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This paper considers the problem of localization and circumnavigation of a slowly drifting target with an unknown speed by a group of
autonomous agents while they form a regular polygon at a known distance from the target. The goal is achieved in a distributed way where
each of the agents coordinates its motion knowing its own position and either the bearing angle of the target or the distance to the target,
and the position of one of its neighbors. First, we solve the problem for the case where the target is stationary and propose a two-stage
control law that forces the agents to move on a circular trajectory around the target and form a regular polygon formation. Then, we
consider the case where the target is undergoing a slow but possibly persistent movement. Later, we consider the case where only one of
the agents know the desired distance from the target. In the end, the case in which only a subset of agents can measure either the bearing
or the distance to the target is considered. The performance of the controllers proposed is verified analytically, through simulations, and in
an experimental setup.
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1. Introduction

Autonomous vehicles localizing a target may require them
to spend some time in the proximity of the target. Such a
task can be accomplished by agents moving around the
target on a circle while forming an optimal geometry [1]. It
is shown in the literature, e.g., [2, 3], that an optimal sensing
geometry in many applications is one corresponding to an
equiangular spaced formation around the target, sometimes
with each agent at the same distance from the target. An
easy way of achieving this geometry is to force agents to
form an equilateral polygon. For the case of unmanned

aerial vehicles (UAVs), the agents cannot stop moving, so
the task of forming an equilateral polygon around the target
changes to forcing the agents to rotate around the target
while maintaining an equilateral polygon. For this reason,
the problem of making the agents form an equilateral
polygon while rotating around the target has gained much
attention in recent years [4–14].

Along this line of research, [4] has proposed a control
framework under cyclic pursuit, causing the agents take up
an equilateral polygonal formation moving on a circle
whose center is the target. In [5], the problem is addressed
via a Lyapunov vector field approach. The solution in [6]
relies on invariant set arguments to show that the desired
state configuration is the stable equilibrium of the system.
The interested reader may refer to [8–11] for other meth-
ods achieving the same objective under different assump-
tions. All the works mentioned earlier, however, assume that
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the agents know, at least, the relative position of the target,
which might not be a practical assumption in reality, as the
target might be at an unknown position. This issue leads to
another research question that has been studied under the
name of source localization [15–19] in the literature. There,
the problem of localizing a target at an unknown position by
a single moving agent is considered. This agent gathers
certain measurements to the target but the position of the
target is not readily available through these measurements,
e.g., absolute distance or bearing measurements by them-
selves do not reveal the position of the target. Examples of
these works are [19–22].

The main contribution of this paper is to bridge the gap
between two vast bodies of work. The works that seek to
achieve the encircling of a target at a known position by a
formation of autonomous agents, and the works that in-
volve the localization of a target by an agent collecting
different measurements from it. We propose a two-stage
control law for the agents to encircle the target while con-
tinuously estimating the position of the target using either
bearing or distance measurements to the target.

The applicability of the proposed methods is demon-
strated via numerical simulations and experiments.
Experiments are performed using quadrocopters at the
Smart Mobility Lab, KTH Royal Institute of Technology and
show the feasibility of collective circumnavigation.

The outline of the paper is as follows. In the next section,
we introduce the main problem of interest, i.e., collective
circumnavigation of a target at an unknown position using
either bearing or distance measurements, and propose dif-
ferent solutions to address this problem for different var-
iations of the assumptions of the problem. In Sec. 3, we
consider the case where only a subset of the agents have
access to the bearing measurements. Simulation results are
presented in Sec. 4 and the experiments outcomes are de-
scribed in Sec. 5. Concluding remarks and future directions
are introduced in Sec. 6.

2. Collective Circumnavigation Problem

In this section, we formally define the problem of interest in
this paper, that is, how to force n agents, 1; . . . ; n, capable of
measuring either their bearings or their distances to a tar-
get of interest at an unknown position to form an equilat-
eral polygon while rotating around the target. First, we
present some notational conventions, remarks and
assumptions that we use in the rest of this paper.

