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Abstract: A distributed control law that guarantees connectivity maintenance in a network of multiple mobile
agents is presented. The control law, which lets the agents perform formation manoeuvres, respects sensor
limitations by allowing each agent to only take into account agents within its sensing radius. In contrast to
previous approaches to the problem, the proposed control law does not attain infinite values whenever an
edge of the communication graph tends to be lost. This is achieved via the use of decentralised navigation
functions, which are bounded potential fields. The navigation functions are defined to take into account the
connectivity maintenance objective. The authors first treat the case of connectivity maintenance for a static
communication graph and then extend the result to the case of dynamic graphs. The results are illustrated on
a formation control problem.

1 Introduction
Recent work on multi-agent cooperative control has paid
much attention to consensus and formation control
problems. The consensus problem is on the convergence of
agents to a common point through a distributed control law
supported by a communication network [1–3]. In formation
control, agents aim to converge to a specified pattern. The
desired formation can be either static [4] or moving [5]. A
common assumption in these distributed control problems is
the connectedness of the underlying network, that is, that
there exists a path connecting any pair of nodes in the
network. Although this seems a valid assumption for static
wired communication networks, it is not realistic in the case
of mobile networks, where communication between nodes
usually is distance dependent. Motivated by this fact, a
number of recent papers [6–11] consider the distributed
connectivity maintenance problem. A common approach in
these references is the use of ‘unbounded’ potential fields
that force agents that constitute a distance-based
communication link, to remain within a certain distance for
all time. In particular, allowing the potential force between
such pairs of agents to grow unbounded whenever agents
tend to move away from the communication threshold
distance provides a guarantee for edge maintenance and thus

connectivity. In practical situations, however, the use of
unbounded actuation is impossible. The analysis of previous
algorithms does not guarantee convergence and connectivity
maintenance whenever upper bounds on the actuation are
imposed; thus, enforcing the control input to attain
arbitrarily large values without guaranteed upper bounds
when links tend to be lost is a necessity for these algorithms.
Using potential fields with guaranteed bounds is hence
desirable.

Motivated by the above observation, we present in this
paper the first (to the best of our knowledge) control
strategy that handles the distributed connectivity
maintenance problem using ‘bounded’ inputs. In particular,
we make use of a bounded potential field that resembles
the navigation function potential fields introduced in [12],
which was later extended to a decentralised framework in
[13, 14]. The proposed bounded control law (i) maintains
the edges that are formed based on the initial positions
of the agents and (ii) drives the agents to a common point
in the state space. An application of the proposed
framework to a formation stabilisation problem is also
presented. While the considered control problem involves
the single integrator rendezvous and formation stabilisation
objectives, the proposed methodology can be applied to
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non-holonomic and double integrator systems as well. For the
first case, one can replace the unbounded inter-agent potential
used in [7] for connectivity maintenance of multiple non-
holonomic agents with the bounded potential defined in this
paper. For the case of double integrator agents, one can use
[15] and replace the inter-agent potential of that paper with
the potential function used here. Decentralised control to
preserve connectivity in swarm aggregation with unbounded
inputs was recently studied by the first author [10]. In that
work a more general problem was considered compared to
the current paper. On the other hand, for the particular
problem of distributed agreement we are able in the current
paper to construct a bounded control law that solves the
problem. The existence of such an implementable control
law is obviously an important achievement beyond the existing
results in the literature. Moreover, the analysis when dealing
with bounded inputs is far from straightforward, as seen in
the different analysis tools used in the current paper with
respect to connectivity maintenance unbounded control laws.

The rest of the paper is organised as follows: in Section 2
the problem is presented. Section 3 begins with the
matrix analysis tools used in the paper and presents the
control law based on the decentralised navigation function.
This function helps us in achieving the bounded input
connectivity maintenance objective. The case of dynamic
edge addition is treated in Section 4, whereas the proposed
framework is applied to a formation control problem in
Section 5. Computer simulations are included in Section 6
and Section 7 summarises the results of the paper.

