly,
spurious timeout must be a rare event. We therefore define
a TCP-friendly link to mean a link with no loss or reorder,
and with a delay distribution that yields a small Prop.

If we want to improve the system, where should we
put the effort? The power control design has many con-
straints of its own, relating to radio efficiency and cost
of deployment. It seems difficult to design and motivate
changes to the power control for improving the delay
distribution properties. Improvements to the TCP algorithm

in the end-nodes are important, but also difficult both for
technical and practical reasons, such as limited information
about what goes on in the link (note that the link and
the TCP implementations are not only in separate layers,
they are also geographically separate), and the complex
standardization and deployment process.

However, we do have some engineering freedom in the
link itself. Even if we do not want to modify the power
control, there are other link-local mechanisms we can add or
optimize: We could optimize the retransmission scheduling,
taking advantage of the block loss correlation that we
get after power control. We could use error correction
coding. Or we could tweak the delay distribution by adding
additional delays to selected packets.

In the remainder of this section, we investigate the
simplest of these options, namely the third one.

A. Introducing additional delays

Assume that we have a discrete delay distribution X,
P(X = d;) = pi, where d; < d;41. It is typical, but not
required, that also p; > p;41.

We consider the following class of tweaks to X. For each
packet that experiences a delay X = d;, buffer the packet
so that it gets an additional delay ;. This defines a new
distribution X, P(X = d; + 6;) = p; (or if it happens
that d; + 6; = d; + 0; for some ¢ # j, the corresponding
probabilities are added up). For an example of what X and
X can look like, see Figures 6 and 7.

What is the best choice for §; > 0? One possible answer
is given by the optimization problem
i #)

i

Pro(X) <e

where € > 0 is a maximum allowed value for Pro(X).
This means that we want to push down our measure of
TCP-unfriendlyness, while at the same time not adding
more delay than necessary. We will see that after some
simplifications, this is a quadratic optimization problem.

First, we require that Po(X) corresponds to a tail of the
original distribution X. Let k& be the smallest value such
that ZiZkai < e Let ¢ = dgy1 + p < dgra, where
p > 0 is a robustness margin. We impose the additional
constraints d; + 0; < dy4q for i < k, §; = 0 for i > k,
and RTO(X ) = c. Then, for any J; satisfying these new
constraints, we will have PTO(X) = Zi2k+2 p; < e. We
get the optimization problem

in p(X
51I7HH}5}\M( )

w(X)+40(X)=c
0<0; <dgqr —dy, fori <k

To write it in matrix form, let & denote the vector
(61,...,0,)T, and similarly for p and d. Let S =
16 diag p—17pp™, b; = 2p;(16d;+c—17p), m; = dyy1—d;
and o = 1602 — (¢ — p)?, where p and o denote the mean

5138



P [%]

1806
w+ 4o
8.893
0606 00003
0 40 60 100120 160180 Delay [ms]
Fig. 6. Original delay distribution
P [%]
1806

w+ 4o
8.8 9.3
| | 1.2: 0.030.03 o
0 40 86 120 160180 Delay [ms]

Fig. 7. Optimized delay distribution

and standard deviation of the original delay X . We can then
rewrite the problem as

.o
611:[}1-17}%1) g
TS5 +bT6+a=0
0<6; <m;

Remarks: Since the symmetric matrix S is typically
indefinite, the problem is not convex. But it can be solved
in exponential time O(k>3%), which has not been a problem
thanks to the very limited size of k.

The rdle of p can be seen in Figure 7; it is the margin,
on the delay axis, between the RTO = p+ 40 and the delay
value closest to the left (120 ms).

The typical solution is of the form z =
0,...,0,8;,mjt1,...,mp)T.  When the optimum
has this form, it means that the cheapest way to increase
the RTO, in terms of mean delay, is to increase the §;
corresponding to the smallest p;. Necessary and sufficient
conditions for the optimum to be of this form has not yet
been determined.

