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Attitude coordinated control of multiple underactuated axisymmetric spacecraft

Ziyang Meng, Dimos V. Dimarogonas and Karl H. Johansson

Abstract—Attitude coordinated control of multiple under-
actuated spacecraft is studied in this paper. We adopt the
parametrization proposed by Tsiotras et al. (1995) to describe
attitude kinematics, which has been shown to be very convenient
for control of underactuated axisymmetric spacecraft with two
control torques. We first propose a partial attitude coordinated
controller with angular velocity commands. The controller is
based on the exchange of each spacecraft’s information with
local neighbors and a self damping term. Under a necessary
and general connectivity assumption and by use of a novel
Lyapunov function, we show that the symmetry axes of all
spacecraft are eventually aligned. Full attitude control of multiple
underactuated spacecraft is also considered and a discontinuous
distributed control algorithm is proposed. It is shown that the
proposed algorithm succeeds to achieve stabilization given that
control parameters are chosen properly. Discussions on the cases
without self damping are also provided for both partial and full
attitude controls. Simulations are given to validate the theoretical
results and different steady-state behaviors are observed.

I. INTRODUCTION

Synchronization of multi-agent systems has received much
attention recently due to its broad applications in power
networks [2], biological networks [3], social networks [4],
mechanical networks [5, 6] and so on. Distributed protocols
were proposed for various agent networks, including general
linear dynamical networks [7], nonlinear system networks
[8], Lagrangian dynamical networks [9], and mobile robotic
networks [10].

In this paper, the agents are specified as the attitudes of
spacecraft and the relevant works on the attitude control of
multiple spacecraft include [11–22]. In particular, by con-
sidering a ring communication topology structure, attitude
synchronization problem of a group of rotating and translating
rigid bodies was studied in [12]. Attitude direction cosine
matrix was used in [16] to construct a leaderless attitude
synchronization algorithm for undirected fixed communica-
tion topologies, while the observed-based controller was also
proposed to solve the situation of directed switching com-
munication topologies. Similar problems were considered in
[18, 20], where the attitude was represented by the Euler angle
in [18] and almost global convergence was shown in [20].
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The authors of [11] proposed a cooperative attitude tracking
protocol such that the follower spacecraft track a time-varying
leader spacecraft using relative attitude and relative angular
velocity information. Under a standing assumption that the
states of the leader spacecraft are only available to a subset
of follower spacecraft and the follower spacecraft only have
local information exchange, a distributed cooperative attitude
tracking algorithm was designed in [15]. A passivity-based
group orientation approach was introduced in [13] to solve dis-
tributed attitude alignment problem, where the inertial frame
information is not assumed to be available to the spacecraft.
In addition, the attitude containment problem was considered
in [17] and the influence of communication delay between
spacecraft was studied in [14].

We focus on the attitude coordinated control problem of
multiple underactuated spacecraft in this paper. As far as
we know, this is the first attempt in the literature to study
collective behaviors for coupled spacecraft systems in an
underactuated setting and with joint connectivity. In particular,
we consider axisymmetric spacecraft with two control torques
and assume that angular velocity commands are possible.
We adopt the special parametrization of attitude given in
[23] to describe attitude kinematics and we propose attitude
coordinated control algorithms to solve the problem. We show
that both partial and full attitude control are achieved under a
necessary and general connectivity assumption.

The organization of this paper is as follows. We first present
some background and preliminaries on graph theory, switching
communication topology, Dini derivatives, and the attitude
parametrization in Section II. Then, partial and full attitude
control of multiple underactuated spacecraft are studied in
Sections III and IV, respectively. Finally, we give concluding
remarks in Section V.

II. BACKGROUND AND PRELIMINARIES

A. Graph theory

Using graph theory, we can model the communication
topology among spacecraft in the formation. A graph G
consists of a pair (V , E), where V = {1, 2, . . . , n} is a finite
nonempty set of nodes and E ⊆ V × V is a set of ordered
pairs of nodes. An edge (i, j) denotes that node j can obtain
information from i. All the neighbors of node i are denoted
as Ni := {j|(j, i) ∈ E}, where we assume that i 6∈ Ni.