2 Problem formulation
We consider N . 1 integrator point agents in the plane,
described by kinematics of the form

q̇i = ui (1)

where qi [ R2 denotes the position and ui [ R2 the velocity
(control input) for each agent i [ N = {1, . . . , N }.

Each agent has limited sensing capabilities encoded by a
sensing disc with radius d. Hence each agent is aware only
of the positions of agents within its sensing radius. In order
to encode the limited communication between the agents,
graph theoretic notions are used, for example, [16]. We
assume that each agent is assigned with a subset Ni , N
of the rest of the team, called agent i ’s ‘communication set’.
Inter-agent communication is encoded in terms of a
‘communication graph’:

Definition 1: The communication graph G = {V , E} is an
undirected graph consisting of a set of vertices V = N and a
set of edges, E = {(i, j) [ N ×N|i [ Nj}.

Each agent is supposed to know the relative position of all
agents it is connected to through G. Our objective is the

construction of bounded control laws that drive the agents
to an agreement point while maintaining the connectivity
properties induced by the inter-agent relative initial
positions. The same problem has been treated for
integrator agents [6, 17] and for non-holonomic agents [7];
however, the control law in both these papers obtained
unbounded values whenever pairs of agents that formed an
edge tended to leave the sensing zone of one another. Real
mobile agents, however, have limited actuator capabilities
and hence boundedness of the control inputs is an issue
that should not be neglected. In this paper, we propose a
framework based on the navigation function approach of
[12], which was further explored in [13, 18, 19]. Note that
the control law of [12] is by default bounded, and therefore
respects the required actuator limitations.

In summary, the problem treated in the sequel can be
stated as follows: ‘derive bounded decentralised control laws
that respect the limited sensing capabilities of each agent,
so that all initial edges are maintained, in the sense that all
pairs of agents initially forming an edge remain within
distance d from one another, and the agents converge to an
agreement point’.

3 Control design for bounded
connectivity preserving
3.1 Elements from matrix analysis
In this subsection we review some tools from matrix analysis
and algebraic graph theory that we shall use in the stability
analysis of the next sections. The following can be found in
standard textbooks on algebraic graph theory [16] and
matrix analysis [20].

For a graph G with N vertices the ‘adjacency matrix’
A = A(G) = (aij) is the N × N matrix given by aij = 1, if
(i, j) [ E, and aij = 0, otherwise. If there is an edge (i,
j) [ E, then i, j are called adjacent. When there is an
orientation defined on each edge (i, j) [ E, the graph is
called directed otherwise it is called undirected. A path of
length r from a vertex i to a vertex j is a sequence of r+ 1
distinct vertices starting with i and ending with j such that
consecutive vertices are adjacent and respects the
orientation of the edges. If there is a path between any two
vertices of the graph G, then G is called ‘strongly connected’
in the case of directed graph, and ‘connected’ in the case of
undirected graphs. A directed graph has a ‘spanning tree’ if
there exists at least one vertex to which there exists a path
from all other vertices. The graph G = (V , E)
corresponding to a real N × N matrix M is a graph with N
vertices indexed by 1, . . . , N such that there is an edge
between vertices i, j [ V if and only if Mij = 0, that is,
(i, j) [ E ⇔ Mij = 0.

An N × N real matrix with non-positive off-diagonal
elements and zero row sums is called a Metzler matrix. All
eigenvalues of a symmetric Metzler matrix are non-negative
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and zero is a trivial eigenvalue [20]. The multiplicity of the
zero eigenvalue of a symmetric Metzler matrix is one if
and only if the corresponding undirected graph is
connected. The corresponding eigenvector is the vector
of ones, 1

#
. These results were extended to asymmetric

Metzler matrices in [21]. In this paper, we use the
following corollary of [21] Theorem 1:

Corollary 1: Assume that the N × N time-varying matrix
A(t) is Metzler for all t ≥ 0 and that its elements are
piecewise continuous and bounded. Assume also that the
time-varying graph corresponding to A(t) is strongly
connected for all t ≥ 0. Then the system ẋ(t) = −A(t)x(t)
converges to consensus, that is, to an equilibrium with all
elements of the vector x equal.

