
Efficient observability verification for
large-scale Boolean control networks

Kuize Zhang1,2 Karl Henrik Johansson1

1. ACCESS Linnaeus Center, School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology, 10044 Stockholm, Sweden

E-mail: {kuzhan,kallej}@kth.se
2. College of Automation

Harbin Engineering University, 150001 Harbin, PR China
E-mail: zkz0017@163.com

Abstract: It is known that verifying observability of Boolean control networks (BCNs) is NP-hard in the number of nodes. In
this paper, we use a node aggregation approach to overcome the computational complexity in verifying observability for networks
with special structures. First, we define a class of network node aggregations with compatible observability. It is proven for this
class of aggregations, the whole BCN being observable does not imply that all corresponding subnetworks are observable, and
vice versa. Second, when the aggregations are acyclic, we prove that all corresponding subnetworks being observable implies
that the overall BCN is observable, although the converse is not true. Third, we show that finding acyclic aggregations with small
subnetworks can tremendously reduce the computational complexity in verifying observability. Finally, we use a BCN T-cell
receptor kinetics model from the literature with 37 state nodes and 3 input nodes to illustrate the efficiency of these results. For
this model, we derive the unique minimal set of 16 state nodes needed to be observed to make the overall BCN observable.
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1 Introduction

Boolean networks (BNs), initiated by Kauffman [8] to

model genetic regulatory networks in 1969, are a class of

discrete-time discrete-space dynamical systems. In a BN, n-

odes can be in one of two discrete states “1” and “0”, which
represent the gene state “on” and “off”, respectively. Every

node updates its state according to a Boolean function of the

network node states. When external regulation or perturba-

tion is considered, BNs are naturally extended to Boolean

control networks (BCNs) [6]. Although a BN or a BCN is

a simplified model of a genetic regulatory network, they can

be used to characterize many important phenomena of bi-

ological systems, e.g., cell cycles [4], cell apoptosis [14].

The study on BNs and BCNs has been paid wide attention

[2, 16, 20].

The study on control-theoretic properties of BCNs dates

back to 2007, when the problem of verifying controllabil-

ity of a BCN was proved to be NP-hard in the number of

nodes [1]. Since then, many basic properties of BCNs have

been characterized, e.g., controllability [3, 21], observability

[3, 5, 11, 15, 21], reconstructibility [5, 17]. Several of these

findings are based on the semi-tensor product framework o-

riginally proposed in [3].

Observability is on using input sequences and the corre-

sponding output sequences to determine the initial state. It is

of fundamental use in state estimation, observer design, etc.

A quantitative description of a complex dynamical system is

normally based on its state information, but the practical use

is inherently limited by the ability to estimate the system’s s-

tate. The problem of how to use a subset of nodes (as output

nodes) to observe the whole network’s state has important

applications in systems biology, and many other areas, since

in practice experimental access is limited to only a subset of

This work was supported by Knut and Alice Wallenberg Foundation,

Swedish Foundation for Strategic Research, and Swedish Research Council.

nodes [12].

Verifying observability of BCNs is NP-hard in the num-

ber of nodes [10], so computationally intractable. Existing

verification algorithms [5, 15] run in exponential time in the

number of nodes, so they cannot be used to deal with large-

scale networks (with more than about 30 nodes) in a reason-
able amount of time. It seems unlikely to exist fast algo-

rithms for verifying observability of general BCNs, but an

interesting direction is to focus on BCNs with special net-

work structures. It is natural to develop a node aggregation
method for which observability for the overall network fol-

lows from the verification of subnetworks. An aggregated

graph of a BCN consists of super nodes and edges, where

each super node corresponds to a collection of nodes of the

original BCN. The node aggregation method has been wide-

ly used in pagerank algorithms [7], social networks [13],

and also applied to controllability analysis of BCNs [19]

and fixed-point computation of BNs [20]. It is NP-complete

to verify existence of fixed points of BNs [18], so it is rea-

sonable to use the node aggregation method for fixed-point

computation of large BNs. The advantage of the node aggre-

gation method has been illustrated by a BCN T-cell receptor

kinetics model [9] in both [20] and [19], where the model has

37 state nodes and 3 input nodes,1 i.e., it has 237 states and

23 inputs. It is impossible to use the general methods giv-

en in [18, 21] to compute attractors or check controllability

and stabilizability in a reasonable amount of time. Howev-

er, using the node aggregation technique [19, 20], these two

problems have been solved. In [20], an efficient way to look

for attractors of BNs is proposed based on such a technique;

particularly, for an acyclic node aggregation (i.e., when the

aggregated graph is acyclic), all attractors of a BN are ob-

tained by composing attractors of the corresponding subnet-

works. Similar idea has been used to deal with controllabili-

1In [20], in order to compute attractors, the 3 input nodes are assumed
to be constant.
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ty and stabilizability of BCNs [19]. It is proved in [19] that if

a BCN is controllable (stabilizable) then all resulting subnet-

works are controllable (stabilizable) for a node aggregation

satisfying that each subnetwork has at least one state node.

