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Abstract— We present a complexity reduction algorithm for
a family of parameter-dependent linear systems when the
system parameters belong to a compact semi-algebraic set.
This algorithm potentially describes the underlying dynamical
system with fewer parameters or state variables. To do so,
it minimizes the distance (i.e., H∞-norm of the difference)
between the original system and its reduced version. We
present a sub-optimal solution to this problem using sum-of-
squares optimization methods. We present the results for both
continuous-time and discrete-time systems. Lastly, we illustrate
the applicability of our proposed algorithm on numerical
examples.

I. INTRODUCTION

Large-scale systems are often composed of several inter-
acting subsystems described by local parameters that need to
be identified when designing model-based control laws. The
parameters are typically a function of the working points
of the subsystems and their physical properties. Hence, they
vary over time based on the operation mode. In practice, we
like to develop a family of controllers that only depend on
a few of the system parameters, such that we do not need to
adjust the whole controller whenever a parameter changes in
the system. In addition, we might want to study the relative
importance of the system parameters. Gain scheduling and
supervisory control are examples of parameter-dependent
controllers [1]–[7]. However, these design methods implicitly
assume in most cases that the overall controller has access
to the entire set of model parameters. This assumption might
not be realistic in many practical cases (see [8] and references
therein for a detailed discussion). Hence, we are interested in
introducing a complexity reduction algorithm to effectively
remove some of the system parameters or to decrease its
order while preserving the input-output transfer function to
some extent. Doing so, we can then simplify the control
design procedure or satisfy the requirements described above
on model parameter dependencies. The problem of model
reduction for parameter-dependent linear systems has been
studied extensively [9]–[13]. For instance, the authors in [10]
used a multidimensional system formulation and introduced
a generalization of controllability and observability Gramians
using a pair of linear matrix inequalities (LMIs). Using these
generalized Gramians, they performed balanced truncation
to extract the reduced system. They also calculated an
upper bound for the error of this truncation. However, the
reduced order system presented in [10] is not optimal since
the introduced upper bound for the truncation error is not
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necessarily tight. In this paper, we introduce a near-optimal
numerical procedure for extracting these reduced systems.

Specifically, we are interested in minimizing the H∞-
norm of the difference of the original system transfer
functions and its reduced version over a compact semi-
algebraic set of system parameters. Using the bounded real
lemma [14], we transform this problem to a parameter-
dependent feasibility-checking bilinear matrix inequality
(BMI). We use the method of alternating LMIs [15] to
transform this parameter-dependent BMI into a string of
LMIs. Then, we use the method introduced in [16] to
solve these parameter-dependent LMIs by means of sum-of-
squares optimization. This algorithm results in a sub-optimal
solution because (1) when using the method of alternating
LMIs, we cannot guarantee the convergence of the proposed
algorithm (i.e., there exists always a BMI such that you
cannot check its feasibility using the method of alternating
LMIs [15]), and (2) when using sum-of-squares optimization
for solving the parameter-dependent LMIs, the lack of con-
vergence to a solution does not imply the infeasibility of the
original problem (since a sum-of-squares matrix is indeed
a positive-definite polynomial matrix but not the other way
around) [16]. Due to relying on sum-of-square optimization,
the proposed algorithm does not scale well with the system
dimension and the number of parameters. To be specific, the
computational complexity grows exponentially in terms of
the number of the parameters while it grows polynomially
in terms of the dimension of the system and the order of the
polynomials. However, we might be able to exploit sparsity
patterns or symmetry structures in future to develop better
numerical algorithms [17]. Despite these inefficiencies, we
observe that the proposed algorithm is fairly strong in solving
the proposed numerical examples in Section IV.

Recently, there have been many studies on using sum-of-
squares optimization methods in control design [18]–[22].
For instance, the problem of finding a polynomial Lyapunov
function for nonlinear systems was considered in [20], [21].
The problem of optimal linear quadratic control design for
parameter-dependent discrete-time systems was discussed
in [18]. However, to the best of our knowledge, no attention
has been paid to complexity reduction using sum-of-square
optimization.