In fact, Corollary 1 holds in the weaker case when A(t)
corresponds to a graph containing a spanning tree
sufficiently often. We use the strong connectedness
assumption since this is sufficient for the main result of
this paper.

3.2 Control design and convergence
analysis
Each agent is equipped with a decentralised navigation
function-like potential field of the form wi:R

2N # [0, 1]

wi =
gi

(gki + Gi)
1/k (2)

where k . 0 is a positive scalar exponent and the maps gi,Gi
are discussed in the sequel. It is clear that wi is bounded,
taking values in [0, 1].

Each agent’s communication set Ni is defined as the set of
agents that are initially located within the sensing zone of
agent i

Ni = { j [ N , j = i:‖qi(0)− qj(0)‖ , d } (3)

This definition ofNi justifies the fact that the communication
graph, as defined in Definition 1, is undirected, since (3)
implies that i [ Nj ⇔ j [ Ni for all i, j [ N . By showing
that for all pairs of agents (i, j) s.t. ‖qi(0)− qj(0)‖ , d the
proposed controller guarantees that ‖qi(t)− qj(t)‖ , d for
all t . 0, the edges are guaranteed to remain invariant (i.e.
agents i, j remain within distance d from one another) and
hence the communication graph itself, remains invariant
throughout the closed-loop system evolution. This is shown
explicitly in the sequel.

In this section Ni is hence a static set. The function gi is
defined as

gi(q) W
∑

j[Ni

1
2
‖qi − qj‖

2

where q = [qT1 , . . . , q
T
N ]

T, and so it is minimised whenever
the agreement objective with respect to agent i has been
fulfilled. The function Gi is responsible for the
maintenance of the initially formed edges and is defined as

Gi(q) W
∏

j[Ni

bij(q) W
∏

j[Ni

1
2
(d2 − ‖qi − qj‖

2)

The control law of each agent i is now defined as

ui = −Ki
∂wi

∂qi
(4)

where Ki . 0 is a positive gain.

Using the notation ∇i(·) W ∂/∂qi(·) for brevity, we can
compute

∂wi

∂qi

= (gki +Gi)
1/k∇igi−(gi/k)(g

k
i +Gi)

1/k−1(kgk−1
i ∇igi+∇iGi)

(gki +Gi)
2/k

so that

∂wi

∂qi
= (gki + Gi)

−1/k−1 Gi∇igi −
gi
k
∇iGi

( )

Note that since gi and Gi are never zero simultaneously, the
control law is not infinite whenever two agents tend to the
distance d from one another. Thus, unlike previous results
on closed-loop connectivity maintenance, the design of this
paper allows for boundedness of the control laws each time
a link between two agents tends to be broken. This is of
course due to the fact that the potential field wi is bounded
despite that Gi # 0.

The first result of the paper is that this control law forces
agents that are initially within distance d from each other
to remain within d for all time. Hence, the communication
sets Ni are static. The result is stated as follows:

Lemma 1: The set Q W {q [ R2N :Gi(q) . 0, i [ N } is
invariant for the trajectories of the closed-loop system given
by (1) and (4).

