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1. INTRODUCTION

Increasingly, control systems are operated over large-scale,
complex networked infrastructures as in power networks,
building automation, power plants and factories. The pro-
liferation of low cost embedded systems with radio ca-
pabilities has enabled the deployment of systems which
allow for increased performance and flexibility. However,
these systems become increasingly complex but must be
efficiently designed and operated. Several steps have been
taken in this direction, as the development of resilient
fault tolerant architectures and technologies [Ding, 2008,
Blanke et al., 2006], and the introduction of plug-and-play
control [Bendtsen et al., 2013] which reduces installation
costs and increases flexibility. In this paper we focus on
distributed actuator reconfiguration in networked systems.
In the event of malfunction in actuators, sensors or other
system components, control systems may exhibit poor
performances or even become unstable if not properly de-
signed [Blanke et al., 2006, Poovendran et al., 2012]. Thus,
the design of fault-tolerant control systems is of major
importance. A few examples of safety-critical systems that
must be resilient to faults are power networks, aircrafts,
nuclear power plants and chemical plants.

Since the 1970s, much research has been conducted in the
field of Fault-Tolerant Control Systems, Fault detection
and diagnosis (FDD) and Reconfigurable Control [Blanke
et al., 2006, Zhang and Jiang, 2008, Ding, 2008]. The field
of FDD deals with the identification that a fault exists
and determines where it is located, while reconfigurable
control proposes methods that reconfigure/recover a sys-
tem after a fault has been detected and isolated. The
objectives of reconfiguration are generally to obtain the
stabilization of the system, maintaining the same state
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trajectory (also known as model-matching), achieving the
same equilibrium point and/or minimizing the loss in
performance inflicted by the fault. Many different types of
faults in actuators, sensors and other system components
have been considered in both linear and nonlinear systems.
However, the vast majority of the solutions rely on a cen-
tralized approach as in [Wu et al., 2000, Staroswiecki et al.,
2007, Staroswiecki and Cazaurang, 2008, Staroswiecki and
Berdjag, 2010, Richter et al., 2011]. Due to the increased
complexity and size of current control systems, such tech-
niques may be impractical due to technical and economical
constraints [Akerberg et al., 2011]. Through the increased
computation and communication capabilities of devices in
these systems, FDD has moved from a centralized task
to a more distributed one. However, distributed FDD and
reconfiguration to enable distributed fault tolerant systems
has been much less explored. The architecture of such
systems is explored in [Campelo et al., 1999, Voulgaris and
Jiang, 2004, Jin and Yang, 2009]. In [Yang et al., 2010]
a distributed FDD is employed to perform a centralized
reconfiguration. To the best of our knowledge, distributed
reconfiguration has not yet been addressed in the litera-
ture.

In this paper, we address the problem of distributed actu-
ator reconfiguration for networked control systems with
actuator faults. Note that this problem is similar to a
distributed controller design problem, which is inherently
complex in general due to the couplings between actuators
arising from both the system dynamics and the input-to-
state mapping. The paper focuses on first-order systems
with some discussion on extensions to higher-order sys-
tems in the conclusions. We devise a distributed actuator
reconfiguration scheme to handle actuator faults. Using
the proposed scheme, healthy actuators are able to locally
compensate for faults disabling a given set of actuators in
the network. Application examples where distributed actu-
ator reconfiguration is beneficial are, distributed control of
wind-farms [Morrisse et al., 2012], farming and livestock
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Fig. 1. Networked control system with a network of actu-
ators Ay, As and As.

systems [Bendtsen et al., 2013] and data-server cooling
systems [Ellsworth et al., 2008].

The proposed distributed algorithm is able to minimize
the loss in performance under faults while achieving a
desired closed-loop trajectory, where the trajectory of the
system with and without the fault is the same. Numer-
ical examples illustrate the performance of the proposed
technique. The results obtained for this class of systems
provide insightful directions for tackling the distributed
actuator reconfiguration problem for higher-order systems.

The rest of this paper is organized as follows. Section 2
presents the system components and architecture consid-
ered in this paper and formulates the problem we aim to
solve. The centralized solution to the reconfiguration prob-
lem is presented in Section 3. In Section 4 the distributed
solution is devised. Finally, numerical examples illustrate
the distributed reconfiguration solution and Section 4 con-
cludes this paper.