We denote a circle with center c 2 R2 and radius r by
Cðc; rÞ.
Assumption 1. Let piðtÞ 2 R2 denote the position of agent
i at time t for each i 2 V , where V, fign

i¼1. The kinematics

of the agent is assumed to be in the single integrator form, i.e.,

p
:
iðtÞ ¼ viðtÞ;

where viðtÞ is the control signal.
Assumption 2. Agent i can measure the position of agent j
if kpiðtÞ � pjðtÞk � 2ð�d þ �Þ for positive constants � and
�d � d.

Assumption 2 guarantees that the agents that are ro-
tating around the target can measure each others' position.
In this paper, we mainly address the following two pro-
blems.

Problem 1 (Collective Bearing-only Circumnavigation).
Consider n agents satisfying Assumption 1, at positions
pið0Þ, i 2 V scattered outside the circle Cðx; dÞ, where x,
xð0Þ 2 R2 is unknown and d is a known positive scalar at
time 0. Each agent imeasures the bearing ’iðtÞ 2 R2, where
’iðtÞ is a unit vector on the line passing through x and piðtÞ
which can be written as

’iðtÞ ¼
x� piðtÞ

kx� piðtÞk
¼ x� piðtÞ

DiðtÞ
: ð1Þ

It is required that (1) the agents rotate in a counter-
clockwise direction on Cðx; dÞ, and (2) form a regular
polygon formation while rotating.

Problem 2 (Collective Distance-only Circumnaviga-
tion). Consider n agents satisfying Assumption 1, at
positions pið0Þ, i 2 V scattered outside the circle Cðx; dÞ,
where x, xð0Þ 2 R2 is unknown and d is a known positive
scalar at time 0. Each agent i measures the distance
DiðtÞ 2 R, where DiðtÞ is given by

DiðtÞ ¼ kx� piðtÞk: ð2Þ
It is required that (1) the agents rotate in a counter-
clockwise direction on Cðx; dÞ, and (2) form a regular
polygon formation while rotating.

In the following subsections, we present solutions to
these two problems.

2.1. Collective bearing-only circumnavigation

We propose a two stage control law to address Problem 1 in
this subsection. The first stage of the control law ensures
that the agents move towards the target and start rotating
around it. The second stage forces the agents to achieve the
desired formation shape, i.e., a regular polygon.

We first assume that the target is stationary xðtÞ ¼ xð0Þ
for all t � 0. The first goal is to devise an estimator at each
of the agents that does not require the derivative of the
measured data and guarantees that ~xiðtÞ, x̂iðtÞ � x goes to
zero exponentially fast, where ~xiðtÞ and x̂iðtÞ are the errors
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in the estimate of x and the estimate of x calculated by
agent i, respectively.

It should be noted that the measurement of the bearing
angle to the target when DiðtÞ ¼ 0 is not well defined.
Moreover,’iðtÞ is not defined for this case as well. Hence, it is
desirable that DiðtÞ 6¼ 0 for all t > 0. Assume �1 is a constant
positive scalar; then the estimator can be defined as

x̂
:
iðtÞ ¼ �1ðI � ’iðtÞ’>

i ðtÞÞðpiðtÞ � x̂iðtÞÞ: ð3Þ
where I is the identity matrix and ’iðtÞ’>

i ðtÞ is a projection
matrix onto the vector ’iðtÞ. The trajectory of the target po-
sition estimate x̂iðtÞ in (3) is perpendicular to the line passing
through the i and the target. But the estimation goal is that
x̂iðtÞ converges to xiðtÞ. For the estimate to converge to the
real position (or a small neighborhood of it depending on the
target speed), the trajectory of the agent should fulfill certain
conditions. Such conditions are satisfied if and only if the unit
vector �’iðtÞ is persistently exciting where it is the unit length
vector perpendicular to ’iðtÞ, obtained by �=2 clockwise
rotation of ’iðtÞ. Before continuing further, we present the
following definitions.

