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Abstract

We study how to jointly recover the community structure and estimate the interaction probabilities of gossip opinion dynamics.
In this process, agents randomly interact pairwise, and there are stubborn agents never changing their states. Such a model
illustrates how disagreement and opinion fluctuation arise in a social network. It is assumed that each agent is assigned with
one of two community labels, and the agents interact with probabilities depending on their labels. The considered problem
is to jointly recover the community labels of the agents and estimate interaction probabilities between the agents, based on
a single trajectory of the model. We first study stability and limit theorems of the model, and then propose a joint recovery
and estimation algorithm based on trajectories. It is verified that the community recovery can be achieved in finite time,
and the interaction estimator converges almost surely. We derive a sample-complexity result for the recovery, and analyze the
estimator’s convergence rate. Simulations are presented for illustration of the performance of the proposed algorithm.
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1 Introduction

Networks appear across domains from biology to sociol-
ogy. Real networks often exhibit community structures,
where subsets of nodes have dense connections locally
but sparse connections globally (Fortunato and Hric,
2016). Community detection is to partition nodes ac-
cording to the network topology. There is a growing in-
terest in studying community detection based on state
observations of dynamics (Prokhorenkova et al., 2019;
Schaub et al., 2020). Lacking topology data makes the
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problem harder than classic ones. Particularly, it is un-
clear how to recover communities out of a single trajec-
tory of opinion dynamics (Ravazzi et al., 2021).

1.1 Related Work

In this subsection, we first review key community defi-
nitions and detection approaches (Fortunato and Hric,
2016), then discuss recovering communities based on
state observations, and finally clarify our motivation.

Traditional community detection methods apply classic
clustering techniques to node pairs assigned with cer-
tain weights (Girvan and Newman, 2002). Newman and
Girvan (2004) introduce the concept of modularity to
measure the quality of a graph partition. A famous al-
gorithm based on optimizing modularity is the Louvain
method (Blondel et al., 2008), which assigns nodes to
one of the communities iteratively to achieve the largest
modularity gain. Another approach to community de-
tection is based on statistical inference, which intro-
duces generative network models and considers an ob-
served network as a sample. A canonical model is the
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stochastic block model (SBM). (Abbe, 2017) reviews de-
tectability of the SBM and performance of algorithms.
Besides optimization and statistical approaches, another
method is based on dynamical processes (e.g. Rosvall
and Bergstrom (2008)). Morarescu and Girard (2010)
propose a bounded-confidence model, where agents con-
verge to several clusters corresponding to communities.

Recently, the study of community detection for net-
worked dynamics has emerged. The problem asks
whether we can recover communities only based on state
observations of a dynamical process. The main differ-
ence between this problem and the classic ones, espe-
cially the dynamic-based methods, is that the network
itself is not available. Prokhorenkova et al. (2019) and
Ramezani et al. (2018) follow a natural two-step proce-
dure, which first recovers the underlying network and
then clusters agents based on network estimates. Wai
et al. (2019); Schaub et al. (2020); Roddenberry et al.
(2020) introduce the framework of blind community de-
tection, which uses sample covariance matrices of agent
states for recovery. Peixoto (2019) investigates simulta-
neously reconstructing the topology and the community
structure for an epidemic model and an Ising model.
Recovering communities based on observations from an
Ising blockmodel is studied in Berthet et al. (2019).

We study how to jointly recover the community struc-
ture and estimate the interaction probabilities of gossip
opinion dynamics. The problem arises from recent inves-
tigation of learning interpersonal influence from dynam-
ics (Ravazzi et al., 2021). Learning influential networks
from dynamics is useful for decision making and inter-
vention, but directly collecting such data may be hard,
due to topic specificity (Cowan and Baldassarri, 2018),
consistency issues (Netrapalli and Sanghavi, 2012), and
privacy concern (De Montjoye et al., 2018). Learning
large-scale networks may be computationally expensive,
so recovering communities as a coarse description is a
good option. The gossip update rule captures the ran-
dom nature of real individual interactions. It is a funda-
mental element of other opinion models (Proskurnikov
and Tempo, 2017), and has been extensively studied
(Boyd et al., 2006). Stubborn agents, such as media and
opinion leaders, play a crucial role in opinion formation
(Ramos et al., 2015). Acemoğlu et al. (2013) show that
the existence of stubborn agents can explain opinion os-
cillation. An generalization of stubborn agents is to as-
sume that each agent has some level of stubbornness with
respect to its initial belief. This generalization is consid-
ered by the Friedkin-Johnsen model and its extensions
(Proskurnikov et al., 2017; Tian and Wang, 2018).