2. PROBLEM FORMULATION

The architecture of the networked control system consid-
ered in this paper is depicted in Fig. 1. We consider
that there exists a network of redundant actuators with
each device applying an individual control input to the
plant. Each node is able to exchange information with
its neighbors in the actuator network. The controller is
responsible for computing control inputs for each individ-
ual actuator based on the current state of the system and
transmitting this information to each individual actuator
in the network. The individual components of the system
are described below.

2.1 Plant and feedback controller

Assume the plant is a linear time-invariant system,
z(t) = Ax(t) + BTu(t), (1)
with a state z(t) € R™ and input u(t) € R™ given by a
state-feedback
u(t) = Kx(t), (2)
where K is designed to render the closed-loop system (1)
asymptotically stable. The closed-loop system matrix is
denoted by A = A+ BK. From now on we drop the time
argument in the variables = and u. The matrix B € R™*™
is assumed to have rank(B) = k < m, i.e., B does not

have full column rank. The rank-deficiency of B is an
expression of the redundancy in the actuation network.
The matrix I' € R™*™ is diagonal positive semi-definite
with [I';; =75 € {0,1}. In fact, y; can be interpreted as a
measure of the i-th actuator’s effectiveness, where v, = 1
would mean that the actuator is functioning under nominal
conditions, i.e., healthy actuator, while v; = 0 indicates
otherwise. Under nominal conditions one has I' = I. Each
column of the matrix B is denoted as b;.

2.2 Actuator network

The control system is assumed to have redundant actua-
tors with sufficient computational capabilities to perform
local computations and communicate with neighboring
actuator nodes. The group of such actuators is denoted
as an actuator network.

Let the actuator network be represented by the undirected
graph G(V,&) with vertex set V with n vertices and
edge set £ with m edges. Each vertex ¢ € V represents
an actuator, and an edge e;, = (i,j) € & means that
actuator nodes ¢ and j can exchange information. Denote
N; = {jlj # i,(i,j) € E} as the neighbor set of node
v;. The adjacency matrix A is defined as A;; = 1 for
1 # j and A;; = 0. The degree matrix D is characterized
by Dy = Zje/\a A;;. The Laplacian £ of the actuator
network graph is defined as £L = D — A. Define C as
the span of real symmetric matrices, S™, with sparsity
pattern induced by the communication graph Laplacian
L, ie, C ={S € §"S;; = 0ifL;; = 0}. Furthermore,
denote Vy C V as the set of faulty nodes such that
vi = 0 if and only if ¢ € Vy. Let the set of healthy
nodes, v; = 1, be V), = {i € V|i € V;} and consider
& = {(i,j) € &|i,j € Vp}. The subgraph Gn(Vh,&n)
corresponds to the graph of the healthy nodes. The number
of healthy and faulty nodes are denoted as nj = |V;| and
ny = |Vy|, respectively.

2.8 Fault model

An actuator failure is modeled as a change in the I matrix,
where the column b; representing the faulty actuator is
multiplied by the coefficient ;. Denoting the new matrix
by I, the system after a failure is represented as

i = Az + BTu. (3)

We assume that actuators are able to detect and diagnose
failures instantaneously in their own components and can
notify their neighbors. Individual detection can be done
through fault detection hardware ([Isermann and Raab,
1993, Isermann, 2011]).

2.4 Problem formulation

Assume that a fault has disabled several actuators in the
network. Right after the fault occurs, the nodes in the
network are able to know that a fault has occurred and
reconfiguration must take place. After a failure, if the
actuation signal is not modified, a loss in closed-loop per-
formance may occur as well as the possible destabilization
of the system. Therefore, reconfiguration from the failure



is required. In particular, denote & € R™ as the reconfig-
ured control signals after a fault and let the reconfigured
controller be ~

u(t) = Ku(t), (4)

and A = A+ BI'K as the respective closed-loop system
matrix. The aim of the reconfiguration is to achieve model
matching [Gao and Antsaklis, 1991, Staroswiecki and
Cazaurang, 2008] as defined next.

