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Abstract: We present an algorithm for stabilizing a hexagonal lattice formation of
autonomous robotic agents. The algorithm is decentralized and each agent only needs
to detect the relative positions of its neighbors. By partitioning the plane into Voronoi
regions we can guarantee collision safety, even when the algorithm is used to produce
waypoints for a non-holonomic agent to follow. In each iteration every agent moves to
the centroid of the vertices of its Voronoi region, which yields formation cohesion. We
define asymptotic formation stability that is independent of rotation or translation of the
whole formation and prove local asymptotic stability. Finally we present simulations that
confirm the stability analysis and illustrate the use of the algorithm with car-like robots.
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1. INTRODUCTION

Recent advances in fields such as microcontrollers,
integrated radio circuits, ad-hoc networking protocols
and sensors have made it feasible to manufacture small
and cheap robots with many of the capabilities needed
for autonomous operation. By using groups of such
simple robots to perform tasks, several advantages
can be gained. Robustness against vehicle failure is
increased, the robots can help each other in rough
terrain (Trianni et al., 2005) and communications can
be facilitated by relaying (Nguyen et al., 2004). By
moving in formation, the robots can form synthetic
apertures for deep-space exploration (Scharf et al.,
2004) or sweep for mines (Healey, 2001).

Due to these advantages, the field of multi-agent
formation control has been studied extensively. One
approach is using artificial potentials (Leonard and
Fiorelli, 2001), which yields decentralized control
laws and provable formation convergence. Reynolds,
(Reynolds, 1987), pioneered the branch that uses be-

havioral control, inspired by biological flocks and
swarms. Others suggest considering the whole group
as a virtual structure that can be controlled as a unit.
The prescribed trajectory of each member is then com-
municated to local controllers that follow the trajecto-
ries (Beard er al., 2001). As a final example, some use
leader-follower architectures where one (possibly vir-
tual) agent leads the whole group (Desai et al., 1998)
or the agents follow each other in some prescribed
order (Liu et al., 2003). When analyzing flocking
methods, it is common to visualize the information
interchange between agents as a (possibly directed)
graph. Important properties of the resulting collective
motions can then be derived by algebraic graph theory
(Tanner et al., To appear).

The contribution of this paper is a new algorithm using
Voronoi regions for collision safety and formation
cohesion. This gives an advantage when controlling
non-holonomic platforms. As opposed to some of the
above approaches, our algorithm not only computes
a reference trajectory, but also an associated region



in which the agent can safely maneuver. This lends
itself well to hierarchical architectures where a higher-
level controller, assuming holonomic agents, produces
waypoints for a lower-lever controller that is adapted
to the actual platform dynamics. The algorithm is
decentralized and scales well with group size.

Our approach is inspired by the work by Cortés et al.
on optimally placing sensor networks using Voronoi
regions (Cortés et al., 2004). In earlier work (Lindhé
et al., 2005), we have described another algorithm
that uses Voronoi regions, but with a computationally
more demanding method that was also more difficult
to analyze from a stability point of view.

This paper is organized as follows: In Section 2, we
describe our agent model and state the objectives that
we want to fulfill. In Section 3 we detail our proposed
algorithm before studying convergence and safety in
Section 4. The stability is analyzed in a simplified
setting, but we simulate the more general situation in
Section 5. We also present simulations with a more
realistic car-like agent model. Finally we conclude the
paper in Section 6.

2. PROBLEM DEFINITION

In this section we define the agent dynamics, state the
objectives that we want to fulfill and give a formal def-
inition of asymptotic formation stability. We consider
a group of K autonomous agents, k =0,1,.... K —1,
positioned at P = {py}. Throughout this paper, we
will use boldface letters for vectors. The agents are
equipped with a means of sensing the relative position
of the other agents and obey the following simple
dynamics in R?:

pi(?+1) = pi(t) +ur(2)

The problem we consider is that of finding a control
law uy : Ny — U that maps the positions of the neigh-
bors N, of each agent & to a control output. The set of
neighbors will be formally defined below. When each
agent applies the control law, we want the resulting
global closed-loop system to fulfill the following ob-
jectives:

e The agents should never collide with each other.

e The formation in the shape of a hexagonal lattice
should be asymptotically stable.

e The algorithm should be decentralized, and thus
suitable for implementation with access only to
local information.

e The net movement of the group should be exter-
nally controllable, in order to move the formation
around obstacles and choose a goal.