A directed path in a directed graph is a sequence of edges
of the form (i1, i2), (i2, i3), . . . . If there exists a path from
node i to j, then node j is said to be reachable from node i.
G is said to be strongly connected if each node is reachable
from any other node.
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B. Switching communication topology and joint connectivity

In order to implement the distributed algorithm for the
multi-agent systems, each agent is often equipped with a
communication unit. This raises a natural issue of the possible
communication link failure and therefore makes the studying
on the case of switching communication topology important.
In this paper, we associate the switching communication
topology with a time-varying graph Gσ(t) = (V , Eσ(t)), where
σ : [0,+∞) → P is a piecewise constant function and P
is finite set of all possible graphs. Gσ(t) remains constant for
t ∈ [tς , tς+1), ς = 0, 1, . . . and switches at t = tς , ς = 1, . . . .
In addition, we assume that infς(tς+1 − tς) ≥ τ∗d > 0,
ς = 1, . . . , where τ∗d is a constant known as dwell time [24].
The joint graph of Gσ(t) during time interval [t1, t2) is defined
by Gσ(t)([t1, t2)) =

⋃
t∈[t1,t2)

G(t) = (V ,⋃t∈[t1,t2)
E(t)).

Moreover, j is a neighbor of i at time t when (j, i) ∈ Eσ(t),
and Ni(σ(t)) represents the set of agent i’s neighbors at time
t. In the remainder of this paper, we use ∗ to denote that a
parameter is constant.

Definition 2.1. Gσ(t) is uniformly jointly strongly connected
if there exists a constant T ∗ > 0 such that G([t, t + T ∗)) is
strongly connected for any t ≥ 0.

C. Dini derivatives

Let D+V (t, x(t)) be the upper Dini derivative
of V (t, x(t)) with respect to t, i.e., D+V (t, x) =

lim supτ→0+
V (t+τ,x(t+τ))−V (t,x(t))

τ . The following Lemma
holds [25].

Lemma 2.1. Suppose for each i ∈ V , Vi : R × Rn → R

is continuously differentiable. Let V (t, x) = maxi∈V Vi(t, x),
and let V(t) = {i ∈ V : Vi(t, x(t)) = V (t, x(t))} be the
set of indices where the maximum is reached at time t. Then
D+V (t, x(t)) = maxi∈V(t) V̇i(t, x(t)).

D. The (w, z) attitude parametrization

Since we are interested in the control of underactuated
axisymmetric spacecraft, a special but efficient parametriza-
tion is used to represent the attitude of a spacecraft. This
parametrization is based on a pair (w, z) of a complex variable
w and a real variable z that was first introduced in [23].

It is known that the attitude direction cosine matrix R =
[Rpq] ∈ R3×3 is used to determine the orientation between the
body frame and inertial frame and a basic parametrization of
an attitude. The (w, z) parametrization can be derived from R

by using the following relationship (see Lemma 1 of [26]):
w = R23

1+R33
− j R13

1+R33
, cos(z) = 1

2 ((1 + |w|2)trace(R) +

|w|2 − 1), sin(z) = (1+Re(w2))R12+Im(w2)R22+2Im(w)R32

1+|w|2 ,

where Re(w) and Im(w) denote, respectively, the real part
and imaginary part of a complex number w ∈ C, j =

√
−1,

traceR denotes the sum of the elements on the main diagonal
of a square matrix R, w denotes the complex conjugate, and
|w| =

√
ww denotes the absolute value of w.