Definition 1. Denote the nominal closed-loop system ma-
trix as A = A+ BK and consider the actuator faults
described by T'. A reconfiguration method computing a
new controller K so that A = A+ BI'K = A is denoted
as an exact model matching method.

Throughout the paper we assume that exact model match-
ing is always feasible. Since the system is over-actuated,
there may exist different controllers achieving model
matching. To reduce the possible choices of controllers
attained by the reconfiguration scheme, we introduce the
convex function f(K) to assess the cost of the controller

K. The controller cost function f(K) may be interpreted
as, for instance, the performance loss, the actuator degra-
dation, or the number of active actuators. In this paper,
we consider that f(K) corresponds to the performance loss
induced by the change in the control law K after a fault
occurs.

The actuator network reconfiguration problem can be
posed as follows.

Problem 1. How can each healthy actuator modify its
own control input after a fault has occurred, so that
exact model matching is ensured while minimizing the
performance loss?

The reconfiguration scheme solving Problem 1 is designed
to compute a controller minimizing the cost f(K) while
achieving model matching, as described by

minimize f(K)
K

5

subject to A— BK = A — BTK. ©)
Next we describe the centralized approach to solve Prob-
lem 1. Later, the centralized approach is modified so that it
can be implemented in a distributed fashion based on local
information exchange among actuators in the actuator
network.

3. CENTRALIZED ACTUATOR
RECONFIGURATION

In our work, we assume that the controller (2) is an op-
timal linear-quadratic (LQ) regulator for system (1). This
controller is obtained as the minimizer of the following
criterion

oo
Jo 2 min /O 2T Qx +u” Ru dt (6)

where ) = 0 and R > 0 and we assume that R is a diagonal
matrix ([Kwakernaak and Sivan, 1972]). Moreover, we
denote the elements of R™! as 3;, i = 1, ..., m. Supposing
the system is in nominal conditions, i.e. I' = I, the optimal
LQ controller is

u=R'BT Pz (7)

where P is the solution of the Riccati equation
ATP4+ PA—-PBR'BTP+Q=0. (8)
It is well known that if (7) is applied to system (1)

1
continuously, the optimal control cost obtained from (6)
is Jo = xl Pz for an initial condition z(0) = .

Assuming the reconfiguration takes place instantly, the
corresponding control cost is

ty e}
Jo & / 2T Qr+uTRu dt+ / T Qr+a’ Ru dt, (9)
0 ty
and the performance loss induced by the fault and the
controller K is a convex function defined as

fIK)& Jy—Jy = / 2TQx + aTRu dt
123
— / 2T Qx + uT Ru dt (10)
ty
= / @" R —u" Ru dt
ty
The optimal centralized reconfiguration solving Problem 1
through the reconfiguration scheme (5) is now presented.

Proposition 1. The optimal controller K * minimizing the
loss in performance f(K) after a fault I' while ensuring
exact model matching is

K* =R 'TB"P=R"TRK, (11)
where R* is the solution to the convex optimization
problem

min%nize :E?JNDO (R)xy
subject to A=A+ BK
BR'B" = BR™'B”
ATP,+ P,A+ PBCBTP =0,
where C =TR'RR-'I'— R L. Moreover, the centralized
actuator network reconfiguration is attained by computing

K* and having @* = K*z as the control signal after fault.

(12)

In order to prove Proposition 1, we need to derive the
following lemmas. We begin by deriving the condition that
guarantees model matching, followed by the performance
loss in order to prove the above proposition.

Lemma 1. For K = Rflf‘BTP, exact model matching is
achieved if

BIR™'I'BT = BR'BT. (13)

Proof. Following Definition 1, model matching is guaran-
teed if the closed-loop matrix before fault is the same as
after the fault, i.e.,

A—BK =A—-BTK (14)

where K = R™'T'BT P. Recalling that K = R~*BT P and
rewriting (14) as (13) concludes the proof.

Under the assumption that model matching is achieved,
the performance loss is characterized as follows.