1.2 Contributions

We consider jointly recovering communities and estimat-
ing interaction probabilities for gossip opinion dynamics.
Each agent is assigned with one of two community labels,

and the agents interact with probabilities depending on
their labels. Our contributions are as follows:

1. We study properties of the model by leveraging re-
sults on Markov chains and stochastic approximation
(SA) (Theorem 1). It is shown that regular-agent states
converge in distribution to a unique stationary distribu-
tion, and the time average of the agent states converge
almost surely. An explicit expression for the mean of the
stationary distribution is given (Proposition 2).
2. We develop a joint algorithm (Algorithm 1) to recover
the community structure and to estimate the interaction
probabilities, based on Polyak averaging and SA tech-
niques. The algorithm is able to recover the communities
in finite time, and then able to estimate the interaction
probabilities consistently (Theorem 2).
3. We show how to theoretically analyze the developed
joint algorithm. A concentration inequality for Markov
chains (Lemma 1) is obtained, and it is used in the
sample-complexity analysis of the recovery step (Theo-
rem 3). The obtained result shows that the probability
of unsuccessful recovery decays exponentially over time.
Additionally, we analyze convergence rate of the inter-
action estimator from an SA argument (Theorem 4).

The obtained results indicate that a Polyak averag-
ing technique can be useful for recovering communities
based on a single trajectory. In addition, we establish
a sample-complexity result for successful recovery (re-
covering all community labels correctly), providing a
quantitative dependence of the successful recovery prob-
ability on model parameters. These two points make
our paper different from Wai et al. (2019); Schaub et al.
(2020); Roddenberry et al. (2020), which use properties
of sample covariance matrices of agent states collected
from several trajectories, and different from Wai et al.
(2016), which considers learning a sparse character-
ization of the network from the gossip model. The
considered problem is different from classic system iden-
tification (e.g., Sarkar et al. (2021)), because stubborn
agents normally have fixed states, which does not satisfy
input conditions required for system identification, and
also because community recovery cannot be obtained
directly from parameter estimates. The major differ-
ences between this paper and its conference version
(Xing et al., 2020) are that we clarify our assumptions
in more detail, characterize the sample complexity and
the convergence rate of the algorithm, and add more
simulations to illustrate its performance.

1.3 Outline

The rest of the paper is organized as follows. Section 2
formulates the problem. Analysis of the model is given in
Section 3, and a joint recovery and estimation algorithm
is proposed in Section 4. Section 5 presents convergence
results of the algorithm, and Section 6 provides several
numerical experiments. Finally, Section 7 concludes the
paper. Proofs are given in Xing et al. (2021).
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Notation. Denote the n-dimensional Euclidean space,
the set of n×m real matrices, and the set of nonnegative
integers by Rn, Rn×m, and N. Denote N+ = N\{0}. Let
1n, ei, In, and 0n,m be n-dimensional all-one vector, the
unit vector with i-th entry being one, the n×n identity
matrix, and the n × m all-zero matrix. Let 1n1,n2

:=
1n1

1Tn2
. Denote both the Euclidean norm of a vector and

the spectral norm of a square matrix by ‖ · ‖. Denote
the diagonal matrix with the elements of a vector x on
the main diagonal by diag{x}. For a vector x, denote its
i-th component by xi, and, for a matrix A, denote its
(i, j)-th entry by aij or [A]ij . Denote the spectral radius
of A by ρ(A), and the cardinality of a set Ω by |Ω|.
I[property] is the indicator function. For two sequences
{ak} and {bk} with ak ∈ Rn and 0 6= bk ∈ R, k ≥ 1,
ak = O(bk) means that ‖ak/bk‖ ≤ C for all k and some
C > 0, and ak = o(bk) means that limk→∞ ‖ak/bk‖ = 0.
An event happens almost surely (a.s.) if it happens with
probability one.

2 Problem Formulation

This section introduces the considered model and the
definition of communities, and formulates the problem.

2.1 Gossip Model with Stubborn Agents

The gossip model is a random process over an undirected
graph G = (V, E) with the agent set V, the edge set E ,
and no self-loops. The agents have two types, regular and
stubborn, denoted by Vr and Vs, respectively (V = Vr ∪
Vs, Vr∩Vs = ∅). Each agent i has a state Xi(t) ∈ R, and
the state vector at time t ∈ N is X(t) ∈ Rn. Stubborn
agents do not change their states during the process.

An interaction probability matrix W = [wij ] ∈ Rn×n
captures agent interactions, where wij = wji ≥ 0, wij >
0 ⇔ {i, j} ∈ E , i, j ∈ V, and 1TW1/2 = 1. At time t,
edge {i, j} is selected with probabilitywij independently
of previous updates, and agents update as follows, with
the averaging weight q ∈ [0, 1),

Xk(t+ 1) =

{
qXi(t) + (1− q)Xj(t), if k ∈ Vr ∩ {i, j},
Xk(t), otherwise.

(1)

For 1 ≤ i < j ≤ n, define a sequence of independent
and identically distributed (i.i.d.) n-dimensional random
matrices {R(t), t ∈ N} such that P{R(t) = Rij} = wij ,
1 ≤ i < j ≤ n, where

Rij =


I − (1− q)(ei − ej)(ei − ej)

T , if i, j ∈ Vr,
I − (1− q)ei(ei − ej)

T , if i ∈ Vr, j ∈ Vs,
I − (1− q)ej(ej − ei)

T , if i ∈ Vs, j ∈ Vr,
I, if i, j ∈ Vs.

