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Abstract— The study of multiplicative noise models has a
long history in control theory but is re-emerging in the context
of complex networked systems and systems with learning-
based control. We consider linear system identification with
multiplicative noise from multiple state-input trajectory data.
We propose exploratory input signals along with a least-
squares algorithm to simultaneously estimate nominal system
parameters and multiplicative noise covariance matrices. The
asymptotic consistency of the least-squares estimator is demon-
strated by analyzing first and second moment dynamics of the
system. The results are illustrated by numerical simulations.

I. INTRODUCTION

The study of stochastic systems with noise which multi-
plies with the state and input i.e. multiplicative noise has
a long history in control theory [1], but is re-emerging
in the context of complex networked systems and systems
with learning-based control. In contrast with the well-known
additive noise setting, multiplicative noise has the ability to
capture dependence of the noise on the state and/or control
input. This situation occurs in modern control systems as
diverse as robotics with distance-dependent sensor errors
[2], networked systems with noisy communication channels
[3], [4], modern power networks with high penetration of
intermittent renewables [5], turbulent fluid flow [6], and neu-
ronal brain networks [7]. Linear systems with multiplicative
noise are particularly attractive as a stochastic modeling
framework because they remain simple enough to admit
closed-form expressions for stability and stabilization via
generalized Lyapunov equations (e.g. [8]), optimal control
via the solution of generalized Riccati equations [1], [9]
and state estimation. Additionally, recent results show that
the optimal control of this class of systems can be learned
strictly from sample data without constructing a model via
the reinforcement learning technique of policy gradient [10].
As a complementary perspective, here we tackle the problem
from a model-based perspective where the goal is to learn

1Y. Xing is with Key Lab of Systems and Control, Academy of Math-
ematics and Systems Science, Chinese Academy of Sciences, and School
of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, P. R. China, yxing@amss.ac.cn. His work was supported
by National Key R&D Program of China (2016YFB0901900) and National
Natural Science Foundation of China (61573345).

2B. Gravell and T. Summers are with Department of Mechanical
Engineering, The University of Texas at Dallas, Richardson, TX, USA,
{Benjamin.Gravell,Tyler.Summers}@utdallas.edu.
Their work was supported by the Air Force Office of Scientific Research
under award number FA2386-19-1-4073.

3X. He and K. H. Johansson are with Division of Decision and Con-
trol Systems, School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, Stockholm, Sweden, {xingkang,
kallej}@kth.se. Their work was supported by Knut & Alice Wal-
lenberg Foundation, and Swedish Research Council.

and construct a model from sample data, which can then be
used e.g. for optimal control design.

The first issue that must be addressed is that a complete
multiplicative noise system model requires accurate estimates
not only of the nominal linear system matrices, but also the
noise covariance structure. This stands in stark contrast to
the additive noise case where the noise covariance structure
has no bearing on the control design and can thus be ignored
during system identification. For the identification of a nom-
inal linear system, recursive algorithms have been developed
in the control literature, such as the recursive least-squares
algorithm [11]. These can be utilized for linear systems with
multiplicative noise provided that certain assumptions on
the noise and on system stability hold. For the estimation
of noise covariances, both recursive and batch estimation
methods have been proposed over the last few decades (see
[12] for a review), but these focus nearly exclusively on
additive noise. In order to estimate multiplicative noise co-
variances, the maximum-likelihood approach was introduced
in [13], and the Bayesian framework was utilized in [14],
for example assuming Gaussian or known distributions with
unknown parameters. These methods, however, require prior
assumptions on the noise distributions whose incorrectness
may worsen the performance of the concerned algorithms for
optimal control. Our paper concentrates on jointly estimating
the nominal system parameters and the multiplicative noise
covariances without imposing any prior assumptions on the
distribution of the noises, other than being independent and
identically distributed (i.i.d.) with finite first and second
moments, which complicates the problem. Both state- and
control-dependent noise in the system leads to coupling,
which also makes the identification task more difficult.