Before defining the asymptotic formation stability, we
need the concept of Voronoi regions.
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Fig. 1. Configurations a and b are hexagonal lattice
formations, while in formation c, the top agent
has only 2 neighbors, which is not allowed.

Definition 1. (Voronoi region and vertex). Let
Z={z1,...,2,} be a set of points in R2, The Voronoi
region Ri(Z) C R? consists of all points that are closer
to z; than any other point in Z:

Re(Z)={x:|x—z| <|x—z|Vi#£k}. (1)

The line segments

C(Z)={x: Ji#k:|x—z|=
X—z| <|x—z;[Vj#ik} @

constitute the boundary of Ry(Z), i.e. IR(Z) = |J; L.
The set of Voronoi vertices Vi(Z) for z; are the points

V(2) = 6.(2) (" 4(2). 3)
We must also define the neighbor set of an agent:

Definition 2. (Neighbor set). The set of neighbors, Ny,
to agent k consists of all agents that share a Voronoi
vertex with agent k. The set of close neighbors, C;, C
Ny, to agent k consists of all agents that share two or
more vertices with agent k.

Definition 3. (Hexagonal lattice formation). The set H
of hexagonal lattice formations consists of all agent
configurations P such that each agent has exactly 3, 4
or 6 neighbors, all at the inter-agent distance d.

Examples of configurations that do and do not fulfill
the definition are given in Figure 1. When considering
stability, we use the state vector

Pox

Po Poy
x=|:|=|:|er¥X (4)

Po Pox

Py

The neighborhood of the state x can be defined as

Be(x) = {y 2 \/ Com —ym )+ (st —ymi1)? <
Vm=0,2,...,2(K—1)}.(5



Also let

Ro)=to | “n) | ©

and b € R? be an arbitrary translation (where ® de-
notes the Kronecker product). We can then define the
stability we want to achieve.

Definition 4. (Formation stability). The formation x is
stable if

Ve > 036 > 0s.t. x(0) € Bs(x) =
=Vt Ib, @ :x(t) € B:(R(p)x+1®b). (7)

And it is asymptotically stable if it is stable and

38 > 0s.t. x(0) € Bs(x) =
=Vt Ib,¢: ,lim x(r) =R(p)x+1®b. (8)

Finally we remark that, as described above, if the
agents are non-holonomic, we consider the points
pi(t) as waypoints for a low-level controller. This
controller then has the task of driving the agent be-
tween waypoints while not leaving the current Voronoi
region, Ry. But for the most part of this paper, we will
analyze the case of holonomic agents.

3. PROPOSED ALGORITHM

In this section we describe the proposed algorithm in
detail and give some remarks on implementational is-
sues. Informally, the algorithm means that each agent
computes its Voronoi region and then moves to the
centroid of the vertices of the region. All vertices are
considered as points whose mass is determined by a
scalar weight function. To make sure that all Voronoi
regions are bounded and thus ensure a balance in the
number of vertices, we introduce imaginary neighbors
through mirroring of real agents. This mirroring oper-
ation is defined as follows.

Definition 5. (Mirror operator). The mirror operator
M :R? x R? - R? is defined as the following map-
ping
Py~ P«

Iy —pall

We also adopt the notation M(k, Q) = U;co M (P« i)
i.e. the set of mirror images in agent k of all agents in

0.

M(px,py) = Px )

Let G be the set of perceived neighbors of agent
k. By that we mean both real neighbors and mirror
images of selected neighbors. Also let p(py) be any
scalar-valued weight function. The formation control
algorithm, that each agent k executes in parallel, can
then be described as in Table 1.