Based on the above relationship, we use (w, z) to describe
attitude coordinates from now on. Consider n spacecraft with
attitude (wi, zi), i = 1, 2, . . . , n. In addition, ωi1, ωi2, and ωi3

are used to describe the components of the angular velocity
of the body frame with respect to the inertia frame expressed
in the body frame. The kinematic equation of each spacecraft
is described by (see (28) and (38b) of [27]):

ẇi = −jω∗
i3wi +

ωi

2
+
ωi

2
w2
i , (1a)

żi = ω∗
i3 + Im(ωiwi), (1b)

where wi = wi1+jwi2, ωi = ωi1+jωi2. In this paper, we focus
on angular velocity commands and assume that only angular
velocity ωi can be manipulated. The third axis of the spacecraft
is considered as the underactuated axis and we know that for
an axisymmetric spacecraft, ωi3 ≡ ω∗

i3, i = 1, 2, . . . , n, remain
constant since the torque input about the symmetry axis is
zero and two of the principal moments of inertia are equal
(see equations (1) and (2) of [23]). Since the input dimension
is less than the state dimension, for the kinematics (1), only
two-axis stabilization of pointing is possible for the general
case when at least one ω∗

i3, i ∈ V , is nonzero [23]. On the
other hand, for the special case when ω∗

i3 ≡ 0, for all i ∈ V ,
three-axis stabilization of pointing is possible, and in this case
the kinematic equations become

ẇi =
ωi

2
+
ωi

2
w2
i , (2a)

żi = Im(ωiwi). (2b)

We will next focus on (1) and (2) to study partial and full
attitude control problems, respectively. In this paper, we re-
strict the discussion to the corresponding kinematic parameters
without specific mentioning.

III. PARTIAL ATTITUDE CONTROL OF MULTIPLE

UNDERACTUATED SPACECRAFT

In this section, we focus on the kinematic (1a) and study
the partial attitude control problem, where the manifold W is
defined as W = {(w1, z1, . . . ,wn, zn) : w1 = · · · = wn = 0}.
Note that (1b) is uncontrollable for the general case when at
least one ω∗

i3, i ∈ V is nonzero.
The following attitude control algorithm is proposed for all

the spacecraft,

ωi = −bi(t)wi −
∑

j∈Ni(σ(t))

aij(t)(wi − wj), ∀i ∈ V , (3)

where aij(t) ≥ 0 is the weight of arc (j, i) for i, j ∈ V at
t and bi(t) ≥ 0 is a continuous function denoting the self
damping weight. We also assume that aij(t) and bi(t) satisfy
the following condition:

Assumption 3.1. There exist constants a∗ > 0 and a∗ > 0
such that for all i, j ∈ V , and t ≥ 0, a∗ ≤ aij(t) ≤ a∗ when
aij(t) > 0.

Assumption 3.2. There exist an agent k ∈ V , a constant
T

∗
> 0 and a constant b∗ > 0 such that for all t ≥ 0,∫ t+T∗

t
bk(τ)dτ ≥ b∗.

Theorem 3.1. Suppose that Assumption 3.1 and 3.2 hold and
Gσ(t) is uniformly jointly strongly connected. For multiple
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underactuated spacecraft kinematics (1a), algorithm (3) guar-
antees that partial attitude control is achieved with respect to
W , i.e., limt→∞ wi(t) = 0, for all bounded wi(0) and all i ∈ V .

Proof. Consider the following Lyapunov function candidate
V (W) = maxi∈V Vi(wi), where Vi(wi) = wiwi = |wi|2 for
all i ∈ V and W = [w1,w2, . . . ,wn]. Note that for all i ∈ V ,
ẇi = ẇi = jω∗

i3wi+
ωi

2 + ωi

2 wi
2. Therefore, it follows that for

all i ∈ V , V̇i =
1+|wi|

2

2 (ωiwi + ωiwi) .
Let V be the set containing all the agents that reach the

maximum of Vi, i ∈ V , at time t, i.e., V = {i ∈ V|Vi(t) =
V (t)}. It follows from Lemma 2.1 that the derivative of V
can be calculated as