The second issue we address is that of performing system
identification based on multiple state-input trajectory data
rather than a single trajectory. Multiple trajectory data arises
in two broad situations: 1) episodic tasks where a single
system is reset to an initial state after a finite run time, as
encountered in iterative learning control and reinforcement
learning problems [15] and 2) collecting data from multiple
identical systems in parallel, for example, physical experi-
ments [16] and snapshots of social interaction processes [17].
For multiple trajectory data the duration of each trajectory
sample may be small, but a large sample size can be obtained
by virtue of repetition in the case of episodic tasks and paral-
lel execution in the case of multiple identical systems. Thus,
there is a growing interest in system identification based
on multiple trajectory data, along with their applications in
machine learning literature [18], [19].



In this paper we consider linear system identification
with multiplicative noise from multiple trajectory data. Our
contributions are two-fold:
• We propose a least-squares estimation algorithm to

jointly estimate the nominal system matrices and mul-
tiplicative noise covariances from sample averages of
multiple finite-horizon trajectory rollouts (Algorithm
1). A two-stage algorithm based on first and second
moment dynamics that separate the nominal parameters
from the noise variances is utilized, where a stochastic
input design, from Gaussian and Wishart distributions,
is used for exciting the moment dynamics. The algo-
rithm does not need prior knowledge for the multiplica-
tive noise or stability conditions for the system, except
that the noises are i.i.d. among different trajectories,
with finite first and second moments so it may be
applied to a wide range of scenarios.

• The asymptotic consistency of our proposed algorithm
is demonstrated. First, it is shown that dynamics defined
by the first and second moments of states can generate
a well-defined closed-form expression of the parame-
ters, provided sufficiently exciting input sequences and
certain controllability conditions hold (Theorems 1 and
2). Then by assuming the multiple trajectory data are
i.i.d., the consistency of the estimator, i.e., convergence
to the true value as the number of trajectory samples
grows to infinity, is obtained by combining the former
result and the law of large numbers (Theorem 3).

The remainder of the paper is organized as follows: we
formulate the problem in Section II, then in Section III
the algorithm is introduced and theoretical results are given,
numerical simulation results are presented in Section IV, and
in Section V we conclude. All proofs are omitted here and
can be found in [20].
Notation. We denote the n-dimensional Euclidean space by
Rn, and the set of n × m real matrices by Rn×m. We
use ‖ · ‖ to denote the Euclidean norm for vectors and the
Frobenius norm for matrices. The expectation of a random
vector X is represented by E{X}. The Kronecker product
of two matrices A ∈ Rm×n and B ∈ Rp×q is repre-
sented by A⊗ B, and the vectorization of A is represented
by vec(A) = (a11 a21 · · · am1 a12 a22 · · · amn)ᵀ. For a
block matrix

B =

B11 B12 · · · B1n

...
...

...
Bm1 Bm2 · · · Bmn

 ∈ Rmp×nq,

where Bij ∈ Rp×q , we define the following matrix reshaping
operator F : Rmp×nq → Rmn×pq:

F (B,m, n, p, q) :=[vec(B11) vec(B21) · · · vec(Bm1) · · ·
vec(B12) vec(B22) · · · vec(Bmn)]ᵀ.

Then we have that F (A⊗A,m, n,m, n) = vec(A) vec(A)ᵀ

for A ∈ Rm×n, which demonstrates the relation between the
entries of A ⊗ A and those of vec(A) vec(A)ᵀ. Note when
p = q = 1, F (·) degenerates to vec(·).

