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Abstract— We consider an extension of the Rescorla-Wagner
model which bridges the gap between conditioning and learning
on a neural-cognitive, individual psychological level, and the
social population level. In this model, the interaction among
individuals is captured by a Markov process. The resulting
human-social behavior model is a recurrent iterated function
system which behaves differently from the classical Rescorla-
Wagner model due to randomness. A sufficient condition for
the convergence of the forward process starting with arbitrary
initial distribution is provided. Furthermore, the ergodicity
properties of the internal states of agents in the proposed model
are studied.

Index Terms— Neural cognition; Decision making; Marko-
vian jump system; Stochastic process; Social networks.

I. INTRODUCTION

Internal state of a human agent has significant effects on
her decision making process. This state can be associated
with a bias, an irrational or emotional disposition, and has
an important evolutionary role affecting a decision that is
presumably based on cognition or a calculation as a ra-
tional choice. Recent evidence supports an integrated view
of cognition and emotion, the neurological basis which are
high connectivity areas of the brain (hubs) [20]. In other
words, any decision made by a human agent integrates
rational (cognitive) and irrational (emotional) components (or
dispositions) on a neurological level [14]. Thus, the impact
of emotions (or bias) needs to be somehow accounted for in
any decision of a human agent.

Recently, Epstein [8] used the Rescorla-Wagner model,
see e.g., [5], [19], [21], [25], to study social behavior. The
central concept in the work of [8] is the notion of emotional
disposition that is based on conditioning. Epstein models
the decisions and actions of agents as a dynamic process
in space and time, where decisions to act are bimodal, i.e.,
an agents either acts or does not act. The trigger for action is
surpassing a specified threshold by the combined emotional
and rational dispositions which change in time. The most
interesting aspect of Epstein’s generic study was to show
how important the mutual interactions between agents are
for social behavior. Interactions between agents has in fact
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been the prime focus in studies of opinion formation and
consensus in social networks, e.g., [6], [28], [9], [11], [10],
[18] where agents are perceived as essentially rational.

In Epstein’s model, the interaction topology between
agents is time-invariant. However, social studies suggest that
the inter-personal interaction topology among agents in a
social network is time-varying and possibly random. For
example, the author in [26] proposed a social network model,
with continuous-time Markovian interaction networks, which
is verified by experimental data. The interested reader is
referred to [22], [4], [23] and references within for more
details on the time-varying interaction topologies in social
networks.

The main contribution of this paper is, motivated by social
studies, that we proposes a generalization of the Rescorla-
Wagner wherein the interaction topology among agents is
governed by a Markov chain, namely Markovian random
graphs. In this model, the state of the each agent is updated
based on the current state, the states from the neighbors, and
the external stimuli. It is shown that this model contains many
well-known social network models, e.g., Friedkin-Johnsen
model [11] and opinion dynamics [28], as special examples.
For the proposed model, which is a stochastic process, we
then prove the convergence of it. More precisely, we distin-
guish the convergence for the forward and backward process,
respectively. Furthermore, to study the steady-state of the
behavior of the process, an ergodic property is obtained.
Comparing to [2], which is closely related to our model, we
extend the ergodicity of the process from bounded functions
on the Euclidean space to unbounded ones. In an early study
[27] of the proposed model in this paper, the mean square
stability was proved. The model proposed in this paper can be
incorporated, as one component, into human decision-making
process.

A. Paper outline and notations

The structure of the paper is as follows. In Section II, we
introduce some terminologies and notations. In Section III,
a human-social behavior model is proposed based on the
Rescorla-Wagner model. Then the convergence and ergod-
icity of the proposed model are considered in Section IV-A
and Section IV-B, respectively. Discussion and conclusion
are given in Section V.

Notations. The notations used in this paper is fairly
standard. With R−,R+,R>0 and R60 we denote the sets of
negative, positive, non-negative, non-positive real numbers,
respectively. 1n is the n-dimensional vector containing only
ones. We omit the subscript when there is no confusion. δij

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7926-5/$31.00 ©2019 AACC 199



denotes the Kronecker delta. E is the expectation. For any set
A, the product space ×i∈N0

Ωi with Ωi = A is denoted as
AN0 . For any matrix M , the induced norm of M is denoted
as ‖M‖.

II. PRELIMINARIES

Given a square matrix A = (aij)
n
i,j=1, let ρ(A) be its

spectral radius. The matrix A is Schur stable if ρ(A) < 1.
The matrix is row stochastic if aij > 0 and

∑n
j=1 aij = 1,∀i.