The update rule (1) can then be written as

X(t+ 1) = R(t)X(t). (2)

Since stubborn agents never change their states, we
rewrite (2) to end up with the following compact form
of the gossip model with stubborn agents:

Xr(t+ 1) = A(t)Xr(t) +B(t)Xs(t), (3)

where Xr(t) and Xs(t) are the state vectors obtained
from stacking the states of regular and stubborn agents,
respectively, Xs(t) ≡ Xs(0), and [A(t) B(t)] is the ma-
trix obtained from stacking rows of R(t) corresponding
to regular agents. So {[A(t) B(t)], t ∈ N} is a sequence
of i.i.d. random matrices. Assume that the initial vector
X(0) is fixed, for simplicity. If X(0) is random, we can
study the model by conditioning on realizations ofX(0).

2.2 Communities

We follow the framework of SBMs (Abbe, 2017) and
Ising blockmodels (Berthet et al., 2019), and assume that
agents have pre-assigned community labels. We define a
community as the set of agents that have the same label.

In particular, we consider the scenario where the network
has two disjoint communities, V1 and V2. Denote the
community label of i by C(i), so C(i) = k for i ∈ Vk, k =
1, 2. We call C the community structure of the network.
We further assume that the interaction probability of
the agents i and j with i 6= j is

wij =

{
ws, if C(i) = C(j),
wd, if C(i) 6= C(j), (4)

where ws, wd ∈ (0, 1) and ws 6= wd. Thus agents in
the same community (different communities) interact
with probability ws (wd). Fig. 1(a) illustrates two dif-
ferent interaction models, via a simulation where a gos-
sip model defined by (4) is run for 2000 iterations and
the number of interactions between agents is counted.
To ease notation, we assume that V1 = {1, . . . , n1} and
V2 = {n1 +1, . . . , n1 +n2} with nk := |Vk|, k = 1, 2, and
n1 + n2 = n. Thus the interaction probability matrix is

W =

[
ws1n1,n1

− diag{ws1n1
} wd1n1,n2

wd1n2,n1
ws1n2,n2

− diag{ws1n2
}

]
(5)

It has a block structure corresponding to the commu-
nity structure of the network. The following example il-
lustrates how the preceding assumption arises naturally
from an SBM. It shows that a graph generated from an
SBM defines an interaction probability matrix close to
an averaged version with the same structure as (5).

Example 1 Consider an SBM with two communi-
ties, commonly studied in community detection (Abbe,
2017). Such an SBM is a random graph, denoted by
SBM(n, ν1, ν2, ps, pd). Here n is the number of agents,
ν1 ∈ (0, 1) (resp. ν2 ∈ (0, 1)) is the portion of agents
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(a) The left (right) graph demonstrates the case where ws >
wd (ws < wd), in which agents within the same community
interacting more (less) often than agents between communities.
The width of edges is proportional to the number of interactions.

(b) The adjacency matrix of a graph generated from
SBM(n, ν1, ν2, ps, pd) with n = 5000, ν1 = 0.4, ν2 = 0.6,
ps = 5 logn/n, pd = logn/n. Dots represent nonzero en-
tries, so the block structure of the matrix is clearly visible.

Fig. 1. Illustration of the interaction model (4) and an adjacency matrix generated from an SBM.

with community label 1 (resp. label 2), where ν1 + ν2 = 1
and ν1n and ν2n are integers, and ps, pd ∈ (0, 1) are the
link probabilities between agents in the same and in dif-
ferent communities. We assume C(i) = 1, 1 ≤ i ≤ ν1n,
and C(i) = 2, ν1n+ 1 ≤ i ≤ n.
The SBM(n, ν1, ν2, ps, pd) randomly generates an undi-
rected graph G = (V, E ,A): for i 6= j, {i, j} ∈ E with
probability ps if C(i) = C(j) and with probability pd if
C(i) 6= C(j), independently of other edges. The graph
G defines a gossip model with the interaction matrix
W̃ = A/α and α =

∑n
i=1

∑n
j=i+1 aij = |E|. The in-

equality ‖W̃ − E{A}/E{α}‖ ≤ C/n holds with a con-
stant C, except for a probability vanishing as n→∞, if
log n/n = O(min{ps, pd}) (see Xing et al. (2021)). This
result implies that, if the network of the gossip model is
generated from the SBM, then the interaction probabil-
ity matrix of the gossip model is close to E{A}/E{α}
when n is large. Note that E{A}/E{α} has exactly the
same structure as W in (5) with nk = νkn, k = 1, 2,
ws = ps/E{α}, and wd = pd/E{α}. Fig. 1(b) demon-
strates this concentration phenomenon with an obvious
two-block structure. The concentration indicates that be-
havior of the gossip model over a graph generated from
the SBM may not deviate too far from the gossip model
over the averaged graph, when n is large. (Xing and Jo-
hansson, 2022) show that the expected stationary states
of the two models are close, if log n/n = o(min{ps, pd}).
This result indicates that the gossip model over the aver-
aged graph can be considered as an approximation of the
model over the SBM, and results for the former model
can be extended to the latter model.