II. PROBLEM FORMULATION

We consider linear systems with multiplicative noise

xt+1 = (A+ Āt)xt + (B + B̄t)ut (1)

where xt ∈ Rn is the system state and ut ∈ Rm is the
control input to be designed. The dynamics are described
by a nominal dynamics matrix A ∈ Rn×n and nominal
input matrix B ∈ Rn×m and incorporate multiplicative noise
terms modeled by the i.i.d. and mutually independent random
matrices Āt and B̄t which have zero mean and covariance
matrices ΣA := E{vec(Āt) vec(Āt)

T } ∈ Rn2×n2

and
ΣB := E{vec(B̄t) vec(B̄t)

T } ∈ Rnm×nm. Note that if Āt

has non-zero mean Ā, then we can consider a system with
nominal matrix (A+ Ā, B), as well as noise terms Āt − Ā
and B̄t, which satisfies the above zero-mean assumption.
This also holds for cases with B̄t non-zero mean. The term
multiplicative noise refers to the fact that noises Āt and B̄t

enter the system as multipliers of xt and ut, rather than as
additions. In the latter case, the noises are called additive
ones, resulting in much simpler system dynamics.

As an example of system (1), consider the following
system studied in the optimal control literature [8], [10].

xt+1 = (A+

r∑
i=1

Aipi,t)xt + (B +

s∑
j=1

Bjqj,t)ut, (2)

where {pi,t} and {qi,t} are mutually independent i.i.d. scalar
random variables, with E{pi,t} = E{qj,t} = 0, E{p2

i,t} =
σ2
i , and E{q2

j,t} = δ2
j , ∀i ∈ [1, r], j ∈ [1, s], t ≥ 0. It can be

seen that Āt =
∑r

i=1Aipi,t and B̄t =
∑s

j=1Bjqj,t where σi
and δj are the eigenvalues of ΣA and ΣB , and Ai and Bj are
the reshaped eigenvectors of ΣA and ΣB . These parameters
are necessary for optimal controller design, as [10] showed.
However, for new systems with unknown parameters, the
key problem is to identify them in the first place, stated as
follows. Another example of system (1) is interconnected
systems, where the nominal part captures relations among
different subsystems, and multiplicative noises characterize
randomly varying topologies [21].

Problem. Suppose that the system parameters A,B,ΣA,
and ΣB are unknown, but state-input trajectories are avail-
able for system identification. Our goal in this paper is to
estimate A,B,ΣA, and ΣB based on multiple trajectory data
{x(k)

t , 0 ≤ t ≤ `, k ∈ N+}, by appropriately designing the
input sequence {u(k)

t , 0 ≤ t ≤ ` − 1, k ∈ N+} and initial
states x(k)

0 , where {x(k)
t , 0 ≤ t ≤ `}, is the k-th trajectory

sample, and ` is the final time-step for every trajectory.

III. LEAST-SQUARES ALGORITHM BASED ON MULTIPLE
TRAJECTORY DATA

A. Algorithm Design

In this section, we propose our exploratory input sequence
design and least-squares algorithm to estimate the system
parameters from multiple trajectory data. We assume that the
sampled trajectory data are collected independently, and refer
to each trajectory sample as a rollout. Because every rollout



is affected by the multiplicative noise, we will use least-
squares on the first and second moment dynamics averaged
over multiple trajectories to solve the system identification
problem. Also, we assume inputs of arbitrary magnitude may
be executed perfectly.

Taking the expectation of both sides of (1) we obtain the
first-moment dynamics of states, i.e., the dynamics of E{xt},

µt+1 = Aµt +Bνt, (3)

where µt := E{xt} and νt := E{ut}.
Likewise, denote the vectorization of the instantaneous

second moment matrices of state, state-input, and input at
time t by Xt := vec(E{xtxᵀt }), Wt := vec(E{xtuᵀt }), and
Ut := vec(E{utuᵀt }). Note that the second moment matrix
we used here, namely E{XY ᵀ} for two random vectors X
and Y , is different from the covariance matrix, which is
E{(X−E{X})(Y −E{Y })ᵀ} = E{XY ᵀ}−E{X}E{Y }ᵀ.

