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Abstract

The problem of tuning individual loops in a multivari-
able controller is investigated. It is shown how the per-
formance of a specific loop relates to a row in the con-
troller matrix. Several interpretations of this relation
are given. An algorithm is also presented that estimates
the model required for the tuning via a relay feedback
experiment. The algorithm does not need any prior in-
formation about the system or the controller. The results
are illustrated by an example.

1. Introduction

Poorly tuned control loops represent a large economic
cost for industry [5, 4]. Control parameters are often
set to default values or are manually tuned in an ad
hoc way. The reason for this is that there is a great
lack of tools for tuning industrial controllers system-
atically. Nowadays there exist methods for automatic
tuning of SISO control loops, which have been widely
accepted and implemented in several commercial con-
trollers [2]. Many control loops are, however, coupled
and the interaction has to be considered in the con-
trol design to gain improved performance [18]. Most
modern multivariable control design methods require
a full model of the process [11]. In many cases such a
model is not available and physical modeling or sys-
tem identification may require a prohibitive engineer-
ing effort. Furthermore, it is hard, or impossible, to
impose a certain control structure on standard mul-
tivariable design methods. Therefore, there is a need
for simple methods of tuning multivariable controllers;
particularly methods that compromise optimality for
engineering efficiency.

This paper focus on the problem of retuning an ex-
isting multivariable control system. A framework is
developed where it is possible to derive the influence
of retuning one loop on the overall closed-loop perfor-
mance. A badly tuned loop can in this way be improved
by changing certain elements of the controller matrix.
Tuning a loop corresponds to changing a row in the
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controller matrix; hence, to solve a SIMO control de-
sign problem. Several quantities useful for estimating
the influence of a controller row on the closed-loop sys-
tem are derived. The information required for this type
of design is also discussed together with how this in-
formation can be obtained. It is shown that no prior
knowledge of the process dynamics or of the controller
dynamics is needed, if a modeling experiment based
on relay feedback is used.

In existing work on extending the auto-tuning method
for SISO control systems developed in [1] to MIMO
systems, either one relay is used for each experiment
by closing one loop at a time [7, 6, 19, 17] or all loops
are set under relay feedback simultaneously [23, 19,
12, 20]. A major drawback with the latter approach is
that instead of giving stationary limit cycles the relays
can induce very complicated oscillations [19, 9]. There
exist no results in terms of plant data for when this
may or may not happen. Based on a successful relay
experiment a controller is designed. Most authors limit
the control structure to a decentralized configuration
of SISO PID controllers [21, 19, 23, 17, 12]. Decoupling
design is derived in [6, 20]. Tuning cascade controllers
(MISO controllers) is considered in [7, 22]. For a
survey on relay feedback methods see [3, 9].

The outline of the paper is as follows. Section 2
presents some results that are useful for loop tuning.
Retuning a row in the controller matrix is formalized.
In Section 3 it is shown that the required information
about the system can be obtained from an experiment
with SISO relay feedback. Section 4 describes an
application to a model of a new laboratory process.
Some concluding remarks are given in Section 5. An
extended version of this paper is given in [9].

2. Loop Tuning

Suppose that a multivariable control system with
unsatisfactory closed-loop performance is given. The
basicidea is to adjust certain elements of the controller
matrix in order to improve the closed-loop behavior. In
general, such an adjustment will affect all loops in the
system. The challenge is to obtain this effect on the
desired loop without degrading the performance of the
other loops. This section gives results which enables
the designer to compute the effect of an adjustment of
a single loop on the overall closed-loop behavior.
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Figure 1 Opening of control loop m.

Notation

Assume that there exists a stable closed-loop system
comprising a process G and a nominal controller K,
both with m inputs and m outputs. Denote the manip-
ulated variable or process input u = (u1,...,un)7, the
controlled variable or process output y = (y1,...,ym)%,
and the reference or set-point r = (r1,...,7,)7. The
controller matrix K acts on the error signal e =
(e1,...,em)T =r—y. Hence, y = Gu and u = Ke. The
aim of the tuning procedure is to improve the perfor-
mance of one loop by adjusting appropriate elements of
the controller matrix. Without loss of generality, con-
sider loop m and define the following partitions:

m

G=m[ma_1 Gz ). K=’”[Kk] (1)

Partition the vectors u = (@%,un)?, v = (37, ym)%,

r = (fT,rn)T, and e = (&7,e,;,)T correspondingly, so
that & = (u1,...,um—1)7 etc. Then

Uy = s%Ke = ke = kieq + IIH ke,

where €L = (0,...,0,1) and k;, i = 1,...,m, are the
elements of 2. Row m of the controller matrix K thus
contains the coupling from the error e to the control
signal u,,. Figure 1 shows the closed-loop system with
the signal path u,, broken. Any sensible choice of the
controller row % that improves the performance of loop
m, requires at least knowledge of the SIMO transfer
matrix from u,, to e in this partially open system. We
denote this transfer matrix H = —(I+G1K;) Gy and
assume that it is stable. The block diagram of Figure 2
shows explicitly the contribution of controller row m
to the feedback control of the system. The transfer
matrices of the full multivariable closed-loop system
can easily be described in terms of those for the system
with H acting as a process and k& as a controller. In
other words, the multivariable control design problem
for G is reduced to a SIMO control problem for H with
MISO controller £.