We aim at decreasing the distribution tail as measured by
Pro, and pay a small price in mean delay. This is a different
objective than an ordinary jitter buffer, which aims for small
variance, and pays with a larger mean delay.

B. Numerical example

Now consider the delays d; and probabilities p; in Ta-
ble I, and assume that packets are independently delayed
according to the given probabilities. This distribution is also
shown in Figure 6. Before tweaking the delays, we have
E(X) ~ 10.6 ms, and Pro(X) =~ 0.68 %.

With € = 0.1% and p = 10 ms, the above optimization
procedure yields & = 4 and the optimal additional delay

§ ~ (0,0,26,20)T ms. This modified distribution is shown
in Figure 7. The mean additional delay is only 2.54 ms,
which seems to be a small cost, if we compare it to the
transmission delay for the packet, which is 40 ms, or the
end-to-end delay which necessarily is even larger. We also
achieve Prg < ¢, if fact, we actually get Pto ~ 0.06%.

For the tweaked link, we have a slightly larger RTT
(which in itself would decrease the throughput), and
a significantly smaller Pro. The resulting throughput is
28.8 Kbyte/s, an improvement by 5% compared to the
unmodified link, and only 1.4% below the ideal TCP
throughput.

The important point is that a simple but carefully selected
modification to the link-layer yields a modest but significant
performance improvement.

V. CONCLUSIONS

In this contribution we have studied the effect retransmis-
sion in radio links has on packet properties. In particular,
we have delineated the implications that it has on TCP.
An input/output model has been suggested where the role
of the scheduling mechanism is made explicit. The main
contribution has been to show that a slight artificial increase
of the delays of certain retransmitted packets may reduce
the risk of spurious timeout in TCP and hence increase
the throughput; in an example the increase was 5%. The
artificial delay distribution is optimized off-line and applied
on-line. The additional delay that is applied to a packet
depends only on the retransmission delay experienced by
that same packet, and this information is available locally
at the link.

REFERENCES

[1]1 V. Jacobson, “Congestion avoidance and control,” ACM Computer
Communication Review, vol. 18, pp. 314-329, 1988.

[2] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang,
“TCP Westwood: bandwidth estimation for enhanced transport over
wireless links,” in MobiCom, Rome, Italy, 2001.

[3] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: an enhanced re-
covery algorithm for TCP retransmission timeouts,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 2, 2003.

[4] S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation
of congestion and wireless losses,” IEEE/ACM Trans. on Networking,
vol. 11, no. 5, pp. 703-717, 2003.

[5] N. K. G. Samaraweera, “Non-congestion packet loss detection
for TCP error recovery using wireless links,” IEE Proceedings-
Communications, vol. 146, no. 4, pp. 222-230, 1999.

[6] C. P. Fu and S. C. Liew, “TCP veno: TCP enhancement for trans-
mission over wireless access networks,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 2, pp. 216-228, 2003.

[71 H. Elaarag, “Improving TCP performance over mobile networks,”
ACM Computing Surveys, vol. 34, no. 3, pp. 357-374, 2002.

[8] R. G. Mukthar, S. V. Hanly, and L. L. H. Andrew, “Efficient Inter-
net traffic delivery over wireless networks,” IEEE Communications
Magazine, pp. 46-53, December 2003.

[91 A. Dahlén and P. Ernstrom, “TCP over UMTS,” in Radiovetenskap
och Kommunikation 02, ser. RVK, 2002.

[10] N. Moller and K. H. Johansson, “Influence of power control and link-
level retransmissions on wireless TCP,” in Quality of Future Internet
Services, ser. Lecture Notes in Computer Science. Springer-Verlag,
2003, vol. 2811.

[11] F. Khan, S. Kumar, K. Medepalli, and S. Nanda, “TCP performance
over CDMA2000 RLP,” in Proc. IEEE 51st VTC’2000-Spring, 2000,
pp. 41-45.

5139



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Helvetica
    /Helvetica-Bold
    /Times-Bold
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