The rest of the paper is organized as follows. In Section II,
we present the mathematical problem formulation. We in-
troduce our complexity reduction algorithm and prove its
suboptimality in Section III. We illustrate the applicability
of the proposed algorithm on two numerical examples and
compare their results with available methods in Section IV.
Finally, we conclude the paper in Section V.
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A. Notation
The sets of integer, natural, real, and complex numbers

are denoted respectively by Z, N, R, and C. For any integer
number n ∈ Z and any real number x ∈ R, we define the
notations Z>(≥)n = {m ∈ Z | m > (≥)n} and R>(≥)x =
{y ∈ R | y > (≥)x}, respectively. All other sets are denoted
by calligraphic letters such as A and B.

Matrices are denoted by capital roman letters such as A
and B. A > (≥)0 means that the symmetric matrix A ∈
Rn×n is positive definite (positive semidefinite) and A >
(≥)B implies that A−B > (≥)0.

The ring of polynomials with coefficients in R is denoted
by R[α], where α is the vector of variables. For any given
n,m ∈ N, a polynomial matrix X(α) ∈ R[α]n×m is a matrix
whose entries are polynomials in R[α], that is, xij(α) ∈ R[α]
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. For any given n ∈ N, a matrix
polynomial X(α) ∈ R[α]n×n is positive definite (positive
semidefinite) if for each α ∈ A, the matrix X(α) ∈ Rn×n
is positive definite (positive semidefinite), where the set A
will be defined in the text.

For any given n ∈ N, a matrix polynomial X(α) ∈
R[α]n×n is a sum-of-square matrix, denoted by X(α) � 0,
if there exits a matrix polynomial Y (α) ∈ R[α]n×n such that
X(α) = Y (α)>Y (α). We introduce the notation S[α]n =
{X(α) ∈ R[α]n×n | X(α) � 0} to capture the set of all
sum-of-square matrices. When n = 1, we use S[α] instead
of S[α]1.

II. PROBLEM FORMULATION

In this section, we present the mathematical formulation of
the complexity reduction problem for both continuous-time
and discrete-time parameter-dependent linear systems.

A. Continuous-Time Systems
Consider a parameter-dependent continuous-time linear

dynamical system described by

G(s;α) :

{
ẋ(t) = A(α)x(t) +B(α)u(t),
y(t) = C(α)x(t) +D(α)u(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input, y(t) ∈ Ro is the system output, and α ∈ Rp is the
parameter vector. Note that in (1), we use the notation

G(s;α) = C(α)(sI −A(α))−1B(α) +D(α),

where s denotes the Laplace transform variable. Throughout
this paper, we assume that α ∈ A ⊂ Rp, where A is defined
to be the set of eligible parameters. We are interested in
extracting a reduced parameter-dependent continuous-time
linear system described by

G′(s;α′) :

{
ẋ′(t) = A′(α′)x′(t) +B′(α′)u(t),
y′(t) = C ′(α′)x′(t) +D′(α′)u(t),

(2)

where x′(t) ∈ Rn′ is the reduced system state vector, y′(t) ∈
Ro is its output, and α′ ∈ A′ ⊂ Rp′ is the reduced parameter
vector. Note that the output vector dimension stays the same.
We define the reduced set of eligible parameters as

A′ =
{
α′ ∈ Rp

′ ∣∣ ∃ξ ∈ Rp−p
′

: [α′> ξ>]> ∈ A
}
.

Remark 2.1: We name this procedure as complexity re-
duction because we can potentially reduce the number of
the parameters with which the system is described (since,
by definition, we assume p′ ≤ p). In addition, by choosing
n′ ≤ n, we may also reduce the system order.

Throughout this paper, we make the following assumption
concerning the model matrices:

Assumption 2.2: The model matrices in (1) and (2) are
polynomials in terms of the system parameters α and α′,
that is, A(α) ∈ R[α]n×n, B(α) ∈ R[α]n×m, C(α) ∈
R[α]o×n, D(α) ∈ R[α]o×m, A′(α′) ∈ R[α′]n

′×n′ , B′(α′) ∈
R[α′]n

′×m, C ′(α′) ∈ R[α′]o×n
′
, and D′(α′) ∈ R[α′]o×m.

Note that although the polynomial dependency of model
matrices to the parameters could be restrictive, we can always
approximate the model matrices by polynomials matrices if
they are continuous functions of the parameters according to
Weierstrass Theorem [23, p. 159].