Parameterization and stability

It is simple to calculate the effect of new or redesigned
controller row elements of the single-loop opening ap-

Figure 2 Contribution of controller row £.

proach. The input sensitivity function is given by
S; := (I + KG)™! and the output sensitivity func-
tion by S, := (I + GK)~l. The diagonal element m
of the sensitivity matrix S; captures much of the per-
formance in loop m. By the definition of H and %, we
have €I'S;e,, = 1/(1 — kH). Knowledge of H alone
is thus sufficient to compute the transfer function for
loop m that results from a particular choice of .

The closed-loop transfer matrices are affine functions
in the Youla parameter @ := (I+K G) 'K if G is stable
[11]. For example, the sensitivity and complementary
sensitivity matrices with reference to process inputs
are S; = I — QG and T; = @G, respectively, and
the corresponding matrices with reference to process
outputs are S, = I — GQ and T, = GQ. The closed-
loop transfer matrices are also affine functions in ¢ :=
k/(1 — kH). This 1 x m vector of transfer functions
is the Youla parameter for the partially open system.
Some calculations give the relation between ¢ and @
as

K\H

Q= 1

[Igl] (I+GKy) L+ [ ] q(I + G Ky) L.

Parameterization of stabilizing controller rows and
columns are studied in [8].

Naturally, any adjustments of controller row m must
be made in such a way that the closed-loop system
remains stable. The following result follows from the
Nyquist theorem. Assume the closed-loop system is
stable with controller row k. Let & be replaced by £,
where % is such that no unstable modes are cancelled
and that the number of open-loop RHP poles does
not change. Then the adjusted clo;s\ed—loop system
remains stable if and only if N (1 —2H,0) = N (1 —
kH,0), where N (f(s),z) is the number of clockwise
encirclements of the point z by the image of the usual
Nyquist contour DN under the map f as it is traversed
in a clockwise direction.
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Figure 3 Three important points on the Nyquist curve.

3. Extended Relay Experiment

A relay feedback experiment is a simple and robust
way of doing closed-loop identification. The setup for
the original SISO experiment is simply to replace the
SISO controller by a relay [1]. The main advantages of
an identification experiment based on relay feedback
are (1) that the frequency of the excitation signal is
near the cross-over frequency of the open-loop system,
(2) that the experiment is done in closed loop, and (3)
that no prior knowledge about the process dynamics
is needed. The frequency of the relay output is close
to optimum in the sense that it is in the band where
the estimated model has to be accurate to support
a satisfying control design. Even if no controller is
present in the loop during the experiment, the relay
itself gives a high-gain feedback. This means, for
instance, that the process is automatically kept close
to its operating point during the experiment.

A drawback with the original relay feedback experi-
ment is in some cases its lack of excitation. There-
fore, we introduce a modification of the standard relay
experiment, by simply estimating two points on the
Nyquist curve instead of one. It is well-known that
with a filter in series with the relay, any point on the
Nyquist curve can be estimated [2]. This idea has been
explored for SISO systems in [15, 16]. Persson [13] in-
vestigated the amount of process information needed
for control design in number of points and their lo-
cation on the Nyquist curve. Three crucial points are
marked with crosses in Figure 3. Point 1 is determined
by a standard relay experiment, whereas Point 2 is
determined from an experiment with a relay and an
integrator in series. The method can be interpreted as
putting a filter W in series with the relay. The filter
is initially set to W = 1 and then to W = 1/s. To-
gether with steady-state data, the gained information
is sufficient to derive a model of the form

G(s) bos + by

~$ +a1s2+ass+asz’
The controller tuning described in Section 2 is based
on knowledge of the column vector H. The set-up for

(2)

Figure 4 Relay experiment for identifying H.

an extended relay experiment to identify H is shown
in Figure 4, compare with Figure 2. The block with &7
picks out error signal e,,. The relay is thus connected
between We,, and u,,. This gives an oscillation with
frequencies determined by H,,, which is typically the
most important transfer function for controller tuning
in loop m. From measuring ¢ and e,,, we can estimate
all elements of H. We summarize the method in the
following algorithm.