The terminologies about Markov chains are kept consistent
with [17].

A. Markov processes with unique stationary distribution
The definitions for ergodicity is consistent with [16].
Let I = N0, a stochastic process X = (Xt)t∈I is called

first-order stationary if

L[(Xt+s)t∈I ] = L[(Xt)t∈I ],∀s ∈ I

where L[Y ] is the distribution of the random variable Y .
Let X = (Xn)n∈N0

be a stochastic process with values in a
Polish space E. Without loss of generality, we assume that X
is the canonical process on the probability space (Ω,A,P) =
(EN0 ,B(E)⊗N0 ,P). Define the shift operator

τ : Ω→ Ω, (ωn)n∈N0
7→ ((ωn+1)n∈N0

).

An event A ∈ A is called invariant if τ−1(A) = A. Denote
the σ−algebra of invariant events by

I = {A ∈ A | τ−1(A) = A}.

A σ−algebra I is called P−trivial if P[A] ∈ {0, 1} for every
A ∈ I. The map τ is called measure preserving if

P[τ−1(A)] = P[A],∀A ∈ A.

In this case, (Ω,A,P, τ) is called a measure preserv-
ing dynamical system. If τ is measure preserving and I
is P−trivial, then (Ω,A,P, τ) is called ergodic. Denote
Xn(ω) = X0(τn(ω)), where X0 : ω → E is the initial
distribution. X is stationary if and only if (Ω,A,P, τ) is a
measure preserving dynamical system. The stochastic process
X is called ergodic if (Ω,A,P, τ) is ergodic,where τ is the
shift operator.

Theorem 1 (Individual ergodic theorem, Birkhoff (1931)).
Suppose that τ is measure-preserving on (Ω,A,P) and that
X0 is measurable and integrable. Then

lim
n→∞

1

n

n−1∑
k=0

Xk = E[X0 | I] (1)

with probability 1. If τ is ergodic, limn→∞
1
n

∑n−1
k=0 Xk =

E[X0] with probability 1.

III. HUMAN-SOCIAL BEHAVIOR MODEL BASED ON
NEURAL COGNITION

In this section, we first explain the Rescorla-Wagner
model. Then, an extension of this model is introduced in
which the interaction topology between agents is derived by
a Markov process.

A. Rescorla-Wagner Model

One of the most well-known models in Pavlovian theory
of reinforcement learning, called Rescorla-Wagner model,
was proposed in [21]. In the classic Rescorla-Wagner model,
the conditional stimulus has an associative value x ∈ R,
supposed to be proportional to the amplitude of the condi-
tional response or to the proportion of conditional response
triggered by the conditional stimulus. A typical Pavlovian
conditioning session is a succession of several trials. Each
trial is composed of the presentation of the conditional
stimulus followed by the presentation of the unconditional
stimulus. On each trial k, the associative value of the
conditional stimulus are updated according to the following
equation

x(k + 1) = x(k) + α
(
r(k)− x(k)

)
, (2)

where r(k) ∈ R is the intensity of the unconditional stimulus
on that trial, α is the learning parameter, and x(k) ∈ R is the
associative strength between the conditional stimulus and the
unconditional stimulus. Applications of the Rescorla-Wagner
model in machine learning, especially Q-Learning, can be
found in e.g., [13], where r(t) is the reward which can be
modeled as a Markov chain.

In more general Rescorla-Wagner models, more condi-
tional stimulus can be incorporated. Each conditional stim-
ulus has an associative value xi, which is the associative
strength of the ith conditional stimulus and the unconditional
stimulus, namely some degree to which the conditional stim-
ulus alone elicits the unconditional response. The associative
value of all the conditional stimuluses are updated according
to the following equation

xi(k + 1) = xi(k) + αi
(
r(k)−

n∑
j=1

Wijxj(k)
)
,

i = 1, . . . , n, (3)

where n is the number of conditional stimulus on that trial,
Wij = 1

n for all i and j, αi is the learning rate of ith
conditional stimulus. Rescorla-Wagner model is especially
successful in explaining the block phenomenon in Pavlovian
conditioning with experimental supports [25].

The Rescorla-Wagner model has been applied to various
levels of human behavior that typically involve emotions
and conditioning. A study of human-social behavior that
based on Rescorla-Wagner model, which was presented in
[8], establish the connection between neural cognition and
human behavior in social networks.