Table 1 Formation control algorithm
1: loop
2:  Build the neighbor sets Ny and Cy
if card(Ny) = 6 then
Gk = Nk
else if card(Ny) = 4 then
Gr == Ny UM (k,Cy)
else if card(N;) = 3 then
Gk = Nk UM(k,Nk)
end if
10:  Compute the centroid of vertices:
¢:= (Zev 6 P(2)) - Yaev (G 2 P(2)
11:  Apply control: u; :=c¢—py
12: end loop

R A

Remark 1: By assigning different weights p(x), we
can control the net movement of the formation.

Remark 2: In practice, the agents are likely to have a
limited range, Rpax Of their sensors. But since comput-
ing the Voronoi region requires only local knowledge,
this does not impose any practical limitations. If a
distant agent is beyond sensing range, the Voronoi
region may be considered unbounded in that direction.
To ensure collision safety, we just limit the control to
lu| < §Rmax. We thus have a decentralized algorithm
that can be implemented using only local information.

Remark 3: As formulated above, the algorithm re-
quires that the Voronoi regions are computed syn-
chronously for all agents. In a practical implementa-
tion this requirement can be fulfilled by radio synchro-
nization (e.g. using GPS receivers, that give a very
accurate time estimate). An alternative solution is to
add a safety margin to the Voronoi region borders. If
the maximum difference between sampling times for
all agents is Afpax and the maximum speed is viax, We
can let

Ri(Z) :=={x:|x — pi| < |X—2i| + Afmax Vmax V i # k}.

4. PROPERTIES OF THE ALGORITHM

In this section we show collision safety by using the
convexity of the Voronoi regions. We then demon-
strate that the hexagonal lattice formation is an asymp-
totically stable equilibrium. Finally we present numer-
ical arguments that indicate the size of a region of
attraction around the equilibrium.

4.1 Safety

Theorem 4.1. (Collision safety). There will be no inter-
agent collisions.

Proof We exploit the convexity of the Voronoi regions
to show that the centroid for each agent will be in the
interior of its Voronoi region, which is disjoint from
that of all other agents.



According to (1), x is inside Ry (Gy) if, for all i # k

P —x| < |l)i*X|<i>(Pk*X)2 < (Pi*X)Z@
& 2(pi X —Pr-X) <Pi-Pi —Pr Pk &

@(pi—pk)-X<¥~(pi—pk)©
& al'x < b, where
a=(p;—px)and b= Pithe

2

Now let xi,...,X,, be points in Ri(Gi). Then any
convex combination (e.g. the centroid) of the points
is also in the Voronoi region:

Z)'” =1= Z AnXn € Rk(Gk)

n=1

since
m m m m
al N X =Y, Aalx, < Y db=b Y Ay=b.
n=1 n=1 n=1 n=1

The vertices Vi(Gy) are on the boundary of the
Voronoi region, which is not included in it. But ex-
cept for in degenerate cases, at least one vertex with
nonzero weight, V. is not on a line with all the others.
The centroid will then be on the interior of a line be-
tween V,” and the centroid of all other vertices, which
is clearly inside Ry (Gy).

The agent moves along the line between its previous
position and the centroid, both of which are inside
Ry (Gy). It then follows from the definition of convex-
ity that the new point is inside the region. And since
the Voronoi regions of different agents are disjoint by
construction, no two agents will ever go to the same
point. O

Remark 1: If two agents with limited sensor range are
farther than Rp,x apart, and thus do not sense each
other, their Voronoi region estimates may overlap. But
if the step size is limited to %Rmax, there cannot be a
collision.

Remark 2: The safety property also holds for an agent
that does not go straight to the centroid, if it does not
leave the Voronoi region or move farther than %Rmax
in one iteration. This motivates the extension of our
algorithm to produce waypoints for non-holonomic
agents as described in Section 5.

4.2 Stability of formation

We next prove stability for a hexagonal lattice forma-
tion of agents. For this analysis we consider a group
of 10 agents in a formation depicted in Figure 1b. This
formation has been chosen because it is the smallest
formation where all types of neighbor sets are repre-
sented. Agents have 3, 4 or 6 neighbors. We assume
p = 1, which corresponds to no net movement of the

group.