ALGORITHM 1—SIMO RELAY EXPERIMENT

1. Set W = 1 and wait for a stationary oscilla-
tion. Measure the frequency w; and derive the
response for each element H,.

2. Set W = 1/s and wait for a stationary oscilla-
tion. Measure the frequency we and derive the
response for each element H,.

3. Freeze the relay output and wait for steady-
state and derive the steady-state gains for each
element H;.

4. Estimate H; as in (2) based on the responses and
the corresponding frequencies w; and ws.
O

The amounts of time required for a stationary oscilla-
tion in Step 1 and Step 2 are small. Experiments show
that stationarity is often reached after three—four re-
lay switches.

Note that Algorithm 1 automatically gives highest
priority to the last element of H in the sense that the
excitation frequencies are adjusted to suit H,,. This
means also that if Hy,...,H,,_1 give small responses
around the cross-over frequency of H,,, then the
estimates of Hy,..., H,_1 are probably poor. However,
because the elements are small, the lack of accuracy
has only a small influence on the control performance.
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Figure 5 Extended relay experiment for minimum phase

system. The error signal e; (dashed) is negligible compared
to ey (solid).

25

Figure 6 Nyquist curves of H for minimum phase system.
The crosses are estimated frequency points from relay
feedback experiments. The small crosses correspond to H;
and the large to Hy. A third-order estimate of Hy is
also shown (solid line). The frequency response of Hj is
negligible compared to the response of Hj.

4. Example

In this section the retuning procedure is applied to
a multivariable level control problem. The considered
system is a normalized model of the quadruple-tank
laboratory process described in [9, 10].! The system
including models for actuators and sensors is given by

21 1-)
o 500 s+1  (s+1)2
(S+10)2 1—-p Vo
(s+1)2 s+1

The parameters y1, )2 € [0,1] are determined by how
two valves are set prior to an experiment. The system
G has a RHP zero if and only if 1 + y» € (0,1]. Next
we study the system for one minimum-phase setting
and one nonminimum-phase setting.

Minimum phase system Let)y; = )y =4/5.Then G
has zeros in —5/4 and —3/4, so the system is minimum

1The retuning procedure in this paper has been applied to the
real laboratory process in [14].
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Figure 7 Extended relay experiment for nonminimum
phase system. The error signals e; (dashed) and ey (solid)
are of the same magnitude.
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Figure 8 Nyquist curves of H for nonminimum phase
system, compare Figure 6. The frequency responses of H;
and H, are of the same magnitude.

phase. Let K = diag{1,1} be the initial controller. The
response of the extended relay experiment described in
Algorithm 1 is shown in Figure 5. The response of ey
is small compared to es. This is further illustrated in
Figure 6, where the small crosses are the estimated
frequency points for H; and the large crosses the
points for Hs. The dashed curves are the Nyquist
curves for the true systems, whereas the solid curve
is a third-order estimate of Hs.

The result from the relay experiment indicates that
we can neglect the influence of H; and simply retune
the last element of %. The PI controller 2 = (0, (2s +
3)/s) gives the poles —41.9 and —2.2 £ 4.6 for the
second diagonal element of S;. Note that the tuning
here corresponds to applying SISO methods. For this
example the MIMO characteristics of the system are
insignificant.

Nonminimum phase system Let us now change
the valves so that 3 = y» = 2/5. Then G has
zeros in —5/2 and 1/2, so the system is nonminimum
phase. Let K = diag{—0.1,0.1} be the initial controller.
Figure 7 shows the result of the relay experiment.
The estimated Nyquist curves (solid) are shown in
Figure 8, together with the true ones (dashed). We



see that the interaction is severe, so it is probably
not sufficient to only retune the second loop. If a
relay experiment is also done in the first loop, it is
straightforward to derive a multivariable controller,
for example based on decoupling.

5. Conclusions

It was shown how a poorly tuned multivariable con-
troller can be retuned through a simple closed-loop ex-
periment based on relay feedback and controller row
design. In particular, the case with one bad loop was
discussed. The standard SISO relay feedback experi-
ment in [2] was extended to give better excitation and a
more accurate model, which seems to be necessary for
many MIMO control designs. Several results on how
a row in the controller matrix affects the closed-loop
performance were derived. No fully automatic proce-
dure was described in the sense of automatic tuning
for SISO systems. It is believed that this can only be
done if the considered class of systems is more limited
than in this paper. It was pointed out through an ex-
ample that for “simple” multivariable control systems
the proposed method agrees with automatic SISO tun-
ing. For “difficult” MIMO control problems the method
still provides a solid ground for controller design.
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