However, the converse is not true. It is partially because

in order to verify controllability and stabilizability, external

nodes (i.e., input nodes) of BCNs must be considered. In

this paper, we show that for observability, neither of the bi-

directional implications holds because not only input nodes

but also output nodes must be considered, and observability

is not dual to controllability for BCNs, which follows from

the pairwise nonequivalence of four concepts of observabil-

ity for BCNs [15]. Hence, the node aggregation method in

[19] cannot be used to deal with observability.

The contributions of this paper are stated as follows.

1) We define a class of node aggregations for BCNs with

compatible observability, prove that for such aggrega-

tions, the whole BCN being observable does not imply

that all corresponding subnetworks are observable, and

vice versa.

2) For acyclic node aggregations in this class, we prove

that all corresponding subnetworks being observable

imply that the overall BCN is also observable, although

the converse is not true.

3) We show that finding such acyclic node aggregations

with small subnetworks can tremendously reduce the

computational complexity in verifying observability.

4) Finally, for a BCN T-cell receptor kinetics model with

37 state nodes and 3 input nodes [9], by finding suitable
acyclic aggregations, we derive the unique minimal set

of 16 state nodes needed to be observed to make the

model observable.

The remainder of the paper is organized as below. In Sec-

tion 2, basic concepts on BCNs, observability, and new node

aggregations with compatible observability are introduced.

In Section 3, observability results based on node aggrega-

tions are proved. In Section 4, the BCN T-cell receptor ki-

netics model is used to illustrate the efficiency of the main

results given in Section 3. Section 5 is a short conclusion

with further discussion.

2 Preliminaries

2.1 BCNs
Hereinafter, we denote D := {0, 1}; [i, j] :=

{i, i + 1, . . . , j} for integers i ≤ j; Cj
i := i!

j!(i−j)! for pos-

itive integers i ≥ j. 2S stands for the power set of a set S,
⊕ and � stand for the addition and multiplication modulo 2,
respectively. A BCN is formulated as

x1(t + 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...

xn(t + 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

y1(t) = h1(x1(t), . . . , xn(t)),

...

yq(t) = hn(x1(t), . . . , xn(t)),

(1)

where t = 0, 1, . . . denote discrete time steps; xi(t), uj(t),
and yk(t) ∈ D denote values of state node xi, input node uj ,

x1 x2

u

y

Fig. 1: Example of a network consisting of one input node

u, two state nodes x1, x2, and one output node y.

and output node yk at time step t, respectively, i ∈ [1, n],
j ∈ [1, m], k ∈ [1, q]; fi : Dm+n → D and hj : Dn → D
are Boolean functions, i ∈ [1, n], j ∈ [1, q].
Eqn. (1) is equivalently represented in the compact form

x(t + 1) = f(x(t), u(t)),

y(t) = h(x(t)),
(2)

where t = 0, 1, . . . ; x(t) ∈ Dn, u(t) ∈ Dm, and y(t) ∈
Dq stand for the state, input, and output of the BCN at time

step t; f : Dn+m → Dn and h : Dn → Dq are Boolean

mappings.

Intuitively, a BCN performs dynamics over a network that

is actually a directed graph consisting of input nodes, state

nodes, and output nodes, where an input node has 0 indegree
(i.e., the number of entering edges at the node), an output

node has 0 outdegree (i.e., the number of leaving edges at
the node), and state nodes may have both positive indegree

and positive outdegree. In a network, each edge from node

vi to node vj means that the value (1 or 0) of vj at time step

t + 1 is affected by the value of vi at time step t, each node v
updates its value according to a Boolean function of values

of nodes having a leaving edge that enters v. Note that over a
network, there may exist different BCNs, e.g., the following

two BCNs

x1(t + 1) = x2(t) ∧ u(t),

x2(t + 1) = ¬x1(t) ∨ u(t),

y(t) = x1(t),

(3)

where t = 0, 1, . . . ; x1(t), x2(t), u(t), y(t) are Boolean
variables (1 or 0); ∧,∨, and ¬ denote AND, OR, and NOT,
respectively,

x1(t + 1) = x2(t)∨̄u(t),

x2(t + 1) = ¬x1(t) ∧ u(t),

y(t) = x1(t),

(4)

where t = 0, 1, . . . ; x1(t), x2(t), u(t), y(t) are Boolean
variables; ∨̄ denotes XOR, have the same network as shown
in Fig. 1.

2.2 Observability
In [15], four types of observability are characterized for

BCNs. In this paper, we are particularly interested in the lin-

ear type (also cf. [5]), as if a BCN satisfies this observability

property, it is very easy to recover the initial state using input

sequences and the corresponding output sequences.