From the independence of Āt and B̄t, as well as vector-
ization, the second moment dynamics of (1) are

Xt+1 = (A⊗A)Xt + (B ⊗A)Wt + (A⊗B)W ᵀ
t

+ (B ⊗B)Ut + E
{

(Āt ⊗ Āt) vec(xtx
ᵀ
t )
}

+ E
{

(B̄t ⊗ B̄t) vec(utu
ᵀ
t )
}

= (A⊗A+ Σ′A)Xt + (B ⊗B + Σ′B)Ut

+ (B ⊗A)Wt + (A⊗B)W ᵀ
t (4)

where we denote Σ′A = E{Āt ⊗ Āt} ∈ Rn2×n2

and Σ′B =

E{B̄t ⊗ B̄t} ∈ Rn2×m2

. The relation between (ΣA,ΣB)
and (Σ′A,Σ

′
B) can be illustrated by F (Σ′A, n, n, n, n) = ΣA

and F (Σ′B , n,m, n,m) = ΣB , where the reshaping operator
F (·) is defined in the notation section.

The first and second moment dynamics (3) and (4) are
linear in the dynamic model parameters to be estimated. It
is natural to consider a two-stage least-squares procedure,
where first the nominal system matrices (A,B) are estimated
from (3), and then these estimates are plugged in to obtain
estimates for the variances (ΣA, ΣB) from (4). If we had
access to the exact first and second moment dynamics,
this procedure would produce exact estimates.However, we
must estimate the first and second moment dynamics from
rollout data, and we propose to take a sample average over
multiple independent rollouts. To obtain persistently exciting
inputs, we randomly generate the first and second moment
of the input sequence from standard Gaussian and Wishart1

distributions [22], respectively. Likewise, the initial states
are assumed to be randomly drawn from a distribution X
with finite second moment (see Sec. III-B.2). The overall
algorithm is shown in Algorithm 1, where the superscript
(k) represents the k-th rollout.

Remark 1: Since ΣA and ΣB are the covariance matrices
of Āt and B̄t they must be positive semidefinite. Hence
a positive semidefinite constraint must be imposed on the

1The Wishart distribution Wp(V, n) is the probability distribution of the
matrix X = GGᵀ where each column of the matrix G is drawn from the
p-variate Gaussian distribution Np(0, V ). Clearly Wishart distributions are
supported on the set of positive semidefinite matrices.

Algorithm 1
Multiple-trajectory averaging least-squares (MALS)

1: for t from 0 to ` do
2: Generate νt and Ūt independently from zero-mean

Gaussian and Wishart [22] distributions, respectively.
Both νt and Ūt are fixed after generation

3: end for
4: for k from 1 to nr do
5: Generate x(k)

0 independently from the distribution X
6: for t from 0 to `− 1 do
7: Generate u

(k)
t independently from the Gaussian

distribution N (νt, Ūt)

8: x
(k)
t+1 = (A+ Ā

(k)
t )x

(k)
t + (B + B̄

(k)
t )u

(k)
t

9: end for
10: end for
11: for t from 0 to ` do
12: Compute

µ̂t : =
1

nr

nr∑
k=1

x
(k)
t ,

X̂t : =
1

nr
vec

(
nr∑
k=1

x
(k)
t (x

(k)
t )ᵀ

)
,

Ŵt : =
1

nr
vec

(
nr∑
k=1

x
(k)
t νᵀt

)
= vec(µ̂tν

ᵀ
t ),

Ut : = vec(Ūt + νtν
ᵀ
t )