Proof: Consider i [ N and a point q0 such that Gi(q0) = 0.
Then

∂wi

∂qi
(q0) = (gki (q0))

−1/k−1 − gi(q0)
k

∇iGi(q0)
( )

Thepartial derivative ofGi with respect to qi canbe computed by

∇iGi =
∑

j[Ni

!bij∇ibij = −
∑

j[Ni

!bij(qi − qj)
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where !bij W
∏

l[Ni
l=j

bil . Since Gi(q0) = 0, then bij(q0) = 0 for

at least one j [ Ni. If there exists j [ Ni for which
bij(q0) = 0 and bik(q0) = 0, for all k [ Ni, k = j, then
!bij(q0) . 0. Hence, in this case ∂wi/∂qi is non-singular at
q0. Since wi is also smooth, the result in this case follows
from the Implicit Function Theorem. The negated gradient
motion −∂wi/∂qi is normal to the surface Gi = 0 and
hence points towards the set Q. When there exists at least
two agents k, j [ Ni, k = j for which bij(q0) = bik(q0) = 0,

then (∂wi/∂qi)(q0) = 0. But wi :R
2N # [0, 1] and

wi(q0) = gi(q0)/(g
k
i (q0)+ Gi(q0))

1/k = 1, which means that
at q0,wi achieves its maximum. However, since the set of
initial conditions is open, and no open set of initial
conditions can be attracted to the maxima of wi along the
negative gradient motion −∂wi/∂qi [18], we conclude that Q
is invariant. A

Note that the function gi can encode any cooperative task
apart from the agreement case of this section. This is for
example the case of the next section, where formation
convergence instead of agreement is encoded by the goal
function. Thus Lemma 1 holds irrespective of gi .

We hence showed that whenever the system starts within
the set Q it remains within this set for all time. Since Gi
tends to zero whenever an initially formed edge is bound to
break, that is, whenever an agent j [ Ni tends to leave the
sensing radius of i, the invariance of Q implies that all
agents initially located within distance d from i, remain
within this distance for all time.

We note that the proposed control law guarantees
invariance of Q, for a large class of functions Gi . In the
navigation function framework of [12–14, 20] the set Gi
was defined as the collision free set for robot i, which
guaranteed collision avoidance. Hence the statement and
proof of Lemma 1 is similar to the corresponding results of
those papers, with the difference being that Gi in the
current paper establishes edge maintenance.

What is left to show is that the control law (4) leads to
agreement in the case of an initially connected
communication graph.This is proven by the following theorem:

Theorem 1: Consider the multi-agent control system (1)
and (4). Suppose that the initially formed communication
graph under ruling (3) is connected and that Gi(q(0)) . 0
for all i [ N . Then the agents reach a common point, that
is, qi(t) # q∗ for all i and some q∗ [ R2.

Proof: The partial derivative with respect to qi of the
functions gi is

∇igi =
∑

j[Ni

(qi − qj)

From the proof of Lemma 1 we have
∇iGi = −

∑
j[Ni

!bij(qi − qj), where !bij W
∏

l[Ni
l=j

bil . We
then have

Gi∇igi −
gi
k
∇iGi = Gi

∑

j[Ni

(qi − qj)+
gi
k

∑

j[Ni

!bij(qi − qj)

=
∑

j[Ni

!bij bij +
gi
k

( )
(qi − qj)

=
∑

j[Ni

pij(qi − qj)

where pij W !bij(bij + (gi/k)). Note that while in general
pij = pji, Lemma 1 guarantees that pij . 0 and pji . 0,
for all j [ Ni .

The closed-loop dynamics of each agent are given by

q̇i = −Ki(g
k
i + Gi)

−1/k−1
∑

j[Ni

pij(qi − qj)

= −
∑

j[Ni

mipij(qi − qj)

with mi W Ki(g
k
i + Gi)

−1/k−1 . 0.