Introducing a constant positive scalar �, the control law
for agent i can be defined as

p
:
iðtÞ ¼ ðD̂iðtÞ � dÞ’iðtÞ þ � �’iðtÞ; ð4Þ

where D̂iðtÞ ¼ kpiðtÞ � x̂iðtÞk. This means that the velocity
vector of agent i is divided into two parts. One part con-
trolling that the agent approaches the target with a velocity
proportional to the error between measured and desired
distance to target. The other part controls with which speed
the agent rotates around the target. This component of the
velocity guarantees that �’iðtÞ is persistently exciting. It can
be seen that if D̂iðtÞ ¼ d, then the agent does not move
towards or away from the target but just moves on the
circle around the target. Before continuing further, we
present the following definitions.

Definition 1 (Counterclockwise Neighbor). Consider m
agents at positions piðtÞ 2 R2 at time t and another point
pH 2 R2. We call agent j the counterclockwise neighbor of
agent i if kpH � pjðtÞk � �d þ � and �ijðtÞ, the counter-
clockwise angle subtended at pH by piðtÞ and pj , is the
smallest among all �ikðtÞ for all k 2 f1; . . . ; ngnfig. More-
over, we define the counterclockwise neighborhood func-
tion, Nði; t;pHÞ 2 f0; 1; . . . ;mg. The input of this function is
the label of one of the agents and the time t, and the output
is its counterclockwise neighbor at time t. If Nði; t;pHÞ ¼ 0,
it means that agent i does not have a counterclockwise
neighbor.

Note that the definition of Nði; t;pHÞ allows the intro-
duction of a new agent or the removal of an existing one. To
clarify, let us assume that at time t0 agents Nði; t0;pHÞ ¼ j.
In the first case consider that at time t1 agent k reaches

Cðx; dÞ such that �ikðtÞ < �ij , then we have Nði; t1;pHÞ ¼ k.
In the second case, consider the case that agent j is removed
(due to a fault or an attack on it) at time t2 > t0, and �irðtÞ is
the second smallest for t 2 ½t3; t2Þ for t0 � t3 < t2. At this
time, Nði; t2;pHÞ ¼ r.

Definition 2 (Counterclockwise Star Formation [14]).
The m agents at positions piðtÞ 2 R2 at time t are said to be
arranged in a counterclockwise star formation with respect
to pH 2 R2 if kpiðtÞ � pHk > 0 and �ijðtÞ > 0 for all i 2
f1; . . . ; ng and its counterclockwise neighbor j.

Definition 3 (Counterclockwise Control Graph). Call the
graph GcðtÞ ¼ ðVcðtÞ; EcðtÞÞ counterclockwise control graph
where VcðtÞ is the set of agents being controlled by the
second stage control law (5) and the directed edge ði; jÞ 2
EðtÞ if Nði; t;pHÞ ¼ j.

An example for a star formation, counterclockwise
neighborhood relationship, and counterclockwise control
graph is depicted in Fig. 1.

Definition 4 (Directed Cycle Graph). A cycle graph is a
graph on n vertices containing a single cycle through all
nodes. Moreover, a cycle of a graph is a subset of the edge
set of the graph that forms a path such that the first node of
the path corresponds to the last, where a path on a graph is
a sequence i; j; k; . . . ; l;m such that fi; jg; fj; kg; . . . ; fl;mg
are edges of the graph and the vertices in the sequence are
distinct. A directed cycle graph is a graph where the edges
above are directed.

When kD̂iðtÞ � dk � � agent i switches to the second
stage control law:

p
:
iðtÞ ¼ ðD̂iðtÞ � dÞ’iðtÞ þ ð�þ �ijðtÞÞ �’iðtÞ; ð5Þ

Fig. 1. The agents with a star formation with respect to pH, the
counterclockwise angle between i and its neighbor j, and the
counterclockwise control graph.
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where �ijðtÞ is the counterclockwise angle subtended at x̂iðtÞ
by i and its counterclockwise neighbor Nði; t; x̂iÞ ¼ j. The
fact that Nði; t; x̂iÞ accommodates both the introduction of
new agents and the removal of the existing ones makes the
control law adaptable to changes in the number of the agents.
Additionally, if Nði; t; x̂iÞ ¼ 0, we set �ij to be equal to 0.

We first present the following propositions.

Proposition 1. As t ! 1, under control laws (4) and (5):

(i) The estimate of the position of the target by each agent i,
x̂iðtÞ, converges to the real target position, x exponen-
tially fast.