We are interested in finding G′(s;α′) to minimize the
distance between the systems in (1) and (2):

inf
G′(s;α′)

sup
α∈A
‖G(s;α)−G′(s;T (α))‖∞ , (3)

where the projection T : Rp → Rp′ is defined as T (x) =
[x1 · · ·xp′ ]> for all x ∈ Rp. The optimization problem in (3)
is to be solved subject to the reduced system state-space
description (2) and the fact that the model matrices are
polynomial matrices in α and α′ (Assumption 2.2).

Remark 2.3: For single-input single-output systems, if
we are ultimately interested in designing a controller using
the reduced system, we should solve the optimization prob-
lem

inf
G′(s;α′)

sup
α∈A

∥∥G(s;α)−1(G(s;α)−G′(s;T (α)))
∥∥
∞ ,

see [24]. In the case that G(s;α) does not vary much over
the set of eligible parameter A, we can instead solve the
optimization problem

inf
G′(s;α′)

sup
α∈A

∥∥G(s;β)−1(G(s;α)−G′(s;T (α)))
∥∥
∞ , (4)

for some fixed β ∈ A. As our developed algorithm would
not change much for solving (4) instead of (3), we would
only focus on solving (3) in this paper.

B. Discrete-Time Systems

Consider a parameter-dependent discrete-time linear time-
invariant system

G(z;α) :

{
x(k + 1) = A(α)x(k) +B(α)u(k),

y(k) = C(α)x(k) +D(α)u(k),
(5)

where, similar to the previous subsection, x(k) ∈ Rn is the
state vector, u(k) ∈ Rm is the control input, y(k) ∈ Ro
is the system output, and α ∈ Rp is the parameter vector.
In (5), we use the notation

G(z;α) = C(α)(zI −A(α))−1B(α) +D(α),

2625



where z is the symbol for the one time-step forward shift
operator. We define the reduced system as

G′(z;α′) :

{
x′(k + 1) = A′(α′)x′(k) +B′(α′)u(k),

y′(k) = C ′(α′)x′(k) +D′(α′)u(k),
(6)

where x′(t) ∈ Rn′ is the reduced system state vector, y′(t) ∈
Ro is its output, and α′ ∈ A′ ⊂ Rp′ is the reduced parameter
vector. For these parameter-dependent discrete-time systems,
we are interested in solving the optimization problem

inf
G′(z;α′)

sup
α∈A
‖G(z;α)−G′(z;T (α))‖∞ , (7)

subject to the reduced system state-space description in (2)
and Assumption 2.2. In the next section, we present solutions
to the optimization problems (3) and (7).

III. MAIN RESULTS

In this section, we rewrite the optimization problems as
parameter-dependent feasibility-checking BMIs. We use the
method of alternating LMIs to transform this parameter-
dependent BMI into a string of LMIs, which we then solve
using sum-of-squares optimization methods. First, we present
the solution for continuous-time systems.

A. Complexity Reduction for Continuous-Time Systems

Before stating the results, let us define the augmented
system as[

ẋ(t)
ẋ′(t)

]
= Ã(α)

[
x(t)
x′(t)

]
+ B̃(α)u(t),

y(t)− y′(t) = C̃(α)

[
x(t)
x′(t)

]
+ D̃(α)u(t).

(8)

where

Ã(α) =

[
A(α) 0

0 A′(α′)

]
, B̃(α) =

[
B(α)
B′(α′)

]
, (9)

and

C̃(α) =
[
C(α) −C ′(α′)

]
, D̃(α) = D(α)−D′(α′).

(10)
Now, we are ready to present the first result of the paper.
The next lemma transforms the H∞-optimization problem
in (3) into a parameter-dependent BMI.

Lemma 3.1: For a fixed α ∈ A and G′(s;α′), we have
‖G(s;α) − G′(s;α′)‖∞ ≤ γ if and only if there exists
P (α) = P (α)> ∈ R(n+n′)×(n+n′) such that P (α) ≥ 0 and Ã(α)>P (α) + P (α)Ã(α) ∗ ∗

B̃(α)>P (α) −I ∗
C̃(α) D̃(α) −γ2I

 ≤ 0, (11)

for all α ∈ A.
Proof: The proof follows from Bounded Real

Lemma [14] on the augmented system (8). Note that after
fixing α ∈ A and G′(s;α′), the augmented system is simply
a linear time-invariant system.

Note that Lemma 3.1 does not guarantee that P (α) is a
matrix polynomial in α. In the next lemma, we show that
this is indeed the case using the results in [25].