Lemma 2. Assuming that model matching holds, the per-
formance loss f(K) = Jy — Jp is given by

f(K) = 2] Py, (15)
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Fig. 2. Networked control system with centralized recon-
figuration. Faults are reported by the actuators to
the centralized controller. The reconfiguration man-
ager is responsible for performing the reconfiguration.
Dashed arrow represents the transmission of informa-
tion related to faults.

where P, is the solution to the Lyapunov equation
(A+ BK)"P, + P,(A+ BK)+
AH—1pp—1T —1\ BT (16)
+PB (PR RR™'T ~ R™') BTP =0

Proof. Since model matching is achieved, the state tra-
jectory of the closed-loop system before and after the fault
is the same. Therefore the loss in performance between the
non-faulty and the reconfigured system is given by

f(K) = / @’ R — uT Ru, dt
ty

- / +TPB (fR*lRRflf - R*l) BT Pz dt

ty
¢
_ / zpe PBCBT PeMa; dt,
ty

_ (17)
where 4 = A — BﬁleT]? is the closed-loop system
matrix and C = TR'RR™'T — R™'. Recalling the
resemblance of f(K) to the observability Gramian of the
pair (A + BK, D) with D = €3 BT P ([Zhou et al., 1996))

concludes the proof.
We are now ready to derive the proof of Proposition 1.

Proof. [Proposition 1] Recall that the optimal controller
after a fault is the solution to (5). We now show that (5)
can be rewritten as (12).

The first constraint in (12) is the model matching con-
straint derived in Lemma 1.

As we aim at minimizing the loss in performance, the
objective function in (12) is the one given in Lemma 2

as (15) with P, given by (16).
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Fig. 3. Networked control system with distributed re-
configuration. Faults are detected by the actuators,
which are also responsible for the reconfiguration. Re-
configuration is achieved through the communication
among actuators in a distributed manner through the
actuator network.

Fig. 2 depicts an example of a centralized reconfiguration
that is performed by a system component denoted as
reconfiguration manager. A fault occurs at actuator As,
which detects that it is faulty and reports its faulty
state to the reconfiguration manager which now knows
BI'. The reconfiguration manager then solves (12) in
Proposition 1 to derive the new controller K*, which allows
the calculation of @} and 3. This value is then transmitted
to the healthy actuators A; and A,.

In the next section we propose the distributed reconfigu-
ration solution to Problem 1.

4. DISTRIBUTED ACTUATOR RECONFIGURATION

To achieve distributed reconfiguration, the solution pro-
posed in Proposition 1 should be implemented in a dis-
tributed fashion. We are now ready to introduce and solve
the distributed version of Problem 1 for the class of scalar
systems with n = 1.

Assumption 1. Each actuator ¢ has b;, b; and §; in mem-
ory for all j € N; and receives u; from the controller.

An illustration of a distributed reconfiguration is shown in
Fig. 3 where a fault occurs at actuator As. The actuators
locally infer that actuator As is no longer functioning, and
so actuators A; and As reconfigure themselves, computing
and applying u; and s, respectively.

Here we propose a distributed scheme that implements (12)
in a distributed manner for a scalar system. For the sake of
notation, let R~ (R™!) be a diagonal with non-negative
diagonal entries [R™);; = B; ([R™"i = Bi), i = 1,...,m.
Moreover, without loss of generality assume I' = I before
the faults have occurred.

Proposition 2. Let B = (/3’1 Bm) For a scalar system

with n = 1, the reconfiguration problem (12) can be
rewritten as ~
min f(5)
S (18)
st. HIf=w

where



2 m

$0)= -GS (e - wats (o
H=02...b,%) (20)
W= i (21)

i=1

Proof. Recall that the optimal reconfiguration ensuring
model-matching and minimizing the loss in performance is
given by (12). We begin by addressing the model-matching
constraint.

Consider the equality constraint enforcing model-matching
(13). Given that R and R are diagonal, this expression can

be rewritten as
m

D Bilwibi)® = Bibi®.
i=1 i=1

As the term )" | 3;b; is invariant to the fault, we denote it
by Yoit | Bib; = w. Thus (13) can be rewritten as HI'f = w.
As for the objective function, recall that the perfor-

mance loss under model-matching is given by Lemma 2.
Using the Lyapunov equation (16) for the scalar case,

(22)

the observability Gramian P, can be rewritten as P, =
—%B (f‘f{_lRR_lf - R‘l) BT Since T', R, and R are
diagonal, P, can be rewritten as

- p2n N
P, = b2 (B8 = Bi)-

= ——— 2
793 (23)

Replacing P, in the ob jective function concludes the proof.