(ii) Each agent i converges to Cðx; dÞ and starts to rotate
around the target in a counterclockwise direction.

Proof. The estimation error dynamics, ~xðtÞ, x̂ðtÞ � x, can
be written as

~x
:
iðtÞ ¼ �1ðI � ’iðtÞ’>

i ðtÞÞðpiðtÞ � x̂ðtÞÞ
¼ ��1ðI � ’iðtÞ’>

i ðtÞÞ~xiðtÞ: ð6Þ
Moreover, it is easy to check that the coefficient of �’iðtÞ is
always larger than or equal to the positive (nonzero)
constant �. From [21, 22], this condition guarantees that (6)
goes to zero exponentially fast. Knowing this, the proof of
the second statement is a trivial extension of the result
given in [21, 22].

For the counterclockwise control graph as defined in
Definition 3, it is easy to show the following result.

Proposition 2. When the agents are governed by the
control laws (4) and (5), then, as t ! 1, the graph Gc

converges a directed cycle graph with n vertices.

Proof. From Proposition 1, we know that x̂iðtÞ goes to x
exponentially fast.Moreover, both (4) and (5)drives the agents
to the circleCðx̂ðtÞ; dÞ and as x̂iðtÞ ! x for all i 2 f1; . . . ; ng all
the agents satisfy kpi � x̂iðtÞk � �d þ � at the same time.
Hence, VcðtÞ ! f1; . . . ; ng. Thus, according to Definition 3, Gc

converges a directed cycle graph with n vertices.

Proposition 3. As t ! 1, �ijðtÞ ! 2�
n , where j ¼ Nði; t;

x̂ðtÞÞ, when the agents are controlled by the two-stage
controller described by (4) and (5).

Proof. For the purposes of this proof, we introduce a
rotating coordinate frame with origin at the origin of the
global coordinate frame that rotates with the angular speed
of �=d in a counterclockwise direction. Call this rotating
coordinate frame §r . The result follows from the application
of Theorem 1 of [4] in §r .

Proposition 4. The agents controlled by the second stage
control law (5) are always in a counterclockwise star
formation.

Proof. The proof is a direct consequence of Definition 1
and Theorem 1 of [4].

We have the following lemma.

Lemma 1. Under the two-stage controller described by (4)
and (5) the agents form a regular polygon formation while
rotating around the target as t ! 1.

Proof. The proof is the consequence of Propositions 1–4.

In what comes next, we consider the case where the
target moves slowly. It is our aim to show that the esti-
mation error ~xðtÞ converges to a neighborhood of zero.
Thus, the agents achieve the encircling objective within a
bound. First, we present the following assumption on the
motion of the target.

Assumption 3. The target trajectory is differentiable and
there exists a sufficiently small " such that

kx: ðtÞk < ": ð7Þ
Moreover, we assume �� " � !, where ! is a positive
constant.

The following results immediately follow.

Lemma 2. Under the two-stage control law described by (4)
and (5) and Assumption 3 there exists a �� � 0 such that
kx̂iðtÞ � xðtÞk � �� as t ! 1 for all i 2 f1; . . . ; ng.
Proof. The proof follows from [21, 22].

Lemma 3. Under the two-stage control law described by (4)
and (5) and Assumption 3, the agents converge to a Cðx̂ðtÞ; dÞ
while rotating around the target, where kx̂iðtÞ � xðtÞk � ��
as t ! 1. In addition they form a formation such that for
any i 2 f1; . . . ; ng, j�ijðtÞ � 2�

n j � b where j ¼ Nði; t; x̂iðtÞÞ
and b is a positive constant.

Proof. The proof is a direct consequence of Lemmas 1
and 2 and Lemma 9.2 of [23].

2.2. Collective distance-only circumnavigation

In this section, we again propose a two stage control law to
address Problem2. As before, thefirst stage of the control law
ensures that the agents move towards the target and start
rotating around it. The second stage forces the agents to
achieve the desired formation shape, i.e., a regular polygon.