D+V = max
i∈V

V̇i = max
i∈V

{1 + |wi|2
2

(
−2bi(t)|wi|2

+
∑

j∈Ni(σ(t))

aij(t)
(

wiwj + wiwj − 2|wi|2
)
}

≤ max
i∈V

{1 + |wi|2
2

(−2bi(t)|wi|2

+
∑

j∈Ni(σ(t))

aij(t)(|wj |2 − |wi|2))} ≤ 0,

where we have used the fact wiwj + wiwj ≤ |wi|2 + |wj |2
for all i, j ∈ V . This implies that |wi(t)|2 ≤ V ∗ < ∞, for
all i ∈ V and all t ≥ 0, where V ∗ := V (W(0)). The above
deductions show that the proposed Lyapunov function V is
nonincreasing and therefore the states of Vi(t), ∀i ∈ V are
bounded by V ∗ for all t ≥ 0. We next show that V (W(t))
actually converges to zero as t→ ∞.

Based on Assumption 3.2, we know that there exists an
agent k1 ∈ V , a constant T

∗
> 0, and a constant b∗ > 0 such

that
∫ T ∗

0 bk1(τ)dτ ≥ b∗. We first consider agent k1 and the
time interval [0, T

∗
]. It follows that

V̇k1 ≤ 1 + |wk1 |2
2

(−2bk1(t)|wk1 |2 +
∑

j∈Nk1
(σ(t))

ak1j(t)

×(|wj |2 − |wk1 |2)
)

≤ − bk1(t)Vk1 +
1 + |wk1 |2

2

∑

j∈Nk1
(σ(t))

ak1j(t)(V
∗ − Vk1)

≤ − bk1(t)Vk1 + α(V ∗ − Vk1 ),

where α = (1+V ∗)(n−1)a∗

2 . It then follows that

Vk1(T
∗
) ≤ e−

∫ T∗

0
(bk1 (τ)+α)dτVk1 (0)

+ αV ∗

∫ T
∗

0

e−
∫ T∗

s
(bk1 (τ)+α)dτds

≤ e−(b∗+αT
∗

)V ∗ + αV ∗

∫ T
∗

0

e−α(T
∗

−s)ds

≤ α̂1V
∗,

where α̂1 = 1 − e−αT
∗

(1 − e−b∗) < 1, Gronwall’s in-
equality has been used for the first inequality, Assumption
3.2 has been used for the second inequality, and relation∫ T∗

0 e−α(T
∗

−s)ds = 1
α (1 − e−αT

∗

) has been used for the
third inequality. Define T1 = T ∗ + 2τ∗d , where T ∗ is defined

in Definition 2.1. Therefore, we know that after a finite time
period, the state evaluation on agent k1 (i.e., Vk1 ) is strictly
less than the explicit upper bound V ∗.

It then follows that for all t ∈ [T
∗
, T̃ ] with

T̃ > T
∗

+ (n − 1)T1 being an arbitrary constant,

V̇k1 ≤ 1+|wk1
|2

2

∑
j∈Nk1

(σ(t)) ak1j(t)(V
∗ − Vk1) ≤ α(V ∗ −

Vk1). This shows that for all t ∈ [T
∗
, T̃ ],

Vk1 (t) ≤V ∗ + e−α(T̃−T
∗

)(Vk1 (T
∗
)− V ∗) ≤ α∗

1V
∗, (4)

where α∗
1 = 1 − e−α(T̃−T

∗

)e−αT
∗

(1 − e−b∗) < 1. To this
end, we have shown that Vk1 is strictly less than V ∗ for any
t ≥ T

∗
.

We next consider the time interval [T
∗
, T

∗
+T1]. Since the

union graph G([T ∗
+τ∗d , T

∗
+τ∗d +T

∗)) is strongly connected,
it follows that there exist a time instant t2 and an agent
k2 ∈ V\{k1} such that there exists an arc (k1, k2) for all
t ∈ [t2, t2 + τ∗d ) ⊂ [T

∗
, T

∗
+ T1]. Due to this connection,

we next show that agent k2 will be “attracted” by k1 for a
time interval larger than τ∗d and the state evaluation on agent
k2 (i.e., Vk2 ) will be also strictly less than the explicit upper
bound V ∗. The analysis can be divided by two cases.