The closed-loop system can now be written in stack vector
form as

q̇ = −(P(q)⊗ I2)q (5)

where the matrix P (q) is defined as

Pij(q) =

∑
j[Ni

mi(q)pij(q), i = j

−mi(q)pij(q), j [ Ni
0, otherwise






and I2 is the two-dimensional unit matrix. The matrix P is a
Metzler matrix with zero row sums. The stability properties
of (5) have been studied in [21]: since Pij , 0 implies
Pji , 0 for all j [ Ni, the directed graph corresponding to
P is strongly connected if and only if the initially formed
undirected communication graph is connected. In essence, if
the agents start from the set Q, the matrix P trivially satisfies
the conditions of Corollary 1 (and thus of [21] Theorem 1)
provided that the initially formed communication graph is
connected. Hence if the graph is initially connected, the
agents reach a common value in the state space. A

Theorem 1 guarantees that all initially formed edges are
maintained. In essence, the communication graph that is
formed based on the initial relative positions of the agents
is invariant and the proposed bounded control law drives
the multi-agent team to agreement.

The control law can be further elaborated to take into
account possible disturbances and parameter uncertainties.
This is due to the fact that it is a feedback control law.
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For example, when there is uncertainty in the computation of
the sensing radius d, we can use a smaller value d ′ , d in the
control design of Section 3.2. In some cases, it is desirable to
take into account possible additions of edges, each time a new
agent enters the sensing zone of another. This is the topic of
the next section.

4 Dynamic edge addition
The previous section involved the case where the
communication graph considered was static, that is, no new
edges were added whenever an agent, not initially located
within the sensing zone of another agent, entered its
sensing zone. In practical situations, however, it is more
interesting to consider the creation of new edges whenever
an agent enters the sensing zone of another. This naturally
leads to a faster convergence rate. Allowing each agent to
consider every agent as a neighbour once it enters the
neighbour set leads to an increased communication cost, in
the sense that each agent will have to keep track of more
functions of the form bij . Hence there is a trade-off
between faster convergence rate and communication cost.
In this section, we consider the dynamic graph formulation
for the same agent model as previously. We encode the
trade-off discussed previously by allowing each agent to
have a maximum number of neighbours M ≤ N. Each
agent is allowed to include up to a certain number of
agents, M, in its control law. The number M can be
decided off-line according to an optimisation procedure
that takes into account this trade-off. The main result of
this section shows that in fact each agent will have exactly
M neighbours at steady state for the proposed distributed
control law.

In this section, the neighbouring set of each agent i is
initially defined as the set of agents that belong to its
sensing zone at the initial time t ¼ 0

Ni(0) = { j [ N , j = i:‖qi(0)− qj(0)‖ , d } (6)

We assume that a new communication link for agent i
is created each time a new agent enters a subset of the
sensing zone of i. In particular, we define the set

N ∗
i (t) = { j [ N , j = i:(j ! Ni(t

−))
^ (‖qi(t)− qj(t)‖ , d − 1)}

where Ni(t
−) denotes the left-hand limit of N(t) at time t

and 1 is a small positive scalar. It is obvious that
N ∗

i (t) # Ni(t).

Assumption 1: The parameter M is chosen so that there
exists a realisation of the graph with N vertices where all
the vertices have exactly M adjacent vertices.

This assumption is a viability condition on the edge
addition ruling that will now be defined. In particular, the
communication set of each agent i is updated according to

the following rule

Ni(t) =
Ni(t

−)<N ∗
i (t) if |Ni(t

−)| , M
Ni(t

−) otherwise

{
(7)

The function Gi is defined as earlier

Gi =
∏

j[Ni (t)

1
2
(d2 − ‖qi − qj‖

2)

as is the control law of each agent

ui = −
∑

j[Ni(t)

mipij(qi − qj) (8)

which is updated whenever a new agent enters the
neighbouring set Ni of agent i.

It is easily seen thatwhenever a newedge is created the function
Gi remains strictly positive, so the edge maintenance result of
Lemma 1 still holds and hence whenever two agents form a
new link, that is, are at a distance less than d2 1 for the first
time, they will remain within distance d. Thus, the definition of
dynamic edge addition respects the limited sensing capabilities
of all agents. Thus, once a new edge is created it is never lost.