Remark 1 A general assumption for community labels
in the SBM is that each agent gets a label k with prob-
ability νk independently of each other, k = 1, 2. This is
essentially equivalent to the label assignment with de-
terministic portions of nodes when n → ∞ (Remark 3
of Abbe (2017)). Note that it is possible to extend the
fixed-label assumption considered in Example 1 to the
deterministic-portion assumption, by conditioning on
each assignment and using the law of total probability.
The condition log n/n = O(min{ps, pd}) implies that the

expected agent degree is at leastO(log n). In this case, the
SBM generates connected graphs with high probability.
The difference between ps and pd has to be large enough
to make exact recovery possible (Abbe, 2017). Here we
consider the dynamics over the averaged graph, so the
detectability only requires ws 6= wd (Assumption 1 (ii)).
Future work will study detectability in the SBM case.

2.3 Community Recovery and Interaction Estimation

The considered problem is to recover the community
structure and to estimate the interaction probabilities
based on state observations, as follows.

Problem. Given a trajectory of the gossip model with
the interaction matrix (5), develop an algorithm to
jointly recover the community structure C and estimate
the interaction probabilities ws and wd.

Remark 2 In the problem, we assume that the devel-
oped algorithm uses data coming from the gossip model
over the averaged graph. A natural question is how this
algorithm performs if it uses a trajectory of the gossip
model over a graph sampled from an SBM. In Section 6,
we illustrate through simulation that the algorithm per-
forms well also in the SBM case. Such performance is
guaranteed by that these two processes behave similarly
in terms of their stationary states, as explained in Ex-
ample 1. We use “community recovery” instead of “com-
munity detection” to avoid ambiguity, following the ter-
minology of Berthet et al. (2019), because here agent be-
havior depends directly on the community structure.

Recall V1 = {1, . . . , n1} and V2 = {n1 + 1, . . . , n1 +n2}.
We further sort the agents as follows: Vr1 = {1, . . . , nr1},
Vs1 = {nr1 + 1, . . . , n1}, Vr2 = {n1 + 1, . . . , n1 + nr2},
and Vs2 = {n1 + nr2 + 1, . . . , n}. Here, Vrk (resp. Vsk)
is the set of regular (resp. stubborn) agents in the com-
munity k, k = 1, 2. Denote nrk := |Vrk|, nsk := |Vsk|,
nr := |Vr|, and ns := |Vs|. In the considered prob-
lem, the total number of agents is known in advance,
the network has two communities, and the stubborn-
agent states are observable. But difficulty still remains
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Ā = Inr
− (1− q)

[
a1Inr1

− ws1nr1,nr1
−wd1nr1,nr2

−wd1nr2,nr1 a2Inr2 − ws1nr2,nr2

]
, B̄ = (1− q)

[
ws1nr1,ns1

wd1nr1,ns2

wd1nr2,ns1 ws1nr2,ns2

]
,

ak = wsnk + wdn3−k, k = 1, 2.

(6)

since nk, nrk, nsk, k = 1, 2, and interaction informa-
tion are unknown. The interaction information cannot
be obtained in general situations (e.g., agent states are
only observed at some time steps, or observations are
corrupted by noise, as discussed in Remark 7).

3 Model Analysis

This section studies model behavior, and provides an
explicit expression for the mean of the stationary distri-
bution. Assumptions are summarized as follows.

Assumption 1
(i.1) The agent set V consists of two communities, V1 =
{1, . . . , n1} and V2 = {n1 +1, . . . , n1 +n2} with n1, n2 >
0 and n1 + n2 = n.
(i.2) Both communities have regular agents, namely, 1 ≤
nr1 ≤ n1, 1 ≤ nr2 ≤ n2.
(ii) The interaction probability matrix W has a block
structure (5) with ws, wd > 0, ws 6= wd, and

(n1(n1 − 1) + n2(n2 − 1))ws + 2n1n2wd = 2. (7)

(iii) X(0) is deterministic. It holds that Xr(0) ∈ S with

S := {xr ∈ Rnr : xri ∈ [s, s], 1 ≤ i ≤ nr}, (8)

where s := min1≤i≤ns{xsi}, s := max1≤i≤ns{xsi}, xs :=
Xs(0) = [(xs1)T (xs2)T ]T is the stubborn state vector,
and xsk is the vector for the community k, k = 1, 2.