Starting under the assumption that the target is sta-
tionary, we propose the following estimator from [20] to
estimate the position of the target at each agent i.

x̂
:
iðtÞ ¼ ��2�iðtÞð�iðtÞ �miðtÞ þ �>i ðtÞx̂iðtÞÞ; ð8Þ
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where

�iðtÞ ¼ z
:
1;iðtÞ ¼ ��3z1;iðtÞ þ

1
2
D2ðtÞ; ð9Þ

miðtÞ ¼ z
:
2;iðtÞ ¼ ��3z2;iðtÞ þ

1
2
p>
i ðtÞpiðtÞ; ð10Þ

�iðtÞ ¼ z
:
3;iðtÞ ¼ ��3z3;iðtÞ þ piðtÞ; ð11Þ

where �2 and �3 are positive constants, z1;ið0Þ and z2;ið0Þ
are arbitrary scalars, and z3;ið0Þ is an arbitrary vector.

The first stage of the control law for each agent i is given
by the control law

p
:
iðtÞ ¼ x̂

:
iðtÞ þ ðD̂ 2

i ðtÞ � d2Þ iðtÞ þ � � iðtÞ; ð12Þ
where D̂ðtÞ ¼ kx̂iðtÞ � piðtÞk,  iðtÞ ¼ x̂iðtÞ � piðtÞ and � iðtÞ
is perpedicular to  iðtÞ and is obtained by a �=2 clockwise
rotation of  iðtÞ. The agents switch to the second stage of
the control law when kDiðtÞ � dk � �. The second stage of
the control law for agent i is

p
:
iðtÞ ¼ x̂

:
iðtÞ þ ðD̂ 2

i ðtÞ � d2Þ iðtÞ þ ð�þ �ijðtÞÞ � iðtÞ; ð13Þ
where as before �ijðtÞ is the counterclockwise angle sub-
tended at x̂iðtÞ by i and its counterclockwise neighbor
Nði; t; x̂iÞ ¼ j. Similar to the case discussed in Sec. 2.1
where the agents could collect bearing measurements to the
target, similar to before, we have the following results.

Proposition 5. As t ! 1, under control laws (12)
and (13):

(i) The estimate of the position of the target by each agent i,
x̂iðtÞ, converges to the real target position, x exponen-
tially fast.

(ii) Each agent i converges to Cðx; dÞ and starts to rotate
around the target in a counterclockwise direction.

(iii) The graph Gc converges a directed cycle graph with n
vertices.

(iv) �ijðtÞ ! 2�
n exponentially fast, where j ¼ Nði; t; x̂ðtÞÞ.

(v) The agents controlled by the second stage control
law (13) are always in a counterclockwise star forma-
tion.

Lemma 4. Under the two-stage controller described by (12)
and (13), the agents form a regular polygon formation while
rotating around the target as t ! 1.

Proof. The proof is the consequence of Proposition 5.

As before, next, we consider the case where the target is
undergoing a motion that satisfies Assumption 3. We con-
clude this section by presenting the following results.

Lemma 5. Under the two-stage control law described
by (12) and (13) and Assumption 3 there exists a �� � 0
such that kx̂iðtÞ � xðtÞk � �� as t ! 1 for all i 2 f1; . . . ; ng.

Proof. The proof follows from [20].

Lemma 6. Under the two-stage control law described
by (12) and (13) and Assumption 3 the agents converge to
a Cðx̂ðtÞ; dÞ while rotating around the target, where kx̂iðtÞ �
xðtÞk � �� as t ! 1. In addition they form a formation such
that for any i 2 f1; . . . ; ng, j�ijðtÞ � 2�

n j � b where j ¼
Nði; t; x̂iðtÞÞ and b is a small positive constant.

Proof. The proof is a direct consequence of Lemmas 4
and 5 and Lemma 9.2 of [23].

Remark 2. The values of �� and b in Lemmas 3 and 6 have
an intricate relationship with the magnitude of � and the
rate of the convergence of (4)–(5) and (12)–(13),
respectively, when the target is stationary. While, spelling
out such relationships in detail is beyond the scope of this
paper, such problems can be addressed in the context of
nonvanishing perturbations of exponentially stable systems
[23]. Moreover, in general terms, smaller values of � result
in smaller �� and b.