Lemma 3.2: Let A be a compact subset of Rp. Then, for
a fixed G′(s;α′), ‖G(s;α) − G′(s;α′)‖∞ ≤ γ for all α ∈
A if and only if there exists a positive definite polynomial
matrix P (α) ∈ R[α](n+n

′)×(n+n′) such that the inequality
in (11) is satisfied for all α ∈ A.
Proof: Follows from Theorem 1 in [25] together with
Lemma 3.1 above.

Remark 3.3: To check the condition in Lemma 3.2, first,
we should pick an integer dP ∈ N and search over the
set of all positive definite polynomial matrices P (α) ∈
R[α](n+n

′)×(n+n′) such that deg(P (α)) ≤ dP , in order to
find a feasible solution to the inequality in (11) for all α ∈ A.
Now, since the degree of P (α) is not known in advance, we
have to start from an initial value (possibly estimated based
on intuition from the physical nature of the problem) and
keep increasing dP until we reach a feasible solution, which
exists if the distance ‖G(s;α)−G′(s;α′)‖∞ is less than γ.
Therefore, we should also start with large values for γ (to
ensure the existence of a feasible solution) and then, decrease
γ accordingly (for instance, using the bisection method [26]).
Note that this algorithm is guaranteed to return at least a sub-
optimal solution, if we initialize γ to be greater than or equal
to supα∈A ‖G(s;α)‖∞ (since the optimization problem is
then guaranteed to be feasible at the starting point).

In the next theorem, we use sum-of-squares optimization
to rewrite the inequality in (11) as a sum-of-square feasi-
bility problem which we use later to develop our numerical
algorithm.

Theorem 3.4: Assume that the compact set A can be
characterized as

A = {α ∈ Rp | q`(α) ≥ 0,∀1 ≤ ` ≤ L} , (12)

where q` ∈ R[α] for all 1 ≤ ` ≤ L. Furthermore, assume
that there exist w` ∈ S[α] for all 0 ≤ ` ≤ L, such that {α ∈
Rp
∣∣ w0(α)+

∑L
`=1 q`(α)w`(α) ≥ 0} is a compact set. Then,

for a fixed G′(s;α′), we have ‖G(s;α)−G′(s;α′)‖∞ ≤ γ
for all α ∈ A if there exist a constant ε ∈ R>0, polynomial
matrices P (α) ∈ S[α]n+n

′
, and Q`(α) ∈ S[α]n+n

′+m+o for
all 1 ≤ ` ≤ L, such that Ã(α)>P (α) + P (α)Ã(α) ∗ ∗

B̃(α)>P (α) −I ∗
C̃(α) D̃(α) −γ2I


+ εI +Q0 +

L∑
`=1

Q`(α)q`(α) = 0.

(13)

Proof: The proof follows from Theorem 2 in [16]
together with Lemma 3.2 above.

Remark 3.5: To check the condition in Theorem 3.4, we
should pick the polynomial degree dP ∈ N and search over
the set of all sum-of-square polynomial matrices P (α) ∈
S[α](n+n

′)×(n+n′) such that deg(P (α)) ≤ dP , in order to
solve the polynomial equation in (14). This search is easy to
perform since the underlying problem is convex (due to the
restriction to the set of sum-of-square polynomial matrices)
and can be readily solved using available LMI solvers.
Unfortunately, if we cannot find any solution to this problem
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Procedure 1 Extracting the sub-optimal reduced system G′(s;α′).
Input: δ ∈ R≥0, ε ∈ R≥0, γ ∈ R≥0, n′ ∈ N, p′ ∈ N, p′ ∈ N, dP ∈ N, dA ∈ N, dB ∈ N, dC ∈ N, dD ∈ N, and dQ` ∈ N for all

q ≤ ` ≤ L.
Output: A′(α′) ∈ R[α′]n

′×n′ , B′(α′) ∈ R[α′]n
′×m, C′(α′) ∈ R[α′]o×n

′
, D′(α′) ∈ R[α′]o×m, and P (α) ∈ S[α]n+n

′
.