Remark 3 In Assumption 1 (i.1), the order of agents is
sorted for convenience, but we do not know which group
each agent belongs to, before community recovery. It is
necessary to assume ws 6= wd. Otherwise, W has no
block structure. Regular agents are assumed to start from
S, which is reasonable and intuitively means that regular
states lie between the extreme stubborn states.

Before studying model behavior, we explicitly write the
block structures of Ā := E{A(t)} and B̄ := E{B(t)}
as follows. The block structure of W results in similar
update rules for agents in the same community.

Proposition 1 Suppose Assumption 1 holds. Then Ā
and B̄ have block structures given in (6).

Now we provide the stability and limit theorems of the
gossip model.

Theorem 1 (Stability and limit theorems) Suppose that
Assumption 1 holds and there exists at least one stubborn

agent in the network (i.e., nr < n). The following results
hold for the gossip model with stubborn agents.
(i) The model has a unique stationary distribution π with
mean xr, and Xr(t) converges in distribution to π.

(ii) The expectation of the state vector converges to xr:

xr = lim
t→∞

E{Xr(t)} = (I − Ā)−1B̄xs. (9)

(iii) Denote Sr(t) := 1
t

∑t−1
i=0 X

r(i), then

lim
t→∞

Sr(t) = xr a.s., (10)

Remark 4 The first two results show that the agent
states, though may not converge a.s., converge in distri-
bution to a unique stationary distribution, and their ex-
pectations converge to the mean of the stationary distri-
bution. The third result indicates that we can obtain the
value of xr by computing the state time average.

The next proposition shows that xr also has a block
structure, indicating that regular agents in the same
community behave similarly on average.

Proposition 2 Under the conditions of Theorem 1, xr

given in (9) has the form

xr = [χ11
T
nr1
, χ21

T
nr2

]T , (11)

where χk = (γkk1
T
nsk

xsk + γk,3−k1
T
ns,3−k

xs,3−k)/δ, δ =

w2
sns1ns2 +wswd(n1ns1 + n2ns2) +w2

d(n1n2 − nr1nr2),
γkk = w2

sns,3−k + wswdnk + w2
dnr,3−k, γk,3−k = wd

(wsn3−k +wdnk), and 1Tnsk
xsk := 0 if nsk = 0, k = 1, 2.

Remark 5 Appendix B of Xing et al. (2021) studies a
multiple-community case, generalizing Proposition 2.

The above proposition means that regular agents in
the same community have the same limit, which is a
weighted average of stubborn states. Hence it is possible
to split regular agents by computing the state time av-
erage. However, we are unable to do so if only one com-
munity has stubborn agents, or the stubborn states are
similar. The following condition rules out these cases.

Assumption 2 Both communities have stubborn agents
(i.e., ns1ns2 > 0), and xs = [(xs1)T (xs2)T ]T satisfies
that 1Tns1

xs1/ns1 6= 1Tns2
xs2/ns2.

This assumption has a practical meaning: stubborn
agents are distributed among communities, and agents
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Algorithm 1 (Joint Recovery and Estimation)

Input: {Xr(t), t = 0, 1, 2, . . . }, Xs(0), step-size parameter a
of the interaction estimator with a > 0.
Output: {Ĉ(i, t)}, ŵs(t), ŵd(t).

1: Randomize Ĉ(i, 0), ŵs(0), ŵd(0), set Sr(0) = Xr(0).
2: for t = 1, . . . do
3: Compute

Sr(t) =
t

t+ 1
Sr(t− 1) +

1

t+ 1
Xr(t),

s̄r(t) =
1

nr
1T
nr
Sr(t).

4: Community recovery:

Ĉ(i, t) = 2− I[Sr
i (t)>s̄r(t)], i ∈ Vr,

Ĉ(i, t) = Ĉ(ji, t), i ∈ Vs,

where ji is defined in Assumption 3.
5: Interaction estimation:

ŵs(t) = ŵs(t− 1)− a

t
sgn(g(t))

(
g(t)ŵs(t− 1)

+
h2(t)

n̂1(t)n̂2(t)

)
,

ŵd(t) =
2− ŵs(t)(n̂2

1(t) + n̂2
2(t)− n̂1(t)− n̂2(t))

2n̂1(t)n̂2(t)
,

where

g(t) = h1(t)− n̂2
1(t) + n̂2

2(t)− n̂1(t)− n̂2(t)

2n̂1(t)n̂2(t)
h2(t),

h1(t) =
|V̂s1(t)|
|V̂r1(t)|

∑
i∈V̂r1(t) S

r
i (t)−

∑
i∈V̂s1(t) X

s
i (0),

h2(t) =
n̂2(t)

|V̂r1(t)|
∑

i∈V̂r1(t) S
r
i (t)

−
∑

i∈V̂r2(t) S
r
i (t)−

∑
i∈V̂s2(t) X

s
i (0),

n̂k(t) =
∑

i∈V I[Ĉ(i,t)=k],

V̂rk(t) = {i ∈ Vr : Ĉ(i, t) = k},
V̂sk(t) = {i ∈ Vs : Ĉ(i, t) = k}, k = 1, 2.