2.3. The case where the radius of the circle is not
known to all agents

Now we consider the case where the value d is only known
to one of the agents, agent ‘. Furthermore, we consider that
the communication among the agents is modeled by a
connected graph GðV; EÞ where V, fign

i¼1 and the undi-
rected edge fi; jg 2 E if agents i and j share a communica-
tion link.

In this case, we replace d at the controller of each agent
i by

_diðtÞ ¼
X

fi; jg2E
ðdjðtÞ � diðtÞÞ; i 2 Vnf‘g;

d‘ðtÞ ¼ d;

ð14Þ

Note that (14) holds in both stages. Moreover, it should be
noted that (14) can be replaced by any other consensus
algorithm. We have the following lemmas for both cases
where the agents can collect bearing measurements or
distance measurements from the target.

Lemma 7. Under control laws (4), (5), where d is given
by (14), the agents form a regular polygon formation while
rotating around the target as t ! 1 exponentially fast.

Proof. It is known [24] that diðtÞ converges to d
exponentially fast under (14) for all i. Hence, there is a
time �t > 0 such that diðtÞ ¼ d þ qiðtÞ, where qiðtÞ � qið�tÞ is
an exponentially decaying term, for t � �t. Then it is easy to
check that D̂iðtÞ � d � qiðtÞ exponentially goes to zero.
Thus, the agents move to the circle exponentially fast. The
formation of the regular polygon formation is not affected
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by the introduction of diðtÞ so the result of Lemma 1 holds
unaltered.

Lemma 8. Under control laws (12), (13), where d is given
by (14), the agents form a regular polygon formation while
rotating around the target as t ! 1 exponentially fast.

Proof. The proof is very similar to that of Lemma 7.

However, it might not be desirable to have direct com-
munication among the agents as is required by (14). To
overcome this, we propose the following definition for _diðtÞ,
i 2 f1; . . . ; ng:

_diðtÞ ¼
X

fi; jg2E
ðkpjðtÞ � x̂iðtÞk � diðtÞÞ; i 2 Vnf‘g;

d‘ðtÞ ¼ d:

ð15Þ

The obvious advantage of (15) over (14) is that the values
can be calculated locally by each of the agents without the
need to communicate with other agents and similarly to
Lemma 7 we have the following.

Lemma 9. The following statements are true:

(1) Under control laws (4), (5), where d is given by (15), for
i 2 Vnf‘g, the agents form a regular polygon formation
while rotating around the target as t ! 1.

(2) Under control laws (12), (13), where d is given by (15),
for i 2 Vnf‘g, the agents form a regular polygon for-
mation while rotating around the target as t ! 1.

3. Collective Circumnavigation Where a Subset of
Agents Collect Measurements

In this section, we consider the case where only a subset of
the agents are capable of measuring either the bearing or
the distance to the target. We call these agents \leaders"
and let V‘ � f1; . . . ; ng be the set of these agents. Firstly, we
introduce the following definition.

Definition 5 (Circumcircle [25]). The circumcircle is a
triangle's circumscribed circle, i.e., the unique circle that
passes through each of the triangles three vertices. The
center of the circumcircle is called the circumcenter, and the
circle's radius is called the circumradius.

In addition, we have the following assumption.

Assumption 4. The following statements hold:

(1) There are exactly three leaders, i.e., jV‘j ¼ 3.
(2) Each agent i 2 VnV‘ can measure the relative positions

of all the leaders.

Moreover, we assume that the agents are controlled by
the two-stage control law described by (4) and (5) as before

(or (12) and (13), depending on their measurment capa-
bilities). However, we define x̂iðtÞ for i 2 f1; . . . ; ngnV‘ to
be the circumcenter of the circumcircle of the triangle
formed by the leaders at time t and denote it by o‘ðtÞ. We
have

o‘ðtÞ ¼
ðkqðtÞk2rðtÞ � krðtÞk2qðtÞÞ � ðqðtÞ � rðtÞÞ

2kqðtÞ � rðtÞk2 þ pkðtÞ;

ð16Þ

where rðtÞ ¼ pjðtÞ � pkðtÞ and qðtÞ ¼ plðtÞ � pkðtÞ
( j; k; l 2 V‘). Thus, x̂iðtÞ, o‘ðtÞ for i 2 f1; . . . ; ngnV‘.