Definition 2.1 A BCN (2) is called observable if for all d-
ifferent initial states x0, x′

0 ∈ Dn, for each input sequence
{u0, u1, . . . } ⊂ Dm, the corresponding output sequences
{y0, y1, . . . } and {y′

0, y′
1, . . . } are different.
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00, 01 � 10, 110
0

Fig. 2: Observability weighted pair graph of the BCN (3),

where � denotes the subgraph generated by all diagonal ver-
tices.

00, 01 10, 11 �

Fig. 3: Observability weighted pair graph of the BCN (4),

where � denotes the subgraph generated by all diagonal ver-
tices.

We use a graph-theoretic method proposed in [15] to ver-

ify this types of observability in what follows.

Definition 2.2 ([15]) Consider a BCN (2). A weighted di-
rected graph Go = (V , E ,W, 2Dm

) is an observability
weighted pair graph of the BCN (2) if the vertex set V e-
quals {{x, x′} ∈ Dn × Dn|h(x) = h(x′)}, the edge set
E equals {({x1, x′

1}, {x2, x′
2}) ∈ V × V|there exists u ∈

Dm such that f(x1, u) = x2 and f(x′
1, u) = x′

2, or, f(x1,
u) = x′

2 and f(x′
1, u) = x2} ⊂ V × V , and the

weight function W : E → 2Dm

assigns each edge
({x1, x′

1}, {x2, x′
2}) ∈ E a set {u ∈ Dm|f(x1, u) =

x2 and f(x′
1, u) = x′

2, or, f(x1, u) = x′
2 and f(x′

1, u) =
x2} of inputs. A vertex {x, x′} is called diagonal if x = x′,
and called non-diagonal otherwise.

Proposition 2.3 ([15]) A BCN (2) is not observable if and
only if its observability weighted pair graph has a non-
diagonal vertex v and a cycle C such that there is a path
from v to a vertex of C.

The computational cost of constructing the observability

weighted pair graph of a BCN (2) is at most (2n + 2n(2n −
1)/2)2m = 2n+m + 22n+m−1 − 2n+m−1. Hence the com-

putational complexity of using Proposition 2.3 to check ob-

servability isO(22n+m−1). On the other hand, the size of the
network of a BCN is at most n + m + q + mn + n(n + q),
which is significantly smaller than the size of the observ-

ability weighted pair graph, then is it possible to design an

algorithm to check observability by using only the network?

The answer is “No”, because there exist two BCNs sharing

the same network, one of which is observable, but the other

of which is not observable (see BCNs (3) and (4)). Note that

for a BCN (2), the subgraph (Vd, (Vd × Vd) ∩ E) generat-
ed by the set Vd of all diagonal vertices of its observability

weighted pair graph contains a cycle; and for each diagonal

vertex v ∈ Vd, there is a path from v to some vertex of a
cycle in the subgraph. Then the following corollary holds.

Corollary 2.4 A BCN (2) is not observable if and only if in
its observability weighted pair graph, either there is a path
from a non-diagonal vertex to a diagonal vertex or there is a
cycle consisting of only non-diagonal vertices.

For example, BCNs (3) and (4) have the same network as

shown in Fig. 1, (3) is not observable (see Fig. 2) by Corol-

lary 2.4, but (4) is observable (see Fig. 3) by Proposition

2.3.

2.3 Node aggregations
For a BCN, let us denote the set of nodes of its net-

work by N = {x1, . . . , xn, u1, . . . , um, y1, . . . , yq}, the set
of state nodes by X = {x1, . . . , xn}, the set of input n-
odes by U = {u1, . . . , um}, and the set of output nodes by
Y = {y1, . . . , yq}. The node aggregations adopted in this
paper are represented as partitions of the set of nodes as fol-

lows:

N = N1 ∪ · · · ∪ Ns, (5)

where each Ni is a nonempty proper subset of N , and
Ni ∩ Nj = ∅ for all i �= j, i, j ∈ [1, s]. Note that in a
BCN (2), U can be empty, meaning that only a unique con-
stant input sequence can be fed into the BCN. Hereinafter we

assume that neither X nor Y can be empty. If Y is empty,

then one cannot observe any information of states of the BC-

N. If X is empty, it is meaningless to observe the BCN. For

a node aggregation (5), each part Ni is regarded as a super

node, then the aggregation is regarded as a directed graph

that is called an aggregated graph, where the edge set con-

sists of edges of the network whose tails and heads belong to

different super nodes. Also, each super node Ni is regarded

as a subnetwork, denoted by Σi, called a resulting subnet-
work. For each super nodeNi, its indegree (outdegree) is the

sum of edges entering (leaving) Ni in the aggregated graph,

i ∈ [1, s]. The purpose of aggregating network nodes of a
BCN (2) is to verify observability of the BCN by verifying

observability of its resulting subnetworks. So in order to re-

duce computational cost, the size of resulting subnetworks

should be as small as possible.