13: end for
14: (Â, B̂) = argmin(A,B){ 1

2

∑`−1
t=0 ‖µ̂t+1−(Aµ̂t+Bνt)‖22}

15: (Σ̂′A, Σ̂
′
B) = argmin

Σ′
A�0,Σ′

B�0

{ 1
2

∑`−1
t=0 ‖X̂t+1−[(Â⊗Â)X̂t+

(B̂ ⊗ Â)Ŵt + (Â ⊗ B̂)Ŵ ᵀ
t + (B̂ ⊗ B̂)Ut + Σ′AX̂t +

Σ′BUt]‖22}
16: Σ̂A = F (Σ̂′A, n, n, n, n), Σ̂B = F (Σ̂′B , n,m, n,m)

optimization problem in line 15 of Algorithm 1 which can
be easily achieved by generic convex optimization parser-
solvers such as CVX in MATLAB [23]. Note that Σ′A and
Σ′B are related to ΣA and ΣB via one-to-one mappings by
inverse of the F (·) operator. However, if the estimator is
consistent (as we will prove later it is), then as the amount of
sample data increases the estimated covariances will become
arbitrarily close to the true values and the semidefinite
constraint will naturally become ineffective.

B. Theoretical Consistency Analysis

In this section we analyze the consistency of Algorithm
1 by investigating the moment dynamics (3) and (4), which
motivated the least-squares approach in Algorithm 1.

1) Moment Dynamics: Note again if we know µt and Xt,
then it is possible to recover the parameters via least-squares



as in lines 14-15 in Algorithm 1. Let

Y :=
[
µ` · · · µ1

]
, Z :=

[
µ`−1 · · · µ0

ν`−1 · · · ν0

]
,

C :=
[
C` · · · C1

]
, D :=

[
X`−1 · · · X0

U`−1 · · · U0

]
,

(5)

where Ct = Xt − [(A ⊗ A)Xt−1 + (B ⊗ A)Wt−1 + (A ⊗
B)W ᵀ

t−1 + (B ⊗ B)Ut−1], 1 ≤ t ≤ `. Then closed-form
solutions of the least-squares problems are

(Â, B̂) = YZᵀ(ZZᵀ)†,

(Σ̂′A, Σ̂
′
B) = CDᵀ(DDᵀ)†,

where C, D, Y, and Z are defined in (5) above, and the sign
† represents the pseudoinverse. When the inverse matrices ex-
ist, the solutions are identical to true values, that is, (Â, B̂) =
(A,B) and (Σ̂′A, Σ̂

′
B) = (Σ′A,Σ

′
B). Hence, the first question

towards the consistency of the algorithm is whether the
matrices ZZᵀ and DDᵀ are invertible, which is necessary
for the consistency of the algorithm. As to be shown, this
invertibility can be obtained by designing a proper input
sequence, if systems (A,B) and (A⊗A+Σ′A, B⊗B+Σ′B)
are controllable, and the final time-step ` is large enough.
In fact, in this paper we randomly generalized the first and
second moments of inputs to ensure the invertibility. As a
consequence, we need to demonstrate the following results in
a probability sense, intuitively saying that random generation
of input statistics results in the expected invertibility.

Theorem 1: Suppose that ` ≥ 1
2mn

2 + 1
2mn+m+ 1 and

(A,B) is controllable. The matrix Z has full row rank with
probability one, and consequently ZZᵀ is invertible, if the
entries of νt, 0 ≤ t ≤ ` − 1, are generated i.i.d. from a
non-degenerate Gaussian distributions.

Remark 2: The above theorem shows that for large
enough time step of each rollout, the full row rank condition
of Z can be guaranteed with probability one if the mean
of the input at each time step is generated randomly and
independently. In the proof, the controllability of (A,B)
plays a key role. In addition, although the lower bound
in the theorem is relatively small, one may conjecture that
` ≥ n + m is a sharp lower bound for the invertibility of
ZZᵀ, which will be a future work.

Theorem 2: Suppose that ` ≥ 1
2m

2n4 + 1
2m

2n2 +m2 + 1
and (A⊗A+ Σ′A, B⊗B+ Σ′B) is controllable. The matrix
D has full row rank with probability one, and consequently
DDᵀ is invertible, if νt have been fixed and the entries
of Ūt are generated i.i.d. from a non-degenerate Wishart
distributions, 0 ≤ t ≤ ` − 1, where Ūt is defined in line
2 of Algorithm 1.