Consider a society composed by n agents denoted S :=
{1, . . . , n}. One methodology in [8] of describing human
behavior is proposed by separating the human psychology
into irrational, rational and social parts. The irrational compo-
nent evolves according the Rescorla-Wagner model (3) with
Wij = δij . Here xi(k) is the irrational component of ith
agent state, which can be a belief or an opinion depends
on the consider scenario, r(k) ∈ {0, 1} is a random binary
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variable, which takes value one for emotion acquisition, and
zero for emotion extinction. Then in the model proposed
by [8], human action depends on whether the summation of
irrational and rational components of each agent and these
of the related neighbors is larger than a given threshold. In
what follows, we refer to xi(·) as the internal state of agent
i.

B. Rescorla-Wagner Model With Markovian Topology

The generalized Rescorla-Wagner model with random
time-varying topology is given by

x(k + 1) = Bikx(k) +A(r(k)−Wikx(k)), (4)

where x(k) is the vector of the state of the agents, learning
rate A is a diagonal matrix satisfying 0 6 A 6 I , r(k) and ik
are Markov chains with finite states, and for each realization
of ik, Bik and Wik are row-stochastic matrices. The initial
condition is set to be x(0) = x0 ∈ Rn. Here the matrices
B and W , corresponding to topologies, can incorporate the
time-varying networks. Now we can write our model (4) into
a compact form

x(k) = Fikx(k − 1) +Ar(k) (5)

where Fik = Bik −AWik .
The model (4) include several established models as spe-

cial cases, which can be seen by the following examples.
First, we establish the resemblance of system (4) with
Rescorla-Wagner model.

Example 1. It is straightforward to see that the system (4) is
equivalent to Rescorla-Wagner model (3) by taking Bik = I
and Wik = 1

n11
> for all k.

Next, the system (4) is equivalent to some social network
model by specifying appropriate parameters.

Example 2. Friedkin-Johnsen model [11] captures the opin-
ion dynamics with heterogeneity, i.e., agents can factor their
initial opinions (or prejudices) into every iteration of opinion,
as follows

x(k + 1) = ΛWx(k) + (I − Λ)u, x(0) = u. (6)

where W is a row stochastic matrix, Λ is a diagonal matrix
satisfying 0 6 Λ 6 I , and u is the initial opinion. It can bee
seen that, by setting A = I − Λ, B = W and r(k) being
deterministic and identical for all k, system (4) includes (6)
as a special case.

Example 3. Agreement and disagreement has been an im-
portant topic in the study of social networks, see e.g., [1],
[7], [15], [24] and the references within. As an example, the
model considered in [24] is a special case of the considered
model. In fact, there are three events for the iterative update
for agent i, namely attraction, neglect and repulsion, and
each of these events can be formulated into (4) by choosing
appropriate parameters. Furthermore, in [24], it is assumed
that, at each step, one of these three events is chosen

randomly accordingly to a given probability. This is a special
case of Markov Chains.

In the following section, we shall study the convergence
of the stochastic process (5).

IV. CONVERGENCE AND ERGODICITY OF INTERNAL
STATES IN MARKOVIAN RESCORLA-WAGNER MODEL

In this section, we shall study the convergence and ergod-
icity property, in Section IV-A and IV-B, respectively, of the
model (4). We first introduce the following notations which
will be used for the analysis.

Let (Rn, d) be a complete separable locally compact metric
space. Let i ∈ I := {1, 2, . . . , N} and i0, i1, . . . be a Markov
chain in I with probability transition matrix P = [pij ]. De-
note the right-hand-side of the system (5) as wik : Rn → Rn,
i.e., wik(x) = Fikx+ Ar(k), which is Lipschitz continuous
with respect to x. Assume that the Markov chain i0, i1, . . .
admits a unique stationary distribution. Consider a random
walk given as

Zk = wik(Zk−1)

= wik · · ·wi1(Z0)

= Fik · · ·Fi1Z0 +Ar(k)

+

k∑
`=2

Fik · · ·Fi`Ar(`− 1)

(7)

where wik · · ·wi1 denotes the composition of the function
sequence, Z0 : Ωc → Rn is a random variable on probability
space (Ωc,Fc,Pc) defined on Rn. In this section, we focus
on the convergence and ergodicity of the family of random
variables Z = (Zt, t ∈ N0).

The Markov chain {ik} is defined on the probability space
(Ωd,Fd,Pd). The distribution (probability measure) of ik
and Zk are Pik = Pd◦i−1

k and PZk = Pc◦Z−1
k , respectively.