In the degenerate case where two or more agents enter the
set N ∗

i (t) simultaneously, that is, at exactly the same time
instant t, the set Ni(t) can result to have more than M
agents. In order to exclude this degenerate case, we make
the following assumption:

Assumption 2: For all i [ N , the set of initial conditions for
which there exists j, k ! Ni(0), j, k = i, and t . 0, such that

( j, k ! Ni(0)) ^ (‖qi(t)− qj(t)‖ , d − 1)

^ (‖qi(t)− qk(t)‖ , d − 1)

has measure zero.

Assumption 2 can be relaxed by incorporating the agents
with a selection mechanism that chooses which links to
add when two or more agents enter the set N ∗

i (t)
simultaneously. To study the consequences of such a
selection mechanism is beyond the scope of this paper.

We are now ready to state the main result of this section:

Theorem 2: Consider the multi-agent control system (1)
and (8). Suppose that the initially formed communication
graph under ruling (6) is connected and that Gi(q(0)) . 0
for all i [ N . Assume moreover that Ni(0) ≤ M for all
i [ N and that Assumptions 1 and 2 hold. Then, for
almost all initial conditions, the agents reach a common
point, that is, qi(t) # q∗ for all i and some q∗ [ R2.
Moreover, limt#1 |Ni(t)| = M , ∀i [ N , that is, all agents
have exactly M neighbours at steady state.

1334 IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1330–1338
& The Institution of Engineering and Technology 2010 doi: 10.1049/iet-cta.2009.0229

www.ietdl.org



Proof: The proof follows the same arguments as the
corresponding one in [6]. If no new edges are added, then
Theorem 1 holds, that is, all agents converge to the same
point in the workspace. However, this means that all agents
eventually come to a distance d2 1 from one another. It
is then evident that all agents attain the maximum number
of neighbours, M, allowed by the edge addition ruling (7),
while converging to a common point in the state space. A

This theorem guarantees that connectedness is maintained
while each agent may add new neighbours until the number
of neighbours of each agent is exactly M. The result can
be slightly modified letting the agents have different
parameters M. Note that the control law (8) satisfies the
actuator boundedness requirement.

Some further remarks regarding the parameter M are in
order. Note first that the case when Ni(0) . M for some i
is excluded from the statement of Theorem 2. In order to
incorporate this case, we can chose M to be equal to the
maximum number of initial neighbours an agent has, that
is, M = maxi[N |Ni(0)|. Note also that the initial graph
should always be connected, as stated in Theorem 2, for
the theorem to hold. The case of having a fixed M and
choosing the initial neighbours in order to render the initial
graph connected is beyond the scope of the current paper
whose focus is on the design and stability analysis of the
bounded connectivity maintenance control laws. How to
set M and choose initial neighbours in general can be seen
as an open problem of multi-agent control. Moreover, as
already mentioned, the choice of M affects the
communication cost and convergence speed trade-off. The
case M ¼ N is the extreme that obviously maximises the
communication cost. On the other hand, the initial graph
being a spanning tree is the other extreme case, which can
take place if we modify the result in order to allow the
agents to have different parameters M, as discussed above.
Such trees may be constructed off-line in a distributed way
according to [22]. We can then use the static graph
formulation of the previous section in order to maintain the
tree structure during convergence to agreement. In general,
the choice of M can be formulated as an optimisation
problem that takes into account the trade-off discussed
above and the initial positions. The above issues are beyond
the scope of the current paper, whose focus is on the
design of bounded control laws for connectivity maintenance.