Note that the objective function can be rewritten as
f(B) = c18TQB +co with Q = MT2R, M = diag(H), ¢; =
—% >0,and ¢ =c1 >0y —B?bgﬁi_l. FOE‘ sim;ilicit}/,
we replace the objective function (19) by f(8) = 3TQp,
which does not change the optimal solution of (18) since ¢
and c; are constants with respect to the decision variable

8 and c¢; is positive.

4.1 Distributed optimization approach

Optimization problems of the form (18) are known as re-
source allocation problems [Xiao and Boyd, 2006, Ghadimi
et al., 2011]. In order to efficiently solve this problem in
a distributed manner, one can use a gradient method as
proposed in [Xiao and Boyd, 2006]. Recalling that C is
the span of real symmetric matrices with sparsity pattern
induced by the communication graph Laplacian £, we
formulate the solution of the optimal distributed recon-
figuration in Proposition 2 through the following theorem.

Theorem 1. Becall the objective function f(B) = BTQ8
with Q = MT?R and M = diag(H). The actuator network
reconfiguration as described by (18) is achieved by running
the following algorithm

Bk +1) = B(k) = WMI?RB(k), (24)

where 5(0) is such that HTB(0) = w and W € C satisfies
HTW =0, W(HT)T =0, and

W+ WT +THT(HTTHT)"'HT W

wt Q!

Moreover, the algorithm is distributed since W has the

sparsity structure of the communication graph and f(f)
is separable.

= 0.

Proof. The proof that (24) converges to the optimal
solution to (18) under the stated conditions follows directly
from [Xiao and Boyd, 2006]. The distributed nature of the
algorithm follows from the fact that (24) can be computed
with only local information, given the sparsity of W € C

and the separability of f(3).

The distributed algorithm (24) requires the initial con-
dition B(0) to be a feasible solution of the constraint of
problem (18). Such feasible solution is readily available by
the following method.

Lemma 3. Let j be an arbitrary faulty node, denote
J € NNV as a subset of its healthy neighbors and

assume 7 is not empty. The initial condition 5(0) can be
computed as

[8(0)]; = {[ﬁ]z +vib; 202 [B5, i € T

where v; > 0 for all i € J and Ziej v; = 1.

(25)

Proof. Note that the computations are done locally, since
by construction only the neighbors of the faulty node j are
involved in the computations. The coefficient v; indicates
how much ¢ compensates for the control effort of the faulty
node j before the fault. Moreover, having [3(0)]; = [8]; +
Vz-b;Qb?[ﬂ}j, Vi € J and ) ;. ;vi = 1 ensures that
HTB(0) = HPB(0), and so B(0) is a feasible solution.
Hence, each healthy actuator ¢ in the neighborhood of the
faulty node must solely exchange and agree on the set of
parameters v;.

Besides the need for a feasible initial condition 5(0), the
distributed algorithm (24) also requires a suitable matrix
W satisfying the conditions in Theorem 1. The following
result provides a suitable matrix for before the occurrence
of faults.

Lemma 4. Let A\;(I — WQ) denote the set of eigenvalues
of I — W ordered so that |A1] <+ < |Ay_1| <Ay =1
and assume I' = I. Then a suitable candidate for W
is the normalized Laplacian of the network graph W =
—6M~'LM~1 where M = diag(H) and § < 0 is chosen
sufficiently small in magnitude so that [Ay_1| < 1.

Proof. The proof follows from Xiao and Boyd [2006,
Section 4.2], by observing that HI' = 17T'M.

The optimal value of § maximizing the convergence speed
of (24) can be computed by solving an SDP problem
proposed by Xiao and Boyd [2006]. The authors also
propose a conservative heuristic to determine ¢ so that (24)
converges, which in our setting corresponds to

B2
o= mp )

Note that such heuristic can be implemented in a dis-
tributed fashion by first electing as a leader the healthy
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node with the smallest value BDZ—b and then distribute this
value for all the other nodes.