The closed-loop dynamics of the formation is formu-
lated in (10) below. We use the notation m(k, i, j) for
the shared vertex of agents k, i and j, as defined below
in (11). If agent i should be mirrored in agent k before
the vertex is computed, we denote the vertex as

m(k, Z]) =m(k,n, j), where p, = M(k,p;),

using the mirror operator defined in (9).

Theorem 4.2. (Local asymptotic stability). The point

1
X" = E (lv\/ga3a\/§a57\/§70707270a
T
470767071;_\/§737_\/§757_\/§>

is a locally asymptotically stable formation for the
system (10).

Proof We linearize the system (10) around the station-
ary point x* and show that the eigenvalues of the Jaco-
bian are all on or inside the unit circle. Finally we note
that all eigenvectors corresponding to an eigenvalue
on the unit circle describe rotations of the whole for-
mation with preserved relative positions of the agents.

Using computer software for symbolical algebra, we
find that the Jacobian
df
J —

= 12)

X=X*

has two unit eigenvalues and that all others are inside
the unit circle. All eigenvalues inside the unit circle
correspond to perturbations that the algorithm will at-
tenuate. The eigenvectors with unit eigenvalues corre-
spond to rotations of the whole formation (clockwise
and counterclockwise). Under these perturbations, all
relative positions of the agents are preserved and,
according to (8), this does not affect the asymptotic
stability of the formation. O

4.3 Region of attraction

To further test the stability properties of our proposed
algorithm, we investigate what happens if we perturb
the position of one single agent in a hexagonal lattice
where all other agents are fix. We then let the agent
move according to one iteration of the algorithm and
plot the direction of its movement as a function of the
perturbation. This yields a vector field that indicates
what magnitude of perturbations the algorithm can
handle.

We only study one iteration since in a real situation,
where all agents move, in the next iteration all sur-
rounding agents will have moved too, so the simpli-
fication does not hold anymore. But if the perturbed
agent has then taken a step towards the origin, it is
plausible that the whole formation converges (which
is also confirmed by simulations in Section 5).
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To simplify the calculations, we translate the agent to
the origin, surrounded by six neighbors:

po=-p; = (1,07
1
pPi=—ps = 5(1»\/§)T
1
p2=-=Pps5 = E(—L\E)T

The simplification of considering only six neighbors
holds for perturbations of magnitude less than 1/+/3.
This is because the Voronoi region of the center agent
will not be affected by any of the other agents in the
lattice. We also assume p = 1.

If the center agent is perturbed to the position
r = (ry ry)7, after one iteration of the algorithm, it will
be at ¢ = (cy ¢y)T. The direction of the step r —x
as a function of x can be plotted as a vector field,
depicted in Figure 2. A circle with radius 1/+/3 shows
the region where the assumption of six neighbors is
valid. Within this circle, the vector field indicates that
the algorithm should be convergent. So a reasonable
estimate of the region of attraction appears to be a
circle of radius 1/ /3 centered around the perturbed
agent, something that is also verified by simulations in
the following section. This also means that one single
agent may only be displaced by this much from an
ideal hexagonal lattice formation when the algorithm
is initiated. Otherwise the group may not converge to
the desired formation.

5. SIMULATIONS

We simulate a larger group of agents that start in a
hexagonal lattice formation and all evolve according
to the algorithm. Three scenarios are studied: First
one single agent in a stationary formation is perturbed,
to test stability. Then we move the whole formation
while adding noise to the control signal to each agent,
to simulate the effects of uneven terrain and platform
imperfections. Finally we apply the algorithm to a
group of car-like robots, to illustrate the usefulness of
the hierarchical controller architecture.

By perturbing one of the agents in a stationary forma-
tion (where the weight p is constant), we can study the
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Fig. 2. A vector field with normalized vector lengths,
showing the direction of r — x as a function of
x. The circle shows the region where only the

six closest neighbors affect the Voronoi region of

Fig. 3. A formation where the middle agent has been
displaced the distance 0.5d in the most sensitive
direction. The dashed circle shows its original
position. This perturbation is attenuated in a few

iteration steps.

asymptotic stability. Figure 3 depicts such a formation
where the middle agent is perturbed by 0.5d, which is
attenuated in a few iteration steps. The original posi-
tion of the agent is shown by a dashed circle. The max-
imum perturbation that can be attenuated even in the
most sensitive direction is found to be 0.57d ~ 1/ V3.
This concurs well with the results in Section 3.
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Fig. 4. Snapshots of a group of 29 agents moving
according to a linear weight function whose slope
is changed to control the direction of movements.
The whole sequence takes 160 iterations.