Initialization: Pick A′(α′) ∈ R[α′]n
′×n′ , B′(α′) ∈ R[α′]n

′×m, C′(α′) ∈ R[α′]o×n
′
, and D′(α′) ∈ R[α′]o×m such that deg(A′(α′)) =

dA, deg(B′(α′)) = dB , deg(C′(α′)) = dC , and deg(D′(α′)) = dD , respectively. Also, set P (α) = 0.
1: repeat
2: Pold(α)← P (α)

3: Find polynomial matrix P (α) ∈ S[α]n+n
′

with deg(P (α)) = dP and polynomial matrices Q`(α) ∈ S[α]n+n
′+m+o with

deg(Q`(α)) = dQ` for all 1 ≤ ` ≤ L, such that Ã(α)>P (α) + P (α)Ã(α) ∗ ∗
B̃(α)>P (α) −I ∗

C̃(α) D̃(α) −γ2I

 +Q0 +

L∑
`=1

Q`(α)q`(α) = 0. (P.1)

4: Find polynomial matrices Q`(α) ∈ S[α]n+n
′+m+o with deg(Q`(α)) = dQ` for all 1 ≤ ` ≤ L and model matrices

A′(α′) ∈ R[α′]n
′×n′ , B′(α′) ∈ R[α′]n

′×m, C′(α′) ∈ R[α′]o×n
′
, and D′(α′) ∈ R[α′]o×m with respectively deg(A′(α′)) = dA,

deg(B′(α′)) = dB , deg(C′(α′)) = dC , and deg(D′(α′)) = dD such that Ã(α)>P (α) + P (α)Ã(α) ∗ ∗
B̃(α)>P (α) −I ∗

C̃(α) D̃(α) −γ2I

 +Q0 +

L∑
`=1

Q`(α)q`(α) = 0. (P.2)

5: until maxα∈A ‖P (α)− Pold(α)‖ ≤ δ

for a given degree dP , we cannot deduce that our problem
does not admit a solution for this given degree dP , since
Theorem 3.4 is only a sufficiency result. We can only hope
to find a solution by increasing the polynomial degree dP .

Remark 3.6: The assumption that A in (12) is a semi-
algebraic set is a common assumption in the sum-of-squares
literature [16], [18], [19]. Note that there always exists at
least one semi-algebraic set (a sphere) that can cover any
compact set. However, such coverage might make the solu-
tion conservative, if the original set and its semi-algebraic
cover are very different.

Note that so far, we assumed that the model matrices
A′(α′), B′(α′), C ′(α′), and D′(α′) are given since oth-
erwise, Theorem 3.4 would result in nonlinear equations
in terms of unknown polynomial coefficients. We propose
Procedure 1 for finding matrices A′(α′), B′(α′), C ′(α′), and
D′(α′) based on the method of alternating LMIs for solving
BMIs [15].

Remark 3.7: This method does not guarantee conver-
gence for the proposed algorithm because there exists always
at least one BMI which we cannot check its feasibility using
the method of alternating LMIs [15].

B. Complexity Reduction for Discrete-Time Systems

In the next theorem, we present a result which is a
counterpart to Theorem 3.4 for discrete-time systems.

Theorem 3.8: Assume that the compact set A can be
characterized as

A = {α ∈ Rp | q`(α) ≥ 0,∀1 ≤ ` ≤ L} ,

where q` ∈ R[α] for all 1 ≤ ` ≤ L. Furthermore, assume
that there exist wi ∈ S[α] for all 0 ≤ ` ≤ L, such that {α ∈
Rp
∣∣ w0(α)+

∑L
`=1 q`(α)w`(α) ≥ 0} is a compact set. Then,

for a fixed G′(z;α′), we have ‖G(z;α) − G′(z;α′)‖∞ ≤ γ

for all α ∈ A if there exist a constant ε ∈ R>0, polynomial
matrices P (α) ∈ S[α]n+n

′
, and Q`(α) ∈ S[α]2(n+n

′)+m+o

for all 1 ≤ ` ≤ L, such that
P (α) ∗ ∗ ∗

P (α)Ã(α)> P (α) ∗ ∗
B̃(α)> 0 I ∗

0 C̃(α)P (α) D̃(α) γ2I


− εI −Q0 −

L∑
`=1

Q`(α)q`(α) = 0.

(14)

Proof: The proof follows the same reasoning as in
Lemmas 3.1–3.2 and Theorem 3.4.

We can construct a similar procedure for discrete-time sys-
tems as in Procedure 1 by changing the nonlinear equations
in (P.1)–(P.2) with the nonlinear equation in (14) to calculate
the reduced discrete-time system.