Case I: Vk2(t) > Vk1(t) for all t ∈ [t2, t2 + τ∗d ). It then
follows that

V̇k2 ≤ 1 + |wk2 |2
2


−2bk2(t)Vk2 +

∑

j∈Nk2
(σ(t))

ak2j(t)(Vj − Vk2)




≤ 1 + |wk2 |2
2

∑

j∈Nk2
(σ(t))

ak2j(t)(Vj − Vk2)

≤ 1 + |wk2 |2
2

∑

j∈Nk2
(σ(t))\{k1}

ak2j(t)(Vj − Vk2)

+
1 + |wk2 |2

2
ak2k1(Vk1 − Vk2)

≤ 1 + V ∗

2

∑

j∈Nk2
(σ(t))\{k1}

ak2j(t)(V
∗ − Vk2 )

+
1 + |wk2 |2

2
ak2k1(Vk1 − Vk2)

≤ α̂(V ∗ − Vk2) +
1 + |wk2 |2

2
ak2k1(Vk1 − Vk2).

≤ α̂(V ∗ − Vk2) +
a∗

2
(α1V

∗ − Vk2),

where we have used Assumption 3.1 and the facts Vj(t) ≤ V ∗,

for all j ∈ V and all t ≥ 0, and
1+|wk2

|2

2 ak2k1(t) ≥ a∗
2

for t ∈ [t2, t2 + τ∗d ), α̂ = (1+V ∗)(n−2)a∗

2 ,
α1 = 1 − e−αT1e−αT

∗

(1 − e−b∗). It then follows that
Vk2(t2 + τ∗d ) ≤

(
e−(α̂+a∗/2)τ

∗

d + (1− e−(α̂+a∗/2)τ
∗

d ) ×
α̂+a∗α1/2
α̂+a∗/2

)
V ∗ = α̂∗

2V
∗, where α̂∗

2 =

α̂+a∗/2−
a∗

2 (1−e−(α̂+a∗/2)τ∗

d )(1−α1)

α̂+a∗/2
< 1.

Case II: there exists a time t2 ∈ [t2, t2 + τ∗d ) such that
Vk2(t2) ≤ Vk1(t2). This implies from (4) that Vk1 (t) ≤ α1V

∗,
for all t ∈ [T

∗
, T

∗
+T1]. Therefore, since t2 ∈ [T

∗
, T

∗
+T1],

we know that Vk2(t2) ≤ α1V
∗. Following the similar analysis

for equation (4), we know that Vk2(t2+τ
∗
d ) ≤ (1−e−ατ∗

d (1−
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Fig. 2. The communication graph G2

α1))V
∗. Define α̂2 = 1− a∗/2

α̂+a∗/2
e−ατ

∗

d (1−e−(α̂+a∗/2)τ
∗

d )(1−
α1). It is not hard to show that max{α̂∗

2, α1, (1− e−ατ
∗

d (1 −
α1))} ≤ α̂2 < 1. We thus know that for all k ∈ {k1, k2},
Vk(t2 + τ∗d ) ≤ α̂2V

∗. This in turn shows that for all k ∈
{k1, k2}, and all t ∈ [T

∗
+ T1, T̃ ], Vk(t) ≤ (1 − e−αT1(1 −

α̂2))V
∗ = α2V

∗, where α2 = 1 − e−αT1 a∗/2
α̂+a∗/2

e−ατ
∗

d (1 −
e−(α̂+a∗/2)τ

∗

d )(1−α1). To this end, we have shown that both
Vk1 and Vk2 are strictly less than V ∗ for any t ≥ T

∗
+ T1.

We next consider the time interval [T
∗
+ T1, T

∗
+ 2T1].