5 Connectivity preserving
formation control
In this section we revisit the static graph formulation of
Section 3 and show how this can be applied to a formation
stabilisation problem. The formation stabilisation is such
that each agent i converges to a relative position cij with
respect to each of its neighbours j [ Ni. Thus, a vector
cij [ R2 is associated to each edge (i, j) [ E of the
communication graph G = (V , E), in order to specify the

desired inter-agent relative positions in the final formation.
The desired formation is called ‘feasible’ if it belongs
to the set F W {q [ W |qi − qj = cij , ∀(i, j) [ E} of all
possible desired formations and this set is non-empty. Only
pairs of agents i, j that are initially within the sensing
distance d are assigned a desired relative formation vector
cij . In order not to violate this communication ruling, the
requirement

‖cij‖ , d , ∀(i, j) [ E (9)

is imposed on all edges of the communication graph.

The formation control law for each agent i is given by

ui = −Ki
∂wf

i

∂qi
(10)

where the connectivity preserving navigation function is

wf
i (q) W

g f
i (q)

((g f
i (q))

k + Gf
i (q))

1/k (11)

where

g f
i (q) W

∑

j[Ni

(‖qi − qj − cij‖)
2

and

G f
i (q) W

∏

j[Ni

b f
ij(q) W

∏

j[Ni

1
2
((d − ‖cij‖)

2 − ‖qi − qj − cij‖
2)

Similarly to the analysis of the static graph case, the
formation control law can be calculated as

ui = −
∑

j[Ni

m f
i p

f
ij(qi − qj − cij) (12)

where

m f
i W Ki((g

f
i )

k + G f
i )

−1/k−1

and

p f
ij W !b

f
ij bf

ij +
g f
i

k

( )

with !b
f
ij W

∏
l[Ni
l=j

b f
il . Lemma 1 has the following counterpart

in the formation control case:

Lemma 2: The set Qf W {q [ R2N :Gf
i (q) . 0, i [ N } is

invariant for the trajectories of the closed-loop system given
by (1) and (10).

Proof: See proof of Lemma 1. A

IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1330–1338 1335
doi: 10.1049/iet-cta.2009.0229 & The Institution of Engineering and Technology 2010

www.ietdl.org



We hence conclude that the set Qf is positively invariant
for all agents i [ N . Thus, for each pair of agents that
form an edge we have (d − ‖cij‖)

2 − ‖qi − qj − cij‖
2 . 0.

By virtue of (9) we have ‖cij‖ , d , equation
(d − ‖cij‖)

2 − ‖qi − qj − cij‖
2 . 0 does not violate the

connectivity preserving ruling ‖qi − qj‖ , d , since

(d − ‖cij‖)
2 − ‖qi − qj − cij‖

2 . 0

⇒
‖cij‖,d

‖qi − qj − cij‖ , d − ‖cij‖

⇒ ‖ |qi − qj‖ − ‖cij‖| , d − ‖cij‖ ⇒ ‖qi − qj‖ , d

for all (i, j) [ E.

Assuming that the desired formation is feasible, we
can choose a random global coordinate frame and denote
by ci the configuration of agent i in a desired formation
configuration with respect to this global coordinate frame.
It is then obvious that cij = ci − cj for all (i, j) [ E. Define
q̃i W qi − ci for all i [ N . Then, Gf

i , g
f
i can be written as

functions of q̃ variables. Moreover, since ˙̃qi = q̇i =
ui = −

∑
j[Ni

mf
ip

f
ij(q̃i − q̃j), the closed-loop system in the

q̃ space is given by

˙̃q = −(P f (q̃)⊗ I2)q̃ (13)

where q̃ = [q̃T1 , . . . , q̃
T
N ]

T, and the matrix P f is defined in
the exact similar way as matrix P as follows

P f
ij =

∑
j[Ni

mf
ip

f
ij , i = j

−mf
ip

f
ij , j [ Ni

0, j ! Ni






The closed-loop system (13) behaves in the q̃ space as the
system (5) behaves in the q space, in the sense that
Theorem 1 holds in the q̃ space for the system (13). Thus,
(13) reaches a configuration where the elements of the
stack vector q̃ are equal, that is, limt#1 q̃i(t) =
limt#1 q̃j(t) = q̃∗ for all i, j [ N . Thus, qi − qj = q̃i− q̃j +
ci − cj = q̃∗ − q̃∗ + cij so that qi − qj = cij, ∀(i, j) [ E. We
conclude that the agents converge to the desired relative
configuration. The above observations are summarised in
the following theorem:

Figure 1 Connectivity preserving state agreement with
bounded inputs control law (4) and initial condition rule (3)

Figure 2 Velocity diagrams
The first two graphs show the plots of the coefficients of the velocities (control inputs) of agents 1 and 2 in the x, y directions whereas the
right plot shows the evolution of the velocity norms of the agents 1 and 2 in time
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Theorem 3: Consider the multi-agent system (1) and (10).
Suppose that the initially formed communication graph
under ruling (3) is connected. Further assume that (9)
holds and that the desired formation is feasible. Then the
initially formed edges are maintained, that is, pairs of
agents initially within a distance d from one another remain
within this distance for all time, and the multi-agent team
reaches the desired formation.

6 Examples
To support the results of the paper, computer simulations are
provided in this section.

6.1 Example 1
In the first simulation, six agents evolve under the control (4)
and the rule (3). The initially formed graph is connected and
remains invariant by virtue of Lemma 1. In Fig. 1, the agents’
initial positions are marked with a cross. In this example,

d ¼ 0.36. Note that although agents 1 and 2 are initially
very close to losing their link due to the existence of the
two subgroups on their left- and right-side, respectively,
the controller forces them to maintain it. The network
stays connected and agents converge to an agreement point
in accordance with Theorem 1. The boundedness of the
inputs of agents 1 and 2 that tend to break their link is
depicted in the velocity diagrams of Fig. 2. The first two
graphs show the plots of the coefficients of the velocities
(control inputs) of agents 1 and 2 in the x, y directions
whereas the right plot shows the evolution of their velocity
norms.

6.2 Example 2
The next simulation of Fig. 3 presents a formation control
example. The seven agents navigate under the control law
(12). The communication graph, which is formed based on
the initial condition ruling (3), is in fact a line graph. The
sensing radius is given by d ¼ 0.025 while formation
objective is convergence to a straight line, where each agent
will be at a distance equal to ‖cij‖ = 0.002 , d from each
of its neighbours. In the left plot of Fig. 3, the crosses
represent the initial positions of the agents and their final
locations are noted by a black circle. Moreover, the
trajectory of each agent is the line that connects its initial
and final configuration. As witnessed in the plot, the
agents eventually reach the desired line formation. The
right plot Fig. 3 verifies that the interagent distances do in
fact converge to the desired distance ‖cij‖ = 0.002 , d .
The figure shows the plot of the inter-agent distances of
three pairs of agents that form an edge in the initially
formed communication graph. All distances converge to
0.002, as shown in the figure.

7 Conclusions
A distributed control law that guarantees connectivity
maintenance in a network of multiple mobile agents was
presented. The control law respects the limited sensing
capabilities of the agents by allowing each agent to take
into account only agents within its sensing radius in the
controller implementation. In contrast to previous
approaches on the problem, the proposed control law does
not attain infinite values whenever an edge tends to be lost,
and is therefore a bounded distributed control law. This is
achieved via the use of decentralised navigation functions,
which are potential fields with guaranteed boundedness and
are redefined in this paper in order to take into account the
connectivity maintenance objective. We first treated the
case of connectivity maintenance in a static initial position-
based communication graph and extended the results to the
case of dynamic edge addition. The results were then
applied to a formation control problem.

Future work includes extending the results to other
primary control objectives as well as taking into account
probabilistic models in the inter-agent communication.

Figure 3 In the top plot, seven agents converge to a line
formation under the control (12)
The connectivity of the communication graph formed under the
initial condition ruling (3) is preserved. The bottom plot shows
the distances of three pairs of agents that form an edge in the
initially formed communication graph. All distances converge to
the expected value
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