Now the family of random variables Z = (Zt, t ∈ N0) is a
stochastic process on ((Ωd×Ωc)

N0 , (Fd×Fc)⊗N0) with value
in (Rn,B(Rn)).

A. Convergence of forward and backward processes

In this subsection, we present some convergence results
for the process (7). Notice that the process {Zk} given by
(7) is not a Markov process, but Z̃k := (Zk, ik) is a Markov
process with values in X̃ := Rn × I.

In order to derive the convergence of the distribution of
{Zk}, one essential part of the techniques is related to the
associated backward process

←−
Z , i.e.,

←−
Z k =wi1 · · ·wikZ0 (8)

=Fi1 · · ·FikZ0 +Ar(1) (9)

+

k−1∑
`=1

Fi1 · · ·Fi`Ar(`+ 1). (10)
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Let (mi) be the unique stationary initial distribution for
the Markov chain i0, i1, . . . on I, i.e.,

N∑
i=1

mipij = mj , j = 1, . . . , N. (11)

Let the matrix Q = [qij ] ∈ RN×N , given as

qij =
mj

mi
pji, (12)

be the inverse transition probability matrix (see e.g., Theorem
1.9.1 in [17]), namely the probability that (i1, . . . , ik) =
(j1, . . . , jk) is

N∑
j(0)=1

mj0pj0j1 · · · pjk−1jk = mjkqjkjk−1
· · · qj2j1 . (13)

Denote the set Ω = {i = (i0, i1, . . .)} = IN0 . Let P be the
probability on Ω for the forward chain P(i0, i1, . . . , ik) =
mi0pi0i1 · · · pik−1ik and Q be the probability corre-
sponding to the backward chain Q(i0, i1, . . . , ik) =
mi0qi0i1 · · · qik−1ik .

We first recall a result, presented in [2], which gives the
convergence of the forward and backward process, respec-
tively. Notice that the behaviors of forward and backward
processes are very different in the sense that forward process
converge in distribution while the backward process con-
verges almost surely. Moreover, the convergence result for
forward process is for the initial distribution ν̃ satisfying
ν̃(Rn × {i}) = Pi0({i}) = mi, i = 1, . . . , N , i.e., the
Markov chain {ik} is initialized with stationary distribution,
while Z0 is arbitrary. Recall that

EP(log ‖Fik · · ·Fi1‖)

=
∑
i1

· · ·
∑
ik

mi1pi1i2 · · · pik−1ik log ‖Fik · · ·Fi1‖. (14)

Lemma 2 (Theorem 2.1, [2]). If, for some k,

EP(log ‖Fik · · ·Fi1‖) < 0, (15)

then
(1) for Q almost all i, the backward process ←−x k =

wi1 · · ·wikx0 converges to a random variable, denoted
as Y (i), as k → ∞, which does not depend on x0.
In other words, for given x0, the random variable
←−x k : Ω → Rn converges to a finite limit Q−almost
surely.

Define the distribution of (Y, i1) on X̃ as µ̃(B̃) = Q(i :
(Y (i), i1(i)) ∈ B̃), where B̃ ⊂ X̃ is a Borel set,

(2) then µ̃ is the unique stationary initial distribution for
the Markov process (Zk, ik);

(3) for any probability measure on X̃ , denoted as ν̃,
satisfying ν̃(Rn × {i}) = mi, i = 1, . . . , N , then
the random walk Z̃ ν̃k , i.e., the Markov process with
initial distribution ν̃, converges in distribution to µ̃.

Furthermore, the random walk Z ν̃k on Rn converges in
distribution to the measure µ(B) = µ̃(B × I).

The previous lemma shows that if the initial distribution
corresponding to i0 is stationary, then Z ν̃k converges to µ
in distribution. In the following result, we extend the result
to arbitrary initial distribution ν̃0 for both Z0 and i0. Here
ν̃0(Rn × {i}) = η0

i . Denote the distribution of the Markov
chain ik with initial distribution η0

i as ηki , i = 1, . . . , N .
Based on the distribution ηk at time k, we define a probability
P′k on Ω as P′k(i0, . . . , in) = ηki0pi0i1 · · · pin−1in . The
process with initial distribution ν̃0 is denoted as Z̃ ν̃

0

k . Here
Z̃ ν̃

0

k is a random variable Rn × Ω→ Rn × I.