In [19], controllability and stabilizability are considered,

so the BCN (2) considered in [19] has an empty set of out-

put nodes. Under the assumption that in a node aggregation

(5), each super nodeNi is weakly connected and contains at

least one state node, it is proved that the BCN is controllable

only if each subnetwork Σi is controllable, but the converse

is not true. One directly sees that without the weak con-

nectedness assumption, all results in [19] remain valid. For

observability, since we must consider a nonempty set Y of

output nodes, the node aggregations used in [19] cannot be

used in this paper. We aggregate network nodes in different

ways. Later on, for observability, we show somehow con-

verse results compared to the controllability results given in

[19].

In order to make each super node Ni be a BCN such that

it is meaningful to verify its observability, we only consider

a node aggregation (5) satisfying the following Assumption

1 in this paper. Assumption 1 is stronger than the previous

assumption used in [19]. However, in order not to break the

dynamics of the whole BCN, we must make this stronger as-

sumption. Under Assumption 1, each resulting subnetwork

Σi corresponding to each super node Ni is of the form (1),

i ∈ [1, s].

Assumption 1 For each i ∈ [1, s],
1) (making observing Σi meaningful)Ni∩Y �= ∅; ifNi∩

X �= ∅, then in Ni, for each state node x ∈ Ni ∩ X ,
there is a path from x to an output node y ∈ Ni ∩ Y
such that all parents of y in X belong to Ni.

2) (making controllingΣi meaningful) IfNi has a positive
indegree, then outside Ni, all tails of all edges of the
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x1 y1

x2 x3

x5

x4u1

y2 x6 x7

x8y3

N1

N2 N3

Fig. 4: Example of a node aggregation of a BCN with 8 state
nodes, 1 input node, and 3 output nodes.

N1

N2 N3

Fig. 5: Aggregated graph corresponding to Fig. 4.

network enteringNi are regarded as input nodes of Σi.
(Note that all these tails are state nodes or input nodes
of the network.)

Example 2.5 Consider the following BCN corresponding to
Fig. 4:

Σ1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t + 1) = x1(t) ⊕ (x2(t) � x3(t)),

x2(t + 1) = x2(t) ⊕ x3(t),

x3(t + 1) = x3(t) ⊕ 1,

y1(t) = x1(t) � (x2(t) ⊕ x3(t)),

Σ2 :

⎧⎪⎨
⎪⎩

x4(t + 1) = x5(t) � u1(t),

x5(t + 1) = x4(t) ⊕ u1(t) ⊕ x2(t),

y2(t) = x5(t),

Σ3 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x6(t + 1) = x8(t) ⊕ x5(t),

x7(t + 1) = x6(t) ⊕ x3(t),

x8(t + 1) = x7(t),

y3(t) = x8(t),

(6)

where t = 0, 1, . . . ; xi(t), u1(t), yk(t) ∈ D, i ∈ [1, 8], k ∈
[1, 3].
In Fig. 4, all N1,N2,N3 contain output nodes; N1 and

N3 contain no input node; N1 contains edges x1 → y1,
x2 → y1, and x3 → y1; N2 contains path x4 → x5 → y2;
N3 contains path x6 → x7 → x8 → y3; x2 is an input node
ofΣ2; x3 and x5 are input nodes ofΣ3; subnetworksΣ1, Σ2,
and Σ3 in Eqn. (6) correspond to super nodes N1,N2, and
N3, respectively. Hence this node aggregation satisfies As-
sumption 1. The corresponding aggregated graph is shown
in Fig. 5.

x1

y1

u1

x2

u2

x3

y2

x4

u3

y3

N1 N2 N3

Fig. 6: Example of a node aggregation of a BCN with 4 state
nodes, 3 input nodes, and 3 output nodes.

3 Observability analysis of large-scale BCNs

3.1 Observability analysis based on node aggregations
In this subsection, we show whether one can verify ob-

servability of a BCN (2) via verifying observability of its

resulting subnetworks obtained by aggregating its network

nodes under Assumption 1. First we investigate whether a

BCN (2) being observable implies its resulting subnetworks

also being observable. The BCN in the following Example

3.1 gives a negative answer.

Example 3.1 Consider the following BCN corresponding to
Fig. 6:

Σ1 :

{
x1(t + 1) = u1(t) ⊕ x2(t),

y1(t) = x1(t),

Σ2 :

⎧⎪⎨
⎪⎩

x2(t + 1) = u2(t) ⊕ x1(t),

x3(t + 1) = u2(t) ⊕ x4(t),

y2(t) = x2(t) � x3(t),

Σ3 :

{
x4(t + 1) = u3(t) ⊕ x3(t),

y3(t) = x4(t),

(7)

where t = 0, 1, . . . ; xi(t), uj(t), yk(t) ∈ D, i ∈ [1, 4],
j, k ∈ [1, 3].
It is not difficult to see that the node aggregation in Fig.