It is easy to show the following.

Proposition 6. The circumcenter of the triangle formed by
the leaders calculated by agent i, o‘iðtÞ, at time t converges to
xðtÞ exponentially fast when kx: ðtÞk ¼ 0 and ko‘iðtÞ�
xðtÞk � �o, where �o is a positive scalar, when the target is
slowly drifting where kx: ðtÞk � ".

Proof. From Proposition 1 and [21, 22], we know that the
leaders start rotating in a counterclockwise direction
around the target exponentially fast when the target is
stationary. This is equivalent to their circumcircle converges
exponentially fast to Cðx; dÞ, hence, their circumcenter
converges to x. For the case where kx: ðtÞk � ", each leader l
rotates around the target on the circle Cðx̂lðtÞ; dÞ where
kx̂lðtÞ � xðtÞk � �� . Hence, a positive �o exists such that
ko‘iðtÞ � xðtÞk � �o, moreover, it can be shown that �o � �	��
for some positive scalar �	.

For the case where there are more than three leaders we
define o‘iðtÞ for i 2 VnV‘ to be the center of the smallest
enclosing circle of plðtÞ, for all l 2 V‘ as calculated by agent i.
For calculating this circle, the reader may refer to [26].

We conclude this section with the following lemma.

Lemma 10. Defining xiðtÞ, o‘ðtÞ for i 2 f1; . . . ; ngnV‘ the
agents form a regular polygon formation while rotating
around the target as t ! 1, where the target is stationary
and only a subset of the agents in V‘ can collect either
bearing measurements or the distance measurements to the
target.

Proof. The proof is the consequence of Lemmas 1, 4 and
Proposition 6.

4. Simulation Results

In this section, we show the performance of the algorithms
proposed in this paper. In the first scenario, we consider the
case where n ¼ 5. The agents trajectories are depicted in
Fig. 2 and the distances of each of the agents from the target
are presented in Fig. 3. In the second scenario, we consider
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the case where the target is undergoing a slow movement,
x
: ðtÞ ¼ 0:5½sinð0:05tÞ cosð0:05tÞ�>. The agents trajectories
are depicted in Fig. 4 and the distances of each of the agents
from the target are presented in Fig. 5. As shown earlier
in this case, the target estimate calculated by the agents

converge to the vicinity of the real position of the target and
they form a formation close to a regular polygon.

In the third scenario, we consider the case where the
target is stationary, n ¼ 7, and the desired distance from the
target is only known by one of the agents, however, other

Fig. 2. Agent trajectories with a stationary target and d is only
known to one of the agents. The circles correspond to the starting
position of the agents and the squares are the final position. The
star is the position of the target.

Fig. 3. Distances to the target when the target is stationary and d
is only known to one of the agents.

Fig. 4. Agent trajectories with a moving target and d is only
known to one of the agents. The circles correspond to the starting
position of the agents and the squares are the final position. The
star is the position of the target.

Fig. 5. Distances to the target when the target is moving and d is
only known to one of the agents.
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agents use (15) to estimate this value. The agents trajec-
tories are depicted in Fig. 6 and the distances of each of the
agents from the target are presented in Fig. 7. The con-
vergence of the agents to the desired setting is much slower
than the earlier case where the value was known to all the
agents. In the fourth scenario, we repeat the second sce-
nario with a difference that at time t ¼ 30, one of the agents

Fig. 6. Agent trajectories with a stationary target and d is only
known to one of the agents and other agents use local information
to estimate it. The circles correspond to the starting position of the
agents and the squares are the final position. The star is the po-
sition of the target.

Fig. 7. Distances to the target when the target is stationary and d
is only known to one of the agents and other agents use local
information to estimate it.

Fig. 9. Distances to the target when the target is stationary, d is
only known to one of the agents, and an agent fails at t ¼ 30.