In the second simulation we control the global move-
ment of a formation by changing the slope of the
weight function. We use the weight

p(x7y) _ excos((o)+ysin((p)’ (13)

where we can vary the angle ¢ over time to make
the group move in different directions. We have cho-
sen the exponential function to get uniform speed of
movement over the whole plane. The result in Figure 4
shows snapshots of the formation being steered around
obstacles. We add noise to the control signal of each
agent to simulate uneven terrain and other errors:

0,
uk:c—pk+[6} (14)
y

The random variables Oy, 0, are evenly distributed in
the interval [0,0.15].

Finally we study a more realistic model, a kinematic
car (Murray and Sastry, 1993), with the forward ve-
locity v and steering angle § as controls:

X = vcos6
y = vsin6 (15)
0 =~ tand

L

Each car has a controller whose task is to drive the car
between waypoints, while respecting the safe regions
designated by our higher-level algorithm. This hierar-
chy is illustrated in Figure 5.

A formation of 13 kinematic cars is steered using the
weight (13) in a 100 x 100 m? labyrinth, with the inter-
agent distance d=5 m. Since each car must not leave
its Voronoi region, they must sometimes perform par-
allel parking-like maneuvers to turn towards the next
waypoint produced by our algorithm. Figure 6 shows
snapshots of the group at four different time instances.
Here, too, we add noise (14) to the waypoints given
to the lower-level car controllers. With a maximum
car speed of 1 m/s, the whole trajectory is completed
in about 2.5 minutes. These simulations illustrate the
validity of the stability analysis and the feasibility of

Neighbor \f/

. positions
Algorithm | Sensor
t Waypoint,
safe region
Position| | Controller
Velocity,
steering
s VW
N y
L7

Fig. 5. The hierarchical architecture where our al-
gorithm for holonomic agents feeds a waypoint
and a corresponding safe region to a lower-level
controller that drives the non-holonomic car.

structuring the control of non-holonomic agents in two
levels, where the top level algorithm produces way-
points and associated safe regions for maneuvering.

6. CONCLUSIONS

We have presented an algorithm that offers provable
safety from collisions, is scalable with group size and
requires a minimum of inter-agent communications.
The only information needed by every agent is the
relative positions of its neighbors. The algorithm not
only computes waypoints, but also associates a safe
region to every waypoint, that a controller for a non-
holonomic agent can use for maneuvering. It also al-
lows the incorporation of a scalar weight as a means
of controlling the net movement of the group. We have
proved local asymptotic stability and shown simula-
tions that indicate the magnitude of allowed pertur-
bations. Finally we have illustrated the possibility to
use the algorithm in a hierarchical control architecture,
with kinematic car agents.

In future work we hope to be able to formally show
convergence of the whole formation and also devise
a mirroring strategy that allows dynamically changing
Voronoi neighbor graphs. This could enable us to start
in any constellation and converge to the hexagonal
lattice formation.

We also plan to eventually implement the algorithm
on the same simulation platform where we have tested
our previous work (Lindhé et al., 2005). This is a very
detailed physics engine where we have modelled each
agent as a US Army HMMWYV jeep, Figure (7). The
controller of each car controls the steering angle, ac-
celerator and brakes and has access to the positions of
all other cars by shared variables. Including many real-
world effects such as wheel slip and uneven terrain,
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Fig. 6. Snapshots of a formation of 13 robots
with car-like dynamics moving through a sim-
ple labyrinth. The labyrinth is square, with side
length 100 m.

we believe that this simulator environment is a very
realistic setting for testing of our algorithm.

Fig. 7. The US Army HMMWYV jeep model that we
plan to use as agents in our simulations. In the
background we see trenches used as obstacles.
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