6 satisfies Assumption 1, and subnetworks Σ1, Σ2, Σ3 in E-
qn. (7) correspond to super nodes N1,N2,N3 in Fig. 6,
respectively. Σ1 is observable, because x1(0) = y1(0), and
y1(0) can be observed. SymmetricallyΣ3 is also observable.
In the observability weighted pair graph of Σ2, we have an
edge {00, 01} 000−−→ {00, 00} from a non-diagonal vertex
{00, 01} to a diagonal vertex {00, 00}. Then by Corollary
2.4, Σ2 is not observable. Now consider the whole BCN
(7). We have x1(0) = y1(0), x2(0) = x1(1) ⊕ u1(0) =
y1(1) ⊕ u1(0), x3(0) = x4(1) ⊕ u3(0) = y3(1) ⊕ u3(0),
x4(0) = y3(0), y1(0), y1(1), y3(0), y3(1) can be observed,
u1(0) and u3(0) can be designed, hence (7) is observable.

The aggregated graph corresponding to Fig. 6 contains

cyclesN1 ↔ N2 andN2 ↔ N3. Then if a node aggregation

of a BCN (2) contains no cycle and satisfies Assumption 1, is

it true that a BCN (2) being observable implies its resulting

subnetworks also being observable? The following Example

3.2 gives a negative answer again.
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x2 x1 y1

x3 x4 y2

u1

N1

N2

Fig. 7: Example of a node aggregation of a BCN with 4 state
nodes, 1 input node, and 2 output nodes.

Example 3.2 Consider the following BCN corresponding to
Fig. 7:

Σ1 :

⎧⎪⎨
⎪⎩

x1(t + 1) = x2(t) � u1(t),

x2(t + 1) = x1(t),

y1(t) = x1(t),

Σ2 :

⎧⎪⎨
⎪⎩

x3(t + 1) = x2(t),

x4(t + 1) = x3(t),

y2(t) = x4(t),

(8)

where t = 0, 1, . . . ; xi(t), u1(t), yk(t) ∈ D, i ∈ [1, 4], k ∈
[1, 2].
The node aggregation shown in Fig. 7 satisfies Assump-

tion 1, and the corresponding aggregated graph N1 → N2

contains no cycle. And subnetworks Σ1, Σ2 in Eqn. (8) cor-
respond to super nodesN1,N2 in Fig. 7, respectively. In the
observability weighted pair graph of Σ1, we have an edge
{10, 11} 0−→ {01, 01} from a non-diagonal vertex {10, 11}
to a diagonal vertex {01, 01}, then by Corollary 2.4, Σ1 is
not observable. Σ2 is observable because x4(0) = y2(0),
x3(0) = x4(1) = y2(1), y2(0) and y2(1) can be observed.
The whole BCN (8) is observable because x1(0) = y1(0),
x2(0) = x3(1) = x4(2) = y2(2), x3(0) = x4(1) = y2(1),
x4(0) = y2(0), y1(0), y2(0), y2(1), and y2(2) can be ob-
served.

Next we discuss the opposite direction. That is, if a n-

ode aggregation satisfies Assumption 1, whether all result-

ing subnetworks being observable implies the whole BCN

also being observable. Unfortunately, the answer is still neg-

ative. The following Example 3.3 shows such a node aggre-

gation satisfying Assumption 1, containing a cycle and sat-

isfying that, even if all resulting subnetworks are observable

the overall BCN is not observable.

Example 3.3 Consider the following BCN corresponding to
Fig. 8.

Σ1 :

⎧⎪⎨
⎪⎩

x1(t + 1) = u1(t),

x2(t + 1) = x1(t) ⊕ x4(t),

y1(t) = x2(t),

Σ2 :

⎧⎪⎨
⎪⎩

x3(t + 1) = x1(t) ⊕ x4(t) ⊕ 1,

x4(t + 1) = u2(t),

y2(t) = x3(t),

(9)

x1 x2

x3 x4y2

u1 y1

u2

N1

N2

Fig. 8: Example of a node aggregation of a BCN with 4 state
nodes, 2 input nodes, and 2 output nodes.

where t = 0, 1, . . . ; xi(t), uj(t), yk(t) ∈ D, i ∈ [1, 4],
j, k ∈ [1, 2].
The node aggregation shown in Fig. 8 satisfies Assump-

tion 1, and its aggregated graph is a cycle N1 ↔ N2. For
Σ1, x2(0) = y1(0), x1(0) = x2(1)⊕x4(0) = y1(1)⊕x4(0).
Since y1(0) and y1(1) can be observed and x4(0) is des-
ignable, Σ1 is observable. Similarly Σ2 is also observ-
able. Consider a non-diagonal vertex {0110, 1111} of the
observability weighted pair graph of (9), we have an edge
{0110, 1111} u1u2−−−→ {u101u2, u101u2}, where u1, u2 ∈ D,
and {u101u2, u101u2} is a diagonal vertex of the observ-
ability weighted pair graph. Hence by Corollary 2.4, (9) is
not observable.