IV. ILLUSTRATIVE EXAMPLE

In this subsection, we illustrate the applicability of the
developed procedure on two numerical examples. The first
numerical example is a parameter-dependent discrete-time
linear systems. We use this example to compare our de-
veloped algorithm with the method described in [10]. The
second example is a parameter-dependent continuous-time
linear system motivated by controlling power systems. To
implement Procedure 1, we used SOSTOOLS which is a
free MATLAB® toolbox for formulating and solving sum-
of-squares optimizations [27].

A. Discrete-Time Systems

Consider the parameter-dependent discrete-time linear sys-
tem described by[
x1(k + 1)
x2(k + 1)

]
=

[
0.5α1 0.1
0.3 0.5α2

] [
x1(k)
x2(k)

]
+

[
1
0

]
u(k),
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and
y(k) =

[
1 0

] [ x1(k)
x2(k)

]
,

where x(k) ∈ R2 and u(k) ∈ R are the state vector and
the control input, respectively. Let us define the parameter
vector as α =

[
α1 α2

]> ∈ A ⊂ R2 with

A =
{
α ∈ R2| q1(α) = 1− α2

1 ≥ 0, q2(α) = 1− α2
2 ≥ 0

}
.

We are interested in reducing the system complexity by
getting a new model which is only a function of α1. First, let
us present the model reduction algorithm introduced in [10].
To do so, we need to introduce the following notations

A(α) = A0 + α1A1U1 + α2A2U2,

where

A0 =

[
0 0.1

0.3 0

]
, A1 =

[
0.5 0

]
, A2 =

[
0 0.5

]
,

and
U1 =

[
1 0

]>
, U2 =

[
0 1

]>
.

Now, using [28], it is evident that

G(z;α) = C(zI −A(α))−1B

=


A0 U1 U2 B0

A1 0 0 0
A2 0 0 0
C0 0 0 0

?
z−1I2×2 0 0

0 α1 0
0 0 α2

 ,
where ? denotes the upper linear fractional transformation
operator (see [10], [28] for its definition). Let us introduce
notations

Ā =

 A0 U1 U2

A1 0 0
A2 0 0

 , B̄ =

 B0

0
0

 , C̄ =

 C>0
0
0

> .
To get the reduced system, we need to solve the optimization
problem

minX,Y ∈W trace(XY ),
subject to Ā>XĀ−X + C̄>C̄ ≤ 0,

ĀY Ā> − Y + B̄B̄> ≤ 0,
(15)

where
W =

{
W ∈ S4+ |W = diag(W11,W22,W33) such that

W11 ∈ S2+,W22 ∈ S1+,W33 ∈ S1+,
}
.

We use Procedure 2 for solving the optimization problem
in (15). Using [29], we know that if the procedure is ini-
tialized correctly (i.e., close enough to the optimal solution),
the algorithm converges to the optimal decision variables.
Now, using matrices X,Y ∈ W , we introduce the change of
variable T = diag(T0, T1, T2) to get the balanced realization
of the system

T−1ĀT =

 T−10 A0T0 T−10 U1T1 T−10 U2T2
T−11 A1T0 0 0
T−12 A2T0 0 0

 ,
T−1B̄ =

 T−10 B0

0
0

 , C̄T =
[
C0T0 0 0

]
.

Procedure 2 Numerical algorithm for solving (15).
Input: Threshold ε ∈ R>0.
Output: X,Y ∈ W .
Initialization: X,Y ∈ W .

1: repeat
2: Xold ← X .
3: Yold ← Y .
4: Solve the optimization problem

minX,Y ∈W trace(XoldY +XYold),
subject to Ā>XĀ−X + C̄>C̄ ≤ 0,

ĀY Ā> − Y + B̄B̄> ≤ 0.

5: until ‖X −Xold‖+ ‖Y − Yold‖ ≤ ε

Let us for the moment focus on just removing parameter α2

from the model matrices (and not decreasing the order of
the system). Using balanced truncation, we can calculate
the reduced system as Gr(z;α1) = Cr(zI − Ar(α1))−1Br,
where

Ar(α1) = T−10 A0T0 + α1T
−1
1 A1U1T1

=

[
0.5α1 −1.7× 10−1

−1.7× 10−1 0

]
,

Br = T−10 B0 =
[
−1.0 0.0

]>
,

Cr = C0T0 =
[
−1.0 0.0

]
.