Proposition 3. Assume that m := minimi > 0. Then under
the same assumptions as in Lemma 2 and pij < 1 for ∀i, j =

1, . . . , N , the random walk Z̃ ν̃
0

k converges in distribution to
µ̃.

Proposition 3 implies that the distribution of the internal
states converges to the stationary distribution, induced by the
generalized model, regardless of the initial distribution of the
Markov chain generating the interaction topologies.

Proof. Let ν̃0 be the initial distribution and ν̃k be the distri-
bution of Z̃ ν̃

0

k . Since ik has the unique stationary distribution,
we have that ηki → mi as k → ∞. Hence, for any ε > 0,
there exists M such that ‖ηk − m‖ < ε for any k > M .
For each j and k, let the conditional distribution of Zk given
ik = j to be denoted as

νkj =
ν̃k(B × {j})
ν̃k(X × {j})

. (16)

For all f̃ ∈ Cb(X̃), continuous and bounded function X̃ →
R, we have

E[f̃(Z̃ ν̃
0

k )]

=

∫
i={i0,...,in}

∫
f̃(win · · ·wi1x, in)dν0

i0(x)dP′0(i)

=

∫
i={i1,...,in}

∫
f̃(win · · ·wi2x, in)dν1

i1(x)dP′1(i)

=

∫
i={iM ,...,in}

∫
f̃(win · · ·wiM+1

x, in)dνMiM (x)dP′M (i)

∈
∫
i={iM ,...,in}

∫
f̃(win · · ·wiM+1

x, in)dνMiM (x)dP(i)

+B(0, εK̃)

where the last inclusion is based on the following derivations.
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First, notice that∫
i={iM ,...,in}

∫
f̃(win · · ·wiM+1

x, in)dνMiM (x)dP′M (i)

=
∑

i={iM+1,...,in}

(∑
iM

∫
f̃(win · · ·wiM+1

x, in)dνMiM

ηMiM piM iM+1

)
piM+1iM+2

· · · pin−1in

∈
∑

i={iM+1,...,in}

(∑
iM

∫
f̃(win · · ·wiM+1

x, in)dνMiM

(miM +B(0, ε))piM iM+1

)
piM+1iM+2

· · · pin−1in .

Furthermore, since∑
i={iM+1,...,in}

(∑
iM

∫
f̃(win · · ·wiM+1

x, in)dνMiM

miM piM iM+1

)
piM+1iM+2

· · · pin−1

=

∫
i={iM ,...,in}

∫
f̃(win · · ·wiM+1

x, in)dνMiM (x)dP(i)

and ∑
i={iM+1,...,in}

(
ε
∑
iM

∫
f̃(win · · ·wiM+1

x, in)dνMiM

piM iM+1

)
piM+1iM+2

· · · pin−1in

6
∑

i={iM+1,...,in}

(KεNP̄ )piM+1iM+2
· · · pin−1in (17)

where P̄ = maxi,j∈I pij and |f | < K. Moreover, since∑
iM+1,··· ,in mM+1piM+1iM+2

· · · pin−1in = 1, we have (17)
is no bigger than KεNP̄

m := εK̃ where m = minimi > 0.
The rest of the proof is based on [2]. Since∫

i={iM ,...,in}

∫
f̃(win · · ·wiM+1

x, in)dνMiM (x)dP(i)

=

∫
i={iM ,...,in}

∫
f̃(wiM+1

· · ·winx, in)dνn+1
in+1

(x)dQ(i)

which converges to

lim
n→∞

∫
i={iM ,...,in}

∫
f̃(wiM+1

· · ·winx0, in)

dνn+1
in+1

(x)dQ(i)

= lim
n→∞

∫
i={iM ,...,in}

f̃(wiM+1
· · ·winx0, in)dQ(i)

=

∫
f̃ µ̃,∀x0

then the conclusion follows from Portemanteau’s Theorem
[16].

B. Ergodicity

In this section, we present ergodic result about system (4)
which is a version of the strong law of large numbers.

Theorem 4. Consider the stochastic process (4) initialized
with arbitrary distribution ν and the Markov chain {ik}
initialized with stationary distribution (mi). If, for some k,

EP(log ‖Fik · · ·Fi1‖) < 0, (18)

then

lim
n→∞

1

n

n∑
k=0

Zνk = E[Zµ0 ] (19)

almost surely, where µ is given in Lemma 2.