Given the original communication graph G, assume W is
chosen as stated in Lemma 4. Furthermore, denote G as
the graph obtained from G by disconnecting the faulty
nodes. The next result provides a suitable matrix W for the
distributed algorithm (24) after the occurrence of faults.

Lemma 5. Assume I' # I and that the subgraph of
healthy nodes G, is connected. A matrix W compliant
with Theorem 1 can be chosen as W = —dM LM,
where £ is the Laplacian of G.

Proof. Without loss of generality, assume the nodes are
ordered so that the graph Laplacian is of the form

5~ Ly O

L= {0 IHJ )
where L, is the Laplacian of the G,. Note that the
corresponding matrix I' is given by

=~ |1y, O

P [ ; 0}.
Recall the necessary conditions for convergence H I'W =
0 and WIHT = 0. Since HI' = 17T'M, we have
1"TLM~' = 0 and M~'LI'1 = 0, which concludes the
proof.

Lemma 5 indicates that, once a fault occurs and the faulty
nodes are removed, the healthy nodes do not need to
recompute W. Instead, W naturally arises from the com-
munication graph G, and the actuators can simply run the
distributed algorithm from Theorem 1 by communicating
with their healthy neighbors.

The results in this section are summarized in Algorithm 1,
which describes the distributed actuator reconfiguration
scheme.

Algorithm 1 Distributed Actuator Reconfiguration

(1) Detect and isolate actuator faults and disconnect the
faulty actuators;

(2) Compute 3(0) by locally updating 8 as per Lemma 3;

(3) Locally update W according to Lemma 5;

(4) Run the distributed iterations from Theorem 1 to
compute 5*;

(5) For t > ty, each healthy node i computes and applies

Fu p—1
ur = 358, u;.

Remark 1. By design, Lemma 3 achieves a distributed
reconfiguration solution where model matching is guaran-
teed. However, there is no minimization of the performance
loss. This lemma can be used if model matching is a re-
quirement of the reconfiguration and there is an interest on
reducing the amount of communication among actuators.
In fact, one can set v; = ﬁ, i € J in (25) for the
local neighborhood of the faulty nodes. By doing so, each
healthy actuator in the neighborhood of the faulty actua-
tor, only requires the knowledge of the total number | 7| of
healthy actuators in that neighborhood. Several methods
to calculate the number of healthy nodes in a network have
been recently proposed in the literature [Shames et al.,
2012, Terelius et al., 2012, Cichon et al., 2012].

The convergence speed of the distributed optimization will
depend on the actuator network connectivity as it directly
influences the computation of 8} (step 4) for each actuator.
In the case that a decision must be taken within a fixed
number of steps and the algorithm has not yet converged to
the optimal solution, the performance loss will be higher.
However, model matching will always be guaranteed as per
remark 1.

5. NUMERICAL EXAMPLES
5.1 Small example

Consider a scalar system with three actuators where none
of the actuators has a fault in normal conditions, and
characterized by

A = a, B = (b1 b2 b3> ; F = diag(l, 1, 1),
in (1).

We now evaluate the reconfiguration of this system in a
case of a complete failure of actuator 3 (v3 = 0, 4 =
2 = 1). We start by presenting the optimal centralized
reconfiguration of the problem presented in Proposition 2,
followed by the optimal distributed reconfiguration solu-
tion to Proposition 2 proposed in Algorithm 1.

Optimal centralized reconfiguration:  As shown in Propo-
sition 2, the performance loss f (B) is a quadratic function
of 3. Therefore one can easily derive analytically the op-
timal values of 37 and 33 as the solution to (18), while
guaranteeing model matching [Boyd and Vandenberghe,
2004].