Finally, we can calculate the error caused by the parameter
reduction as

max
α∈A
‖Gr(z;α1)−G(z;α)‖∞ = 0.14

≤ 2
√
σ(X33Y33) = 0.62,

where the upper bound of this error was introduced in [10].
Now, we can illustrate the result of our proposed algorithm

on this numerical example. Let us fix the polynomial degrees
dA = 1, dB = 1, dC = 0, dD = 0, dP = 2, dQ0

= 2,
dQ1 = 0, and dQ2 = 0. We use Procedure 1 when adapted
for discrete-time systems to get the optimal reduced system
with n′ = 2. The resulting reduced system is

A′(α1) =

[
5.0× 10−1α1 −1.2× 10−1

−3.3× 10−1 −6.5× 10−4α1

]
,

and B′(α1) = [1.0 6.3× 10−2α1]>, C ′ = [1.0 0], and D′ =
7.9× 10−3. For this reduced system, we have

max
α∈A
‖G′(z;α1)−G(z;α)‖∞ = 0.095.

As we can see, for this particular example, we could achieve
a smaller distance between the transfer functions of the
original system and its reduced one.

We can also try to reduce the system order by choosing
n′ = 1. We use Procedure 1 when adapted for discrete-time
systems to get the optimal reduced system with A′(α1) =
5.2×10−1α1−2.0×10−8, B′(α1) = 9.4×10−9α1 + 9.9×
10−1, C ′ = 1.0, and D′ = 1.8 × 10−8. For this reduced
system, we have

max
α∈A
‖G′(z;α1)−G(z;α)‖∞ = 0.19,
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while if where using the method in [10], we would have
recovered

max
α∈A
‖Gr(z;α1)−G(z;α)‖∞ = 0.27,

where Gr(z;α1) = Cr(zI − Ar(α1))−1Br with Ar(α1) =
5.0× 10−1α1, Br(α1) = −1.0, and Cr = −1.0.

B. Continuous-Time Systems

In this subsection, we present a practical continuous-
time numerical example. Let us consider a simple power
network composed of two generators (see Figure 1). We
have partially extracted the structure of this example and
its nominal numerical values from [30]. We can model this
power network as

δ̇1(t) = ω1(t),

ω̇1(t) =
1

M1

[
P1(t)− c−112 sin(δ1(t)− δ2(t))

− c−11 sin(δ1(t))−D1ω1(t)
]
,

δ̇2(t) = ω2(t),

ω̇2(t) =
1

M2

[
P2(t)− c−112 sin(δ2(t)− δ1(t))

− c−12 sin(δ2(t))−D2ω2(t)
]
,

where δi(t) is the phase angle of the terminal voltage of
the generator i, ωi(t) is its rotation frequency, and Pi(t) is
mechanical input power to the generator. We assume that
P1(t) = 1.6 + u1(t) and P2(t) = 1.2 + u2(t), where u1(t)
and u2(t) are the control inputs to the system. The power
network parameters can be found in Table I (see [30] for a
description of these parameters). Note that all these values
are given in per unit. Now, we can find the equilibrium point
(δ∗1 , δ

∗
2) of these nonlinear coupled systems and linearize the

overall system around its equilibrium which would result
in (16) where ∆δ1(t), ∆δ2(t), ∆ω1(t), and ∆ω2(t) denote
the deviation of the state variables δ1(t), δ2(t), ω1(t), and
ω2(t) from their equilibrium points. Let us assume that we
have connected impedance loads to each generator locally.
Hence, the parameters c1 and c2 can vary over time according
to the load profiles. Furthermore, assume that each gen-
erator changes its input mechanical power according these
local load variations. Doing so, we would not change the
equilibrium point (δ∗1 , δ

∗
2). For this setup, we can model

the system as a continuous-time parameter-dependent linear
system described by

G(s;α) :

{
ẋ(t) = A(α)x(t) +Bu(t),
y(t) = Cx(t) +Du(t),

where B = [0 1 0 0]>, C = [1 0 0 0]>, D = 0, and A(α) is
defined in (17) with α = [α1 α2]>. In this formulation,
parameter αi for i = 1, 2, denotes the deviation of the
admittance c−1i from its nominal value (see Table I). Note
that here we have chosen the input-output pair to derive a
reduced model for the network from the perspective of the

 

      
          

          

                

Fig. 1. Schematic diagram of the power network in our numerical example.