Remark 3: The controllability condition in Theorem 2
reflects the nature of the multiplicative noise, i.e., coupling
between Āt and xt, and that between B̄t and ut. It also
indicates that a controllability condition on (4), the dynamics
of the second moments of states, is necessary to ensure the
successful identification of ΣA and ΣB .

Corollary 1: Suppose that ` ≥ 1
2m

2n4+ 1
2m

2n2+m2+1,
and both (A,B) and (A ⊗ A + Σ′A, B ⊗ B + Σ′B) are

controllable. The matrices ZZᵀ and DDᵀ are invertible,
if first the entries of νt are generated i.i.d. from a non-
degenerate Gaussian distribution and then Ūt is generated
i.i.d. from a non-degenerate Wishart distribution, 0 ≤ t ≤
`− 1, where Ūt is defined in line 2 of Algorithm 1.

Remark 4: From the proof of Theorems 1 and 2, we know
that the existence of the inverses of ZZᵀ and DDᵀ can in
fact be guaranteed with probability one, as long as νt and Ūt,
the mean and vectorized second moment matrix of the input
at time t, are generated independently from a distribution that
is absolutely continuous with respect to Lebesgue measure.
Also note the random generation of the first and second
moments of inputs leads to non-stationarity of the input
sequence. Critically this provides sufficient excitation of both
the first and second moments of the state and makes it
possible to estimate all model parameters in the presence
of multiplicative noise.

2) Consistency: After the discussion in the previous sec-
tion, we now assume that the means and second moments
of the input sequences have been generated in Algorithm 1,
and both ZZᵀ and DDᵀ have been designed to be invertible.
The closed-form estimates generated by Algorithm 1 are

(Â, B̂) = ŶẐᵀ(ẐẐᵀ)†, (6)

(Σ̂′A, Σ̂
′
B) = ĈD̂ᵀ(D̂D̂ᵀ)†, (7)

where

Ŷ :=
[
µ̂` · · · µ̂1

]
, Ẑ :=

[
µ̂`−1 · · · µ̂0

ν`−1 · · · ν0

]
,

Ĉ :=
[
Ĉ` · · · Ĉ1

]
, D̂ :=

[
X̂`−1 · · · X̂0

U`−1 · · · U0

]
,

and Ĉt = X̂t − [(Â ⊗ Â)X̂t−1 + (B̂ ⊗ Â)Ŵt−1 + (Â ⊗
B̂)Ŵ ᵀ

t−1 + (B̂ ⊗ B̂)Ut−1], 1 ≤ t ≤ `. Here Â and B̂ are
obtained by Algorithm 1. The estimates above depend on the
number of rollouts nr, but we omit it for convenience. Before
stating the consistency result, we present the following
assumption for the system and data:

Assumption 1: For all rollouts, the below conditions hold.
(i) The final time-step is fixed to be ` ≥ 1

2m
2n4 + 1

2m
2n2 +

m2 + 1.
(ii) The initial state x

(k)
0 , 1 ≤ k ≤ nr, is generated

independently from the same distribution with E{‖x(k)
0 ‖2} <

∞, and is independent of the subsequent process.
(iii) {Ā(k)

t } and {B̄(k)
t }, 0 ≤ t ≤ `, 1 ≤ k ≤ nr, have zero

mean and finite second moments, i.e., E{Āt} = E{B̄t} = 0
and ‖ΣA‖, ‖ΣB‖ <∞. Also, these two sequences are i.i.d.
and mutually independent.
(iv) The input signals are generated according to Line 6 of
Algorithm 1.

Under Assumption 1 the rollouts x
(k)
0 , . . . , x

(k)
l , 1 ≤

k ≤ nr, are i.i.d., so consistency can be established from
Kolmogorov’s strong law of large numbers.