6: end for

from different communities are more likely to have
distinct opinions. Under Assumption 2, we have the fol-
lowing result, indicating that the presence of stubborn
agents enhances the separation of regular agents.

Proposition 3 Under the conditions of Theorem 1,
χ1 6= χ2 if and only if Assumption 2 holds.

This result shows that Assumption 2 is a necessary and
sufficient condition for regular agents from different com-
munities having nonidentical expected stationary states.
Note that 1Tns1

xs1/ns1 6= 1Tns2
xs2/ns2 is generic (i.e., it

holds for almost all xs ∈ Rns).

4 Joint Recovery and Estimation Algorithm

In this section, we design a joint recovery and estimation
algorithm (Algorithm 1) to address the considered prob-
lem. We assume the following connections between stub-
born and regular agents. The information means that
we have prior knowledge about stubborn agents, which
may be gathered from other sources in practice.

Assumption 3 For every stubborn agent i ∈ Vs, it is
known for Algorithm 1 that there exists a regular agent
ji ∈ Vr such that i and ji are in the same community
(i.e, C(i) = C(ji)).

Now we are ready to introduce Algorithm 1, in which
we denote the estimates at time t of community la-
bel C(i), interaction probabilities ws and wd, by Ĉ(i, t),
ŵs(t), and ŵd(t), respectively. We use Sri (t) to repre-
sent the (i − n1 + nr1)-th entry of Sr(t), i ∈ V2 =
{n1 + 1, . . . , n1 + nr2} for simplicity. Note that both n1

and nr1 are unknown in the algorithm. In the gossip
model, agents randomly interact and update states. Al-
gorithm 1 partitions the agents and estimates interac-
tion strength between agents, out of these state obser-
vations, without interaction information.

Remark 6 The difficulty of recovery is to find a quantity
revealing the community structure. Algorithm 1 exploits
the trajectory data captured by Sr(t) given in (10). From
Proposition 2 we know that the entries of Sr(t) converge
to two distinct values corresponding to the communities.
Hence clustering methods (Line 4 of Algorithm 1, or other
methods such as k-means) can be used. For estimation
of interaction probabilities, the key is to find consistent
parameter equations. Here we use the stationary property
xr = Āxr+B̄xs, giving the following equations of (x y)T

(see Xing et al. (2021) for the details){
(ns1χ1 − 1Tns1

xs1)x+ (n2χ1 − nr2χ2 − 1Tns2
xs2)y = 0,

(n1(n1 − 1) + n2(n2 − 1))x+ 2n1n2y = 2.

From (9),it has a unique solution under Assumptions 1
and 2, for fixed nk, nrk, and nsk. But these quantities
are unknown, so we leverage SA techniques to estimate
them, as presented in Line 5 of Algorithm 1. Note that the
algorithm does not need to know the averaging weight q.

5 Convergence Analysis

This section studies the performance of Algorithm 1. We
have the following result, meaning community recovery
can be done in finite time, and the interaction probability
estimates are convergent.

Theorem 2 (Convergence of Algorithm 1)
Under Assumptions 1-3, the following holds.
(i) The community recovery is achieved in finite time:
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there exists a positive integer-valued random variable T
such that Ĉ(i, t) = C(i), for all i ∈ V and t > T .
(ii) The interaction estimator converges a.s., namely,

P
{

lim
t→∞

(ŵs(t), ŵd(t)) = (ws, wd)
}

= 1.

Remark 7 Since Algorithm 1 uses the property (10), it
can also deal with situations where state observations are
corrupted. For example, one cannot observe the whole
trajectory but can only sample the states at some time
steps. Ergodic property ensures that the time average of
the sampled states still converges, if the sampling process
is independent of the update, and the number of samples
tends to infinity (Wai et al., 2016; Ravazzi et al., 2014).
Another situation is that the observations are disturbed
by i.i.d. noise with zero-mean and independent of the
process. The law of large numbers guarantees that the
influence of noise vanishes over time.

Now we investigate the sample complexity of the com-
munity recovery, and the convergence rate of the inter-
action estimator. The following result is useful for study-
ing the sample complexity of the recovery.

Lemma 1 Consider a Markov chain {X(t)} taking val-
ues on a compact state space X and having a unique sta-
tionary distribution π. For a function f : X → R and
α :=

∫
X f(x)π(dx), denote g(x) :=

∑∞
t=0 E{f(X(t)) −

α|X(0) = x}, and the supremum of |g| on X by ‖g‖s :=
sup{|g(x)| : x ∈ X}. If ‖g‖s <∞, then, for all ε > 0 and

t > 2‖g‖s/ε, it holds for Sf (t) := 1
t

∑t−1
i=0 f(X(i)) that

P{|Sf (t)− α| ≥ ε} ≤ 2 exp

{
− (tε− 2‖g‖s)2

2t‖g‖2s

}
.