The optimal solution is given by
2% w ﬁng
Bi=m (1=

bl bl (bQﬂQ + ﬁl)

B* _ WﬁQ

2T (b382 + 1)

The control input applied by each actuator after the

reconfiguration is given by

(27)

~% __ % _ Bf
u] = Brbipr = Eul
. = B3
U5 = Bybapx = ﬂ—zug
e

uz =0

Optimal distributed reconfiguration:  We assume that all
actuators in the network can communicated directly and
so the graph is fully connected. After the fault occurs, the
nodes detect, isolate and disconnect the faulty actuator
(step 1). Hence, actuators 1 and 2 exchange information
among themselves and stop communicating with the faulty
actuator 3. As per Lemma 3, nodes compute $(0) locally
based on (5. In this case, we assur?e thlat the healthy

actuators 1 and 2 select 11 = 1o = - = 5 (step 2). The

weight matrix is selected as W = —6M~YLM~", where
0 is computed according to (26) (step 3). The values of

B(0) and W satisfy the conditions of Theorem 1, thus the
optimal solution for §* (step 4) is given by (27). Each
actuator then applies the optimal control inputs to the
plant (step 5).
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Fig. 4. Actuator networks for large scalar example. Fully
connected (a and b) and sparse network (¢ and d).
The healthy nodes are colored black and the faulty
nodes are colored red.

5.2 Large example

We now evaluate the optimal distributed reconfiguration
applied to a scalar system with A = 1 and where twenty
actuators form an actuator network and six actuators
completely fail (n, = 14). The input matrix B is randomly
generated with 0 < b; < 10. The fault occurs at time step
t =0.1s.

In order to solve this problem we use algorithm 1. We
evaluate our solution when applied to two different net-
work topologies. In the first case, we deal with a fully
connected network of actuators, which are depicted in
Figs. 4a and 4b in case of no fault and with fault, re-
spectively. In second case we consider a sparse actuator
network which is shown in Figs. 4c and 4d for no fault and
faulty situation, respectively. The initial values for each of
the healthy nodes is defined using the Lemma 3 (step 2).
In the first case, since the network is fully connected we

can design v; = ﬁ = ﬁ, 1€ J and J = V. For second

case, the parameter v; = ﬁ, i € J which is the local
neighborhood of the faulty nodes. In step 3, the values
of W are achieved by Lemma 5 through the exchange of
information among neighboring nodes.

The results for this example are presented in Figs. 5
and Fig. 6 for the first and second cases, respectively.
The plots depict the evolution of the state x(t), the
control input u(t), the performance loss f(t) in (15).
Additionally, we show the convergence of 3;, i = 1,...,20
which is calculated using Lemma 3. As expected, the
same trajectory is obtained with faults and without faults.
However, when the fault occurs, the control input values
are increased in order to compensate for the actuator
faults. The convergence to the optimal values 5* is faster
for a fully connected graph than for the sparse network, as
it is expected. In this example, for a fully connected graph,

(t)
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Fig. 5. Reconfiguration of a network of 20 actuators

controlling a scalar system when 6 faults occur. The
fault takes place at ¢ = 0.1 s. Results for a fully
connected graph show in Figs. 4a and 4b.

x(t)

6
4+
2
0

. L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (1)

0.25 0.3 0.35 0.4 0.45 0.5
Tim§ (t)

=
L L L L L L L L L
0 0.05 01 0.15 02 0.25 03 0.35 0.4 0.45 05
20 . . . Time () T T T
10 i
=
= F — = — —
10 . . . . . . . . .
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Fig. 6. Same setup as in Figure 5 but with a sparse
graph depicted in Figs. 4c and 4d. Slightly slower
convergence occurs due to a less connectivity among
actuators.

the convergence to a neighborhood of the optimal solution
defined as ||3(k) — B*||2 < 10~* takes 9 steps, while for the
sparse graph it takes 129 steps.

6. CONCLUSIONS AND FUTURE WORK

In this work, we developed a distributed reconfiguration
method for scalar networked control systems under actu-
ator faults. The proposed approach is able to minimize
the loss in performance that occurs from the actuator
faults, while guaranteeing that the same state trajectory is
obtained. The optimal distributed reconfiguration is guar-
anteed to achieve the same solution as the optimal central-
ized reconfiguration, while only requiring local cooperating
among healthy actuators. A large-scale numerical example
demonstrates the effectiveness of our approach. Particu-



larly, we show that the minimization of the loss in per-
formance as well as the same state trajectory is achieved.
Additionally, the speed of convergence of the distributed
algorithm depends on the network connectivity.

As future work, we aim at analyzing the distributed re-
configuration problem with non-instantaneous and asyn-
chronous detection and reconfiguration. Moreover, we will
target the extension of the method developed in this paper
to higher-order systems.
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