TABLE I
NOMINAL VALUE OF POWER SYSTEM PARAMETERS EXTRACTED

FROM [30].

Variable Nominal Value (p.u.)

M1 2.6× 10−2

M2 3.2× 10−2

c12 4.0× 10−1

c1 5.0× 10−1

c2 5.0× 10−1

D1 6.4× 10−3

D2 6.4× 10−3

first generator. One can try to solve this problem for any
other given set of inputs and outputs. We assume that

A =
{
α ∈ R2 | 0.12 − α2

i ≥ 0 for i = 1, 2
}
.

Let us fix the polynomial degrees dA = 1, dB = 0, dC = 0,
dD = 0, dP = 3, dQ0 = 2, dQ1 = 2, and dQ2 = 2. We use
Procedure 1 to get the optimal reduced system with n′ = 4.
The resulting reduced system is

G′(s;α1) :

{
ẋ(t) = A′(α1)x(t) +B′u(t),
y(t) = C ′x(t) +D′u(t),

where A′(α1) is defined in (18), D′ = −0.10558, and

B′ =


9.0× 10−2

3.8
−4.9× 10−2

5.6× 10−1

, C ′ =


1.1× 10−1

4.3× 10−1

−3.2× 10−2

1.1× 10−1


>

.

For this reduced system, we have

max
α∈A
‖G′(s;α1)−G(s;α)‖∞ = 1.5× 10−1.

Hence, we could effectively remove the model matrices
dependencies on the second subsystem parameter α2 while
not drastically changing the first subsystem input-output
transfer function.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a powerful procedure for
approximating parameter-dependent linear systems with less
complex ones using fewer model parameters or state vari-
ables. To do so, we minimized the distance between the
transfer function of the original system and its reduced
version. We presented a suboptimal method for solving this
minimization problem using sum-of-squares optimization
and the method of alternating LMIs for solving BMIs. We
developed numerical procedures for both continuous-time
and discrete-time system contrary to the available result
which focused mostly on discrete-time systems. Due to
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d

dt


∆δ1(t)
∆ω1(t)
∆δ2(t)
∆ω2(t)

=


0 0 1 0
−c−1

12 cos(δ∗1−δ
∗
2 )−c

−1
1 cos(δ∗1 )

M1
−D1

M1

cos(δ∗1−δ
∗
2 )

c12M1
0

0 0 0 1
cos(δ∗2−δ

∗
1 )

c12M2
0

−c−1
12 cos(δ∗2−δ

∗
1 )−c

−1
2 cos(δ∗2 )

M2
−D2

M2




∆δ1(t)
∆ω1(t)
∆δ2(t)
∆ω2(t)

+


0
u1(t)

0
u2(t)

. (16)

A(α) =


0 1 0 0

−2.7× 101α1 − 1.5× 102 −2.5× 10−1 9.8× 101 0
0 0 0 1

7.8× 101 0 −2.3× 101α2 − 1.2× 102 −2.0× 10−1

. (17)

A′(α1)=


7.4× 10−4α1 − 4.2 5.5× 10−4α1 + 2.6× 10−2 1.7× 10−4α1 + 8.8× 10−3 −7.5× 10−4α1 + 7.3× 10−2

−3.0× 101α1 + 4.4× 10−1 1.9× 10−1α1 − 6.4 −4.4× 10−2α1 − 2.8× 10−1 −1.4× 10−1α1 − 4.4× 10−1

−6.6× 10−3α1 + 1.5 −2.3× 10−4α1 + 3.8× 10−2 2.8× 10−4α1 − 4.2× 10−1 −1.0× 10−4α1 + 4.6× 10−2

5.9× 10−2α1 − 1.8× 10−2 −4.7× 10−5α1 − 8.8× 10−1 4.2× 10−3α1 + 1.8× 10−1 −5.5× 10−3α1 − 8.3× 10−1

.
(18)

relying on sum-of-square optimization, the developed pro-
cedures would not scale well with the system dimension
and the number of parameters. Possible future research could
focus on developing a better numerical procedure for dealing
with BMIs and studying the convergence properties of this
numerical approach. Furthermore, we could exploit sparsity
patterns or symmetry structures to improve the scalability of
the sum-of-square optimization.
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