These two types of negative results show that observabil-

ity possesses more complex properties than controllability

does, as it is proved in [19] that if the whole BCN is control-

lable, then all resulting subnetworks are controllable under

a weaker assumption than Assumption 1, where each super

node contains at least one state node.

These negative results seem to presage that one cannot use

the node aggregation method to verify observability. How-

ever, the situation finally becomes positive. Next we prove

if a node aggregation satisfies Assumption 1 and contains no

cycle, all resulting subnetworks being observable implies the

whole BCN also being observable! These results are put into

the following subsection.

3.2 Observability analysis based on acyclic node aggre-
gations

A node aggregation (5) is called acyclic if its aggregated

graph contains no cycle. For example, the node aggregation

shown in Fig. 4 (its aggregated graph is depicted in Fig. 5)

is acyclic.

Theorem 3.4 Consider a BCN (2) that has an acyclic node
aggregation (5) satisfying Assumption 1. If all resulting sub-
networks are observable then the whole BCN is also observ-
able.

Proof First we show that for an acyclic node aggregation
(5), there is a reordering (i.e., a bijective) τ : [1, s] → [1, s]
such that for each i ∈ [1, s],

N i :=
i⋃

j=1

Nτ(j) (10)

has zero indegree.

Since the node aggregation is acyclic, each subgraph of

the aggregated graph G has a super node with indegree 0.
Suppose on the contrary that a subgraphG of G has all super
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nodes with positive indegrees. Construct a new graph G′ by
reversing the directions of all edges of G. Then G′ has a
cycle, since G′ has finitely many nodes, and each node has a
positive outdegree. ThenG and hence G have a cycle, which
is a contradiction.

Choose k1 ∈ [1, s] such that Nk1 has zero indegree in

G, remove Nk1 and all edges leaving Nk1 from G, and set
τ(1) := k1. Then in the new G, there is k2 ∈ [1, s] \ {k1}
such that Nk2 has zero indegree. Remove Nk2 and all edges

leaving Nk2 from the new G, and set τ(2) := k2. Repeat

this procedure until G becomes empty, we obtain a bijective
τ : [1, s] → [1, s] such that (10) holds.
Second we show that if each subnetwork Σi correspond-

ing to Ni is observable then the whole BCN is also observ-

able. Suppose for a BCN (2) that each resulting subnetwork

Σi is observable, i ∈ [1, s]. Then for each given input se-
quence {u0, u1, . . . } ⊂ Dm, for all given different initial

states x0, x′
0 ∈ Dn, there is k ∈ [1, s] such that the compo-

nents of x0, x′
0 in Nτ(k) are not equal, and the components

of x0, x′
0 in Nτ(i) are equal, i ∈ [1, k − 1]. Note that

in the network, for all i, j ∈ [1, s],

if there exist node v ∈ Nτ(i) and node v′ ∈ Nτ(j)

such that v affects v′ then i ≤ j.

(11)

Then since subnetworks Στ(k) is observable, the output se-

quences of Στ(k) corresponding to the components of x0, x′
0

and input sequence {u0, u1, . . . } inNτ(k) are different. That

is, the entire BCN is observable.

In [19], a node aggregation (5) satisfying (10) is called

cascading; and it is pointed out that each cascading node ag-

gregation is acyclic, which can also be seen by (11). Hence

a stronger result (Proposition 3.5) follows from this property

in [19] and the proof of Theorem 3.4.

Proposition 3.5 A node aggregation (5) is acyclic if and on-
ly if it is cascading.

Example 3.6 Recall Example 2.5. The node aggregation
shown in Fig. 4 is acyclic and satisfies Assumption 1. Next
we show that the resulting subnetworksΣ1, Σ2, Σ3 in (6) are
all observable. Then by Theorem 3.4, the whole BCN (6) is
also observable.
The observability weighted pair graph of Σ1 has 8 diag-

onal vertices, and 1 + C2
6 = 16 non-diagonal vertices. The

observability weighted pair graph of Σ1 is shown in Fig. 9.
In Fig. 9, there exists no path from a non-diagonal vertex to
a diagonal vertex, and there exists no cycle in the subgraph
generated by non-diagonal vertices. By Corollary 2.4, Σ1 is
observable.
ForΣ2, x5(0) = y2(0), x4(0) = x5(1)⊕u1(0)⊕x2(0) =

y2(1)⊕u1(0)⊕x2(0). y2(0) and y2(1) can be observed and
u1(0) and x2(0) are designable, hence Σ2 is observable.
For Σ3, x8(0) = y3(0), x7(0) = x8(1) = y3(1),

x6(0) = x7(1) ⊕ x3(0) = x8(2) ⊕ x3(0) = y3(2) ⊕ x3(0).
y3(0), y3(1), and y3(2) can be observed and x3(0) is des-
ignable, hence Σ3 is also observable.
The whole BCN (6) has 28 = 256 states, 2 inputs, and

23 = 8 outputs. Its observability weighted pair graph has
(((1+C2

6 )∗2+23)(2∗2+22)((2C2
4 )∗2+23)−28)/2 = 4992

non-diagonal vertices, and 28 = 256 diagonal vertices.