Remark 8 Similar concentration results to Lemma 1
have been obtained in the literature for other models.
One class of results leverage Markov chain approaches
and normally require stability such as uniform ergodic-
ity (Glynn and Ormoneit, 2002; Paulin, 2015) or explicit
bounds of the derivative of the initial measure with respect
to the stationary measure (Fan et al., 2021). It is hard to
derive these properties for Markov chains without contin-
uous distributions (Gibbs and Su, 2002), as in our case.
Another line of research studies concentration of Polyak
averages, and contains step-size conditions (Mou et al.,
2020), which cannot be applied to our problem either.

Using the preceding lemma, we are able to compute how
long it takes for the differences between entries of Sr(t)
and xr to be small enough, such that agents in different
communities have distinct state time averages. As a re-
sult, by noting Line 4 of Algorithm 1, we obtain a sample-
complexity result for the community recovery. This the-
orem shows that the probability of recovering communi-
ties successfully at time t depends on the network, the
interaction probabilities, and the stubborn-agent states.
This probability tends to one as t goes to infinity.

Theorem 3 (Sample complexity)
Under the conditions of Theorem 2, for the community
recovery step of Algorithm 1, it holds that, for t > t0,

P
{
Ĉ(i, t) = C(i),∀i ∈ V

}
≥ 1− 2nr exp

{
−2(t− t0)2

t20t

}
,

with t0 = 4δcĀcnr
cs/cw, where cĀ = 1/(1 − ρ(Ā)),

cnr = n
3/2
r (nr + 1), cs = max{|s|, |s̄|}/|ns11Tns2

xs2 −
ns21

T
ns1

xs1|, cw = |w2
s −w2

d|, δ is given in Proposition 2,
and s and s̄ are given in (8).

Remark 9 This result provides a sample complexity
characterization for recovering community from a single
trajectory, and may be considered as a counterpart of the
multiple-trajectory sample complexity given in Schaub
et al. (2020). The parameter δ reflects the combined ef-
fect of the cardinality of stubborn and regular agents and
the interaction probabilities. cĀ captures the “speed” of
information diffusion, and increases with ρ(Ā). cnr de-
pends on the number of regular agents. cs increases with
the range of the states and decreases with the difference
of averaged stubborn states in different communities, and
cw measures the difference between interaction probabili-
ties within and between communities. Smaller δ, cĀ, nr,
and max{|s|, |s̄|} would make the recovery easier, and so
would larger cw and |ns11Tns2

xs2 − ns21Tns1
xs1|. For the

gossip model over a graph sampled from an SBM, Ex-
ample 1 indicates that the algorithm can recover most of
the community labels, which is illustrated in Section 6.

We have the following result for the convergence rate of
the interaction estimation. It shows that the convergence
rate also depends on the parameters of the gossip model,
but a large enough step-size parameter a ensures that
the estimator can achieve rate O(1/

√
t).

Theorem 4 (Convergence rate)
Under the conditions of Theorem 2, it holds for d0 ∈
[0,min{1/2, a|η|}) that

(ŵs(t)− ws, ŵd(t)− wd) = o(t−d0), a.s.,

where a > 0 is the step-size parameter given in Algo-
rithm 1, η = (wsn2 + wdn1)(ns11

T
ns2

xs2 − ns21Tns1
xs1)/

(δn1n2), and δ is given in Proposition 2.

Remark 10 In the theorem, η increases with the com-
bined effect of the number of agents and the interaction
probabilities (i.e., (wsn2 + wdn1)/δ) and with the dis-
agreement of stubborn agents, and decreases with the car-
dinality of each community. When a ≥ 1/(2|η|), the in-
teraction estimator achieves its optimal rate. Larger η
provides a wider selection range. Simulation in Section 6
shows that the algorithm using a trajectory from the gos-
sip model over a graph sampled from the SBM can still
estimate the ratio of the link probabilities of the SBM.
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(a) Finite-time community recovery. The recovery
is achieved after t = 383.
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(b) Convergence of the interaction estimator. The
solid (dashed) lines are true values (estimates).

Fig. 2. Performance of Algorithm 1.

6 Numerical Simulation

This section illustrates the performance of Algorithm 1,
conducts an algorithm comparison, and applies Algo-
rithm 1 to the SBM case and a real network.

To illustrate the performance of Algorithm 1 under As-
sumptions 1-3, consider a complete graph consisting of
twelve agents. The two communities both have five regu-
lar agents and one stubborn agent. Set interaction prob-
abilities be ws = 5/186 and wd = 1/186. The stub-
born agent in community 1 (resp. community 2) has
state 1 (resp. −1). The initial states of regular agents
are drawn from uniform distribution on (−1, 1). The av-
eraging weight is set to be q = 1/2 in all experiments.
Fig. 2(a) shows that Algorithm 1 recovers the commu-
nities in finite time, where the accuracy at time t is
defined by 1

n (maxσ∈S2
{
∑n
i=1 I[σ(Ĉ(i,t))=C(i)]}) ∈ [0, 1].