Fig. 8. Agent trajectories with a stationary target and d is only
known to one of the agents. The circles correspond to the starting
position of the agents, the squares are the final position, and the
triangles are the positions of the agents when one of the agents
fails. The star is the position of the target.
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fails. The agents trajectories are depicted in Fig. 8 and the
distances of each of the agents from the target are pre-
sented in Fig. 9.

5. Experimental Results

This section presents experiments performed in an indoor
environment with JDrones ArduCopter quadrocopters (see
Fig. 10) at the Smart Mobility Lab of KTH Royal Institute of
Technology, Stockholm, Sweden. A motion capture system
from Qualisys was used to measure the position of the
quadrocopters and data was transmitted wirelessly to the
quadrocopters through Tmote Sky devices which uses the
IEEE 802.15.4 protocol. The main objective of the experi-
ments are to demonstrate the feasibility of the proposed
circumnavigation technique rather than demonstrating
achieving any performance measure.

Two test flights were performed where the control al-
gorithm corresponds to the case of Collective Bearing-only
Circumnavigation. The first test flight was performed with
one quadrocopter and a starting point far away from the
target. The result is presented in Fig. 11 and in http://
youtu.be/bnjhdICYvSU. It is assumed that the radius of the
desired circle around the target, d ¼ 1m and the angular
velocity, �, is 0:5 rad/s. At the beginning, the quadrocopter
clearly prioritizes to approach the target. When D � d, the
quadrocopter slows down and starts rotating around the
target. In the second scenario, two quadrocopters partici-
pated in the experiment. Their starting points were rela-
tively close to the target but also to each other. The aim of
this test was to show that when D � d and �12 is very
different from �21, then one quadrocopter decreases its

angular velocity while the other one increases it until
�12 � �21. The results are presented in Figs. 12 and 13, and
in http://youtu.be/w4WllxJh-Bg. In this scenario, the radius
of the desired circle around the target d is 1:5m, and � is
such that satisfies

ð�þ�ijÞ
�=2 ¼ ð0:2þ�ijÞ

�=2 .
The angular velocity was in this case scaled with 2=� in

order to have a smooth transition between the cases when
�12 is very different from �21, and when �12 � �21.
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Fig. 12. In the second test flight, the quadrocopters start close to
each other, approaches the target and start circulating around it
while maintaining the distance of 1.5m from the target and
achieving close to 180� separation.

Fig. 10. JDrones ArduCopter quadrocopters starting their collec-
tive circumnavigation with bearing measurements maneuver.
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Fig. 11. In the first test flight, the quadrocopter starts far away
from the target, approaches it and starts circulating around it
while maintaining the distance of 1.5m from the target.
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6. Conclusion and Future Work

This paper considers the problem of localization and cir-
cumnavigation of a slowly drifting target with unknown
speed by a group of autonomous agents while they form a
regular polygon at a known distance from the target. The
goal is achieved in a distributed way where each of the
agents coordinates its motion knowing its own position and
either the bearing angle of the target or the distance to the
target. As each of the agents move closer to the target, the
knowledge of the position of one of its neighbors will be
necessary to achieve the collective circumnavigation ob-
jective. First, we solve the problem for the case where the
target is stationary and propose a two-stage control law
that forces the agents to move on a circular trajectory
around the target and form a regular polygon formation
using either of the measurements considered (bearing or
distance). Then, we consider the case where the target is
undergoing a slow but possibly persistent movement. Later,
we consider the case where only one of the agents know the
desired distance from the target. We address this issue
through two different methods. The first method relies on
inter-agent communication for calculating the desired dis-
tance by each of the agents, and the second method calcu-
lates the desired distance without relying on inter-agent
communication, albeit with a slower rate. In the end, the
case in which only a subset of agents can measure either the
bearing or the distance to the target is considered. The
performance of the controllers proposed is both verified
analytically, through simulation results, and are imple-
mented on quadrocopter platforms.

A possible future research direction is to consider the
case where there are certain constraints on the motion of

the agents. For instance, there are turning radius con-
straints or velocity constraints. Moreover, one might be in-
terested in solving the problem considered in this paper
using other measurements.
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