� 0,7 2,7 1,7 3,7

0,1 0,3 0,2 0,4

1,2 1,4 1,3 4,7

2,3 3,4 2,4 5,6

Fig. 9: Observability weighted pair graph of subnetwork Σ1

in (6), where � denotes the subgraph generated by all diag-
onal vertices, numbers in circles are decimal representations

for states of Σ1, formally, 0 ∼ 000, 1 ∼ 001, 2 ∼ 010,
3 ∼ 011, 4 ∼ 100, 5 ∼ 101, 6 ∼ 110, 7 ∼ 111.

Hence it is much more complex to directly use Proposition
2.3 to check observability of (6) than using Theorem 3.4 and
Proposition 2.3 to do it as above.

3.3 Complexity analysis
We analyze the computational complexity of using The-

orem 3.4 and Proposition 2.3 to verify observability of the

BCN (2). Following this way, we first find an acyclic node

aggregation of (2) that satisfies Assumption 1, then check

observability of all resulting subnetworks. If all resulting

subnetworks are observable then the whole BCN is observ-

able. Assume that we have obtained an acyclic node ag-

gregation having k super nodes with almost the same size
and satisfying Assumption 1. Then each super node approx-

imately has n
k state nodes and

m
k input nodes. The compu-

tational cost is approximately k2
2n+m

k −1 by Proposition 2.3.

For large-scale BCNs, 2n+m is huge. When k < l(2n+m)

for some positive constant l, function k2
2n+m

k −1 is decreas-

ing. Hence roughly speaking, the more super nodes a node

aggregation has and the more close the sizes of these super

nodes are, the more effective the node aggregation method

is. It is hard to find such aggregations whose super nodes

have approximately the same size, but we can find aggre-

gations having sufficiently many super nodes. According to

this rule, when aggregating nodes for a large-scale BCN, in

order to reduce computational complexity as much as possi-

ble, one should make super nodes as small as possible.

4 Biological application

In this section, we apply our results given in Section 3

to study observability of the BCN T-cell receptor kinetics

model [9].

4.1 Model
T-cells are a type of white blood cells known as lympho-

cytes. These white blood cells play a central role in adaptive

immunity and enable the immune system to mount specific

immune responses. T-cells have the ability to recognize po-

tentially dangerous agents and subsequently initiate an im-

mune reaction against them. They do so by using T-cell re-

ceptors to detect foreign antigens bound to major histocom-

patibility complex molecules, and then activate, through a

signaling cascade, several transcription factors. These tran-
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scription factors, in turn, influence the cell’s fate such as pro-

liferation. For the details, we refer the reader to [9]. The BC-

N T-cell receptor kinetics model given in [9] is shown in Tab.

1, its network is shown in Fig. 10. In Fig. 10, there exist 3
input nodes and 37 state nodes. Hence the model has 23 in-

puts and 237 states. In order to do a quantitative analysis for

the T-cell model, it would be better to obtain the state infor-

mation of the model first. Next we show the unique minimal

set of state nodes needed to be observed to make the overall

BCN observable. It is impossible to use a PC to deal with

such a large BCN directly in a reasonable amount of time.

We next use the node aggregation approach to deal with it.

4.2 Observability analysis based on acyclic node aggre-
gations

In order to obtain the initial state of the BCN, one must

choose some state nodes to observe, since there exists no

output node in the network. The chosen state nodes and

their corresponding output nodes are represented as the n-

odes with shadows and their shadows, respectively, in Fig.

10. The main result obtained in this subsection is that we
find the minimal set

{TCRbind, cCbl, P AGCsk, Rlk, T CRphos, SLP76,

Itk, Grb2Sos, PLCg(bind), CRE, AP 1, NF kB,

NF AT, F os, Jun, RasGRP 1}
(12)

of 16 state nodes needed to be observed to make the BCN
observable as follows. That is to say, if all nodes in (12) are
observed then the BCN is observable, and if any one of them

cannot be observed then the BCN is not observable.