Theorem 3: (Consistency) Suppose that Assumption 1
holds, and both ZZᵀ and DDᵀ are invertible. Then the
estimators (6)-(7) are asymptotically consistent, i.e.,

(Â, B̂)→ (A,B), and (Σ̂′A, Σ̂
′
B)→ (Σ′A,Σ

′
B),



with probability one as the number of rollouts nr →∞.
Remark 5: This theorem indicates that despite the rela-

tively small final time-step for each trajectory, an increasing
number of rollouts compensates for this deficiency and
guarantees asymptotic estimation performance.

IV. NUMERICAL SIMULATIONS

To empirically validate our theoretical consistency result,
we simulated our least-squares estimator2 on two example
systems. The first is a simple 2-state, 1-input system where
we use a large amount of data to show asymptotic trends,
while the second is an 8-state, 8-input system represent-
ing lossy diffusion dynamics on a network for a more
practical application. Python code which implements the
algorithms and performs the simulated experiments described
here is available on GitHub at https://github.com/
TSummersLab/sysid-multinoise.

A. Simple example

We consider a simple example system with n = 2, m = 1,

A =

[
−0.2 0.3
−0.4 0.8

]
, B =

[
−1.8
−0.8

]
, and noise covariances

ΣA =
1

100


8 −2 0 0
−2 16 2 0
0 2 2 0
0 0 0 8

 ,ΣB =
1

100

[
5 −2
−2 20

]
.

We performed a simulated experiment where rollout data of
length ` = 1

2m
2n4 + 1

2m
2n2 +m2 + 1 = 12, i.e., according

to the bound prescribed by our theoretical result, was col-
lected for nr = 10, 000, 000. We used control inputs dis-
tributed as ut ∼ N (νt, Ūt), where νt and Ūt are generated
from N (0, In) and Wn(0.1In, n), respectively, and then are
fixed. Model estimates were computed at 100 increasing
logarithmically spaced numbers of rollouts between 1 and
nr. This experiment was repeated 50 times and the results
are plotted in Fig. 1.

It is well known that least-squares estimation of finite-
impulse response (FIR) models yields estimates whose error
decreases as O(N−1/2) where N is the number of sam-
ples [24]. Empirically we observed a similar trend on the
convergence rate; we conjecture that Â and B̂ converge to
A and B as O(n

−1/2
r ) while Σ̂A and Σ̂B converge to ΣA

and ΣB at a slower rate, perhaps O(n
− 1

2n
r ) and O(n

− 1
2m

r )
respectively. This can be observed in the similarity between
the dashed red reference curves and the median empirical
model estimate curves. However it is difficult, even for small
example systems like this one, to deduce the asymptotic
convergence rate from empirical observation.

Although our consistency result implies that theoretically
the estimates converge regardless of the size of the variance
of the random inputs, in practice the design of the inputs
has a large impact on the (transient) quality of the estimates.
In particular, it is important to strike a balance between

2For computational efficiency we solve the unconstrained least-squares
problem for Σ̂A and Σ̂B then project onto the positive semidefinite cone;
for all but the smallest numbers of rollouts this projection is ineffective.

Fig. 1. Normalized error vs number of rollouts for an example system. Each
subplot gives the normalized Frobenius norm error in the specified parameter
matrix e.g. ‖A−Â‖

‖A‖ . The minimum and maximum of all experiments are
bounded in the light grey region, the interquartile range in the dark grey
region, and the median at the bold black line. Reference curves are plotted
as dashed red lines.

exciting the system modes and multiplicative noises and not
overwhelming the state- and input-dependent noises by the
(random) control inputs i.e. the magnitude of the control
input means νt and covariances Ūt should be chosen in
a “sweet spot”. We used values that gave good results
empirically for the example system considered.