Theorem 4 establishes the ergodic property of the proposed
modeled. According to this result, the limiting behavior of
the time-average of the internal states in a social network
with Markovian interaction topologies can be characterized
by the stationary distribution imposed by the dynamics.

Proof. Denote the initial distribution of the augmented state
as ν̃. Denote (Ω,A) = (X̃N0 ,B(X̃)⊗N0). Then Z̃ ν̃ =
(Z̃ ν̃k )k∈N0

is a Markov process with value in X̃ . Define the
shift operator

τ : Ω → Ω, (ωn)n∈N0 → (ωn+1)n∈N0 . (20)

Then Z̃ ν̃k (ω) = Z̃ ν̃0 (τk(ω)).
First, by Lemma 2 and Corollary 12 in [12], we have

that the operator τ is ergodic. Then by Birkhoffs Ergodic
Theorem [16], we have

lim
n→∞

1

n

n∑
k=0

Z̃µ̃k = E[Z̃µ̃0 ]

which implies that

lim
n→∞

1

n

n∑
k=0

Zµk = E[Zµ0 ].

Notice that

‖ 1

n

n−1∑
k=0

Zνk − E[Zµ0 ]‖1 (21)

=‖ 1

n

n−1∑
k=0

(Zνk − Z
µ
k ) +

1

n

n−1∑
k=0

Zµk − E[Zµ0 ]‖1 (22)

6‖ 1

n

n−1∑
k=0

(Zνk − Z
µ
k )‖1 + ‖ 1

n

n−1∑
k=0

Zµk − E[Zµ0 ]‖1. (23)

Moreover,

‖ 1

n

n−1∑
k=0

(Zνk − Z
µ
k )‖1 6

1

n

n−1∑
k=0

‖Zνk − Z
µ
k ‖1 (24)

and for any ε > 0

Pc

(
‖Zνk − Z

µ
k ‖1 > εk

)
(25)

6
E(‖Zνk − Z

µ
k ‖1)

εk
(26)

6
E(‖Fk · · ·F1‖‖(Zν0 − Z

µ
0 )‖1)

εk
(27)

6
E(‖Fk · · ·F1‖)E(‖(Zν0 − Z

µ
0 )‖1)

εk
(28)
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where the last inequality is implied by Hölder inequality.
Since the Markov chain {ik} initialized with stationary
distribution (mi), it is showed in [2] that condition (15) is
equivalent to

lim
n→∞

1

n
log ‖Fin · · ·Fi1‖ = −α,P− almost surely, (29)

for P almost all i. Hence n0 can be chosen such that for any
k > n0 we have ‖wk · · ·w1‖ < e−

kα
2 . Then

Pc

(
‖Zνk − Z

µ
k ‖1 > εk

)
6
e−

kα
2

εk
E(‖(Zν0 − Z

µ
0 )‖1). (30)

Then if ε ∈ (e−
α
2 , 1), then the Borel-Cantelli Lemma implies

that with probability one ‖Zνk−Z
µ
k ‖1 6 εk for all but finitely

many values of k. Therefore, almost surely 1
n

∑n−1
k=0 ‖Zνk −

Zµk ‖1 converges to zero as n → ∞. Hence the conclusion
follows.

Remark 1. Compared to the result in Theorem 2.1 (iii)
[2], where the ergodicity is proved for the process with
bounded continuous function, i.e., limn→∞

1
n

∑n
k=0 f(Zνk )

with bounded continuous f , we extend the ergodicity property
for identity function which is not bounded.

Remark 2. For the system (4), one sufficient condition which
guarantees EP(log ‖Fik · · ·Fi1‖) < 0 for some k is that Fi
is Schur stable for any i ∈ I. Notice that the results in this
section do not guarantee any boundedness of the states of
system (7). In fact, there are examples satisfying Ai is Schur
stable for any i ∈ I, but the states diverge to infinity with
positive probability, see Example 3.17 in [3].

V. CONCLUSION

In this paper, we propose a human-social behavior model,
which is based on the well-known Rescorla-Wagner model
from neural-cognition and Markovian social networks. The
proposed model contains the classical Rescorla-Wagner
model and Friedkin-Johnsen model as special cases. Under a
sufficient condition, different convergence behaviors for the
forward process and backward process are discussed. For the
steady-state behavior of the forward process, the ergodicity
is proved under the same sufficient condition. Currently, we
are working on an experimental design to collect real life
data, which will further be used to identify the parameters
in the proposed model. Incorporation of the proposed model
into human decision-making process within a social network
is the direction of our future study.
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