We partition the BCN T-cell network as in Fig. 10, where

the aggregation satisfies Assumption 1, and the correspond-

ing aggregated graph with nodes N1, . . . ,N5 is acyclic. In

order to prove that the network is observable when all states

in Eqn. (12) are observed, by Theorem 3.4, we only need

to prove that all corresponding subnetworks N1, . . . ,N5 are

observable. Since none ofN1, . . . ,N5 is large-scale, we can

use Proposition 2.3 to verify that all of them are observable

very quickly. We can also prove that if any one of these 16 s-
tate nodes shown in (12) is not observed, even though all the

other state nodes are observed, then the whole BCN is not

observable by direction observation. Here we do not show

the details due to the page limitation.

On the other hand, a weaker type of observability (i.e.,

[15, Def. 5], not equivalent to the one studied in this pa-

per) of BCNs is characterized in [11] by using an algebraic

method, and it is proved that for the BCN T-cell receptor ki-

netics model, the unique minimal set of nodes needed to be

observed to make the whole BCN observable is

{T CRbind, Rlk, T CRphos, SLP 76,

Itk, Grb2Sos, P LCg(bind), CRE, AP 1, NF kB,

NFAT, F os, Jun, RasGRP 1},

(13)

which is a proper subset of (12). The method for verify-

ing observability adopted in [11] is using the concept of

observability to compute two algebraic varieties (actually

their unique reduced Gröbner bases), and then compare these

bases. Although this method is very fast for sparse Boolean

CD45 CD8 TCRlig

TCRbind cCbl

Fyn PAGCsk Rlk

TCRphos Lck ZAP70 IP3

LAT Gads SLP76 Itk Ca

Grb2Sos PLCg(bind) PLCg(act) Calcin

Ras RasGRP1 DAG NFAT

CRE Raf SEK PKCth IKKbeta

CREB MEK JNK Jun IkB

Rsk ERK Fos AP1 NFkB

N1

N4

N3

N5

N2

Fig. 10: Network of the T-cell receptor kinetics model (cf.

[9]), where rectangles denote input nodes, the other nodes

denote state nodes, particularly the nodes with shadows are

chosen to be observed. The node aggregation shown in this

figure is acyclic.

control networks, it does not apply to the observability stud-

ied in this paper to the best of our knowledge.

5 Conclusion

In this paper, we used a node aggregation method to re-

duce the computational complexity of verifying observabil-

ity of large-scale BCNs with special structures. We first

defined a special class of node aggregations of BCNs with

compatible observability, then we showed that for acyclic

node aggregations in this special class, the resulting subnet-

works being observable implies the whole BCN being ob-

servable, and acyclic node aggregations are equivalent to

cascading node aggregations frequently used in the litera-

ture. Finding such node aggregations having sufficiently

many subnetworks can tremendously reduce the computa-

tional complexity in verifying observability. Hence key point

is to find an effective method to look for such node aggrega-

tions.

It was proved in [20] that the node aggregation consist-

ing of strongly connected components is the finest acyclic

node aggregation. However, this node aggregation may not

be compatible with observability, since observability may

be meaningless for some strongly connected components.

Hence how to find acyclic node aggregations compatible
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Nodes Boolean rule Nodes Boolean rule Nodes Boolean rule

CD8 Input Gads LAT PKCth DAG

CD45 Input Grb2Sos LAT PLCg(act)
(Itk∧PLCg(bind)∧SLP76∧ZAP70)
∨(PLCg(bind)∧Rlk∧SLP76∧ZAP70)

TCRlig Input IKKbeta PKCth PAGCsk Fyn∨(¬TCRbind)
AP1 Fos∧Jun IP3 PLCg(act) PLCg(bind) LAT

Ca IP3 Itk SLP76∧ZAP70 Raf Ras

Calcin Ca IkB ¬IKKbeta Ras Grb2Sos∨ RasGRP1
cCbl ZAP70 JNK SEK RasGRP1 DAG∧PKCth
CRE CREB Jun JNK Rlk Lck

CREB Rsk LAT ZAP70 Rsk ERK

DAG PLCg(act) Lck (¬PAGCsk)∧CD8∧CD45 SEK PKCth

ERK MEK MEK Raf SLP76 Gads

Fos ERK NFAT Calcin TCRbind (¬cCbl)∧TCRlig
Fyn

(Lck∧CD45)
∨(TCRbind∧CD45) NFkB ¬IkB TCRphos Fyn∨(Lck∧TCRbind)

ZAP70 (¬cCbl)∧Lck∧TCRphos
Table 1: Updating rules for the nodes of the T-cell receptor kinetics model [9].

with observability is still a challenging problem. In addition,

since the node aggregation consisting of strongly connected

components is the finest acyclic node aggregation, we can

first find it, then furthermore aggregate some strongly con-

nected components to make the new aggregation compatible

with observability. This is left for further study.

The main contribution of this paper is showing that one

can use the acyclic node aggregation method to deal with

observability of large-scale BCNs, which may motive the s-

tudy on observability of large-scale BCNs based on different

types of node aggregations.
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