B. Network example

Many practical networked systems can be approximated
by diffusion dynamics with loss; examples include heat
flow through uninsulated pipes, hydraulic flow through leaky
pipes, information flow between processors with packet
loss, electrical power flow between generators with resistant
electrical power lines, etc. These dynamics in continuous-
time act on an undirected graph with no self-loops with
symmetric weighted adjacency matrix Ac, degree matrix
Dc = diag(Ac1n×1), graph Laplacian L = Dc−Ac, diagonal
loss matrix Fc, and diagonal input matrix Bc:

ẋ = −(Lc + Fc)x+Buu (8)

Discretizing these dynamics using the forward Euler method
with a step size T yields xt+1 = Axt + But where A =
I − T (Lc + Fc) and B = TBu. Uncertainty on an edge
weight of the graph i.e. on entry (j, k) of Ac manifests as a
noise matrix with entries

[Ai]p,q =


+1 if {j = p and k = p} or {j = q and k = q},
−1 if {j = q and k = p} or {j = p and k = q},
0 otherwise.



Uncertainty on an input strength i.e. entry (k, k) of Bu

manifests as a noise matrix with entries

[Bj ]p,q =

{
+1 if k = q = p,

0 otherwise.

For computational tractability we estimated only the noise
variances while giving the estimator knowledge of the noise
directions Ai and Bj . To formulate this setting mathemati-
cally it is easier to work with the eigendecomposition of the
noises as in (2). The least-squares estimation for this case is
a simple modification to the full covariance estimator:

(σ̂2, δ̂2) = ĈD̂ᵀ(D̂D̂ᵀ)†, (9)

where (σ̂2, δ̂2) are vectors of the noise variances and

Ĉ := vec
( [
Ĉ` · · · Ĉ1

] )
,

D̂ :=



vec
(
(A1 ⊗A1)X̂`−1 · · · (A1 ⊗A1)X̂0

)
...

vec
(
(Ar ⊗Ar)X̂`−1 · · · (Ar ⊗Ar)X̂0

)
vec
(
(B1 ⊗B1)U`−1 · · · (B1 ⊗B1)U0

)
...

vec
(
(Bs ⊗Bs)U`−1 · · · (Bs ⊗Bs)U0

)


,

and Ĉt = X̂t − [(Â ⊗ Â)X̂t−1 + (B̂ ⊗ Â)Ŵt−1 + (Â ⊗
B̂)Ŵ ᵀ

t−1 + (B̂ ⊗ B̂)Ut−1], 1 ≤ t ≤ `. As before, Â and B̂
are obtained by Algorithm 1.

We chose a network with n = 8 nodes and edges placed
via the Erdos-Renyi random graph generation with random
integer weights. The graph was selected to be connected so
that the system would be controllable. We used rollout data of
length ` = 1

2m
2n4 + 1

2m
2n2 +m2 + 1 = 133185 and col-

lected 7 rollouts; more rollouts could be used, but empirically
this amount of data was sufficient to give good estimates.
Table I shows the averages and maximums of the normalized
noise variance estimation errors

σ2
i =
|σ2

i − σ̂2
i |

σ2
i

, and δ
2

j =
|δ2

j − δ̂2
j |

δ2
j

.

TABLE I

1
r

∑r
i σ

2
i maxiσ

2
i

1
s

∑s
j δ

2

j maxjδ
2

j

0.0358 0.132 0.0517 0.141

V. CONCLUSIONS

In this paper we proposed a system identification scheme
for linear systems with multiplicative noise based on multiple
trajectory data. By designing appropriate persistently exciting
input signals, a least-squares algorithm was proposed for
the joint estimation of nominal system and multiplicative
noise covariances. The asymptotic consistency of the algo-
rithm was proved, and illustrated by numerical simulations.
Ongoing and future research directions include studying
the convergence rate and non-asymptotic behavior of the

proposed algorithm, problems of optimal input design, iden-
tification from single-trajectory data, and sparsity-promoting
regularization for identification of networked systems with
prior knowledge of sparsity levels.
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