Here σ : {1, 2} → {1, 2} is a permutation function (to
prevent a reverse distribution of labels), S2 is the group
of permutations on {1, 2}, C(i) is agent i’s community la-

bel, Ĉ(i, t) is the estimate of agent i’s label at time t, and
n = 12. Consistency of the interaction estimator with
step-size parameter a = 1 is demonstrated in Fig. 2(b).
These results validate Theorem 2.

We now show the sample complexity of the commu-
nity recovery (Theorem 3) and compare the recovery
step with the k-means, k-means++ (Arthur and Vassil-
vitskii, 2006), and spectral clustering methods (Abbe,
2017). This experiment considers the gossip model un-
der Assumptions 1-3 with n = 400, n1 = 150, and
ns1 = ns2 = 8. Let ws/wd = 5 and solve the two pa-
rameters from (7). Let stubborn agents in community 1
(resp. community 2) have state 1 (resp. -1), and gener-
ate the initial states of other agents from uniform dis-
tribution on (−1, 1). By running the algorithms for 200
times, we obtain the relative frequency that the algo-
rithms recover all community labels, defined by pt :=

(
∑N
k=1 maxσ∈S2

{I[σ(Ĉk(i,t))=C(i),∀i∈V]})/N , where N =

200 and Ĉk(i, t) is the estimate of agent i’s label at time t
in the k-th run. After computing the time average Sr(t),
we use k-means and k-means++ with k = 2 instead
of Line 4 of Algorithm 1, to recover communities. To

implement the spectral clustering method, assume that
edge activation is known, and use the activation infor-
mation to estimate the interaction probability matrix
W . Applying spectral clustering to estimates of W ob-
tains estimates of communities. Fig. 3 shows that the
probabilities of unsuccessful community recovery of all
approaches tends to zero exponentially over time. The
spectral clustering method performs better than other
algorithms, because it directly uses interaction informa-
tion, but the required time is still of the same order as the
other algorithms. The k-means and k-means++ meth-
ods perform similarly to each other, and also similarly
to Algorithm 1. This observation indicates that the ma-
jor challenge of the problem is how to use agent states to
recover communities without topological information.

We now consider the case where trajectories of the gossip
model over graphs sampled from SBMs are given to Algo-
rithm 1. We use three SBMs with size n = 100, 300, 900
and with two equal-sized communities (ν1 = ν2 = 0.5).
Set nr1 = nr2 = 0.45n, and ns1 = ns2 = 0.05n. Let
the link probability in the same community be ps =
(log n)2/n and the link probability between different
communities be pd = (log n)/n. For each SBM, we gen-
erate 20 graph samples. For each graph sample, we run
Algorithm 1 for 20 times. Regular states are generated
the same as earlier and stubborn agents in community 1
(resp. community 2) have state 1 (resp. −1). Fig. 4(a)
shows that Algorithm 1 has high community recovery ac-
curacy, increasing with n. This phenomenon results from
the concentration discussed in Example 1. Algorithm 1
outputs ŵs(t) and ŵd(t) as estimates of the two distinct
non-zero values of E{W}/E{α}. Note that [cps, cpd] de-
fines the same E{W}/E{α} for all c > 0, so we can only
estimate the ratio ps/pd without knowing the expected
number of edges of the SBM. Fig. 4(b) shows that the
median of the estimation error for trajectory samples
from each SBM is close to zero and decreases with n.

Zachary’s karate club network (Zachary, 1977), pre-
sented in Fig. 5(a), is used to demonstrate an application
of Algorithm 1. An edge represents frequent interaction
between the two agents. The strength of interactions
between agents is modeled by a weighted adjacency
matrix. A conflict between agents 1 and 34 results in a
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Fig. 3. Performance comparison of four methods.

fission of the club. In the experiment, we assume that
only the opinions can be observed, instead of interac-
tions between agents. The process is modeled by the
gossip model. Agents 1 and 34 are set to be stubborn
agents holding different opinions. In addition, one edge
in Fig. 5(a) is selected at each time with a probability
proportional to interaction strength given in Zachary
(1977). The goal is to partition the agents into commu-
nities based on only state observations. The network
structure departures from our assumptions, but the re-
sult shown in Fig. 5(b) indicates that as time increases,
our algorithm can finally recover the community struc-
ture, without topological and interaction information.

7 Conclusion and Future Work

In this paper, we developed a joint algorithm to recover
the community structure and to estimate the interaction
probabilities for gossip opinion dynamics. It was proved
that the community recovery is achieved in finite time,
and the interaction estimator converges almost surely.
We analyzed the sample complexity of the recovery and
convergence rate of the estimator. Future work includes
to study the case where all regular agents have the same
stationary-state expectation, and to analyze the com-
munity detection problem for dynamics over the SBM.
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