Since G([T ∗
+ T1 + τ∗d , T

∗
+ T1 + T ∗ + τ∗d )) is strongly

connected, it follows that there exist a time instant t3 and
an agent k3 ∈ V\{k1, k2} such that there exists an arc (k, k3)
for all t ∈ [t3, t3 + τ∗d ) ⊂ [T

∗
+ T ∗ + τ∗d , T

∗
+ 2T ∗ + 2τ∗d ],

where k ∈ {k1, k2}. Then, following the similar analysis
on agent k2, we know that for all k ∈ {k1, k2, k3}, and
all t ∈ [T

∗
+ 2T1, T̃ ], Vk(t) ≤ α3V

∗, where α3 =

1 − e−2αT1

(
a∗/2

α̂+a∗/2

)2

e−2ατ∗

d (1 − e−(α̂+a∗/2)τ
∗

d )2(1 − α1).
Therefore, we know that Vk1 , Vk2 and Vk3 are strictly less
than V ∗ for any t ≥ T

∗
+ 2T1.

Finally, at the worst case, it follows that for all i ∈
V and all t ∈ [T

∗
+ (n − 1)T1, T̃ ], Vi(t) ≤ αnV

∗,

where αn = 1 − e−(n−1)αT1

(
a∗/2

α̂+a∗/2

)n−1

e−(n−1)ατ∗

d (1 −
e−(α̂+a∗/2)τ

∗

d )n−1(1 − α1). Thus, for all t ∈ [T
∗
+ (n −

1)T1, T̃ ], V (t) ≤ αnV
∗. The above inequality shows no

agents will stay on the boundary V ∗ at a certain time instant
and therefore, by the following arguments, we know that the
Lyapunov function V is strictly shrinking.

Let ψ be the smallest positive integer satisfying t ≤ ψNT2,
where T2 = T

∗
+(n−1)T1. It then follows that V (t) ≤ (1−

αn)
ψ−1V ∗ ≤ 1

1−αn
(1−αn)

t
NT2 V ∗ = ρe−̺tV ∗, where ̺ =

1
NT2

ln 1
1−αn

and ρ = 1
1−αn

. This implies that limt→∞ V (t) =
0 and further shows that limt→∞ wi(t) = 0 for all i ∈ V .

We next verify Theorem 3.1 using simulations and show
numerically that the introduce of synchronization term helps
to obtain better transient process in terms of achieving syn-
chronization objective. In particular, we consider that there are
four spacecraft (n = 4) in the group. The weights aij and bi
are chosen to be 1 when (j, i) ∈ E . The communication graph
G switches between G1 (Fig. 1) and G2 (Fig. 2) at time instants
t̺ = ̺, ̺ = 0, 1, . . . . In addition, bi, ∀i ∈ V switches between
0 and 1 at time instants t̺ = ̺, ̺ = 0, 1, . . . .

Fig. 3 shows the trajectories of wi1 and wi2 for all i =
1, 2, 3, 4 using algorithm (3) for (1a). We see that the partial
attitudes of all the spacecraft converge to zero. We also
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Fig. 3. Trajectories of partial attitudes
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Fig. 4. Trajectories of synchronization errors

compare algorithm (3) with individual stabilization algorithm
ωi = −bi(t)wi in terms of achieving synchronization ob-
jective, where we use quantity

∑n
i=1

∑n
j=1 |wi1 − wj1| +∑n

i=1

∑n
j=1 |wi2 − wj2| to evaluate the synchronization error

during transient process. It is clear from Fig. 4 that algorithm
(3) presents a better transient process in terms of achieving
synchronization objective.

A. Discussions on the case without self damping term

We note that the absolute damping term is used in (3) and
stabilization result is obtained. On the other hand, the study on
case of leaderless algorithms attracts much attention recently
[2, 4, 7] because abundant emergent behaviors can be observed
for the multi-agent systems. This motivates us to observe and
study the complex behaviors of the coupled underactuated
spacecraft being controlled by a leaderless consensus-like
algorithm. We will show later that the convergence results
indicate the noticeable differences between the stabilization
case and the synchronization case, as well as the classical
coupled linear systems and the coupled underactuated attitude
dynamical systems.

In particular, the algorithm without self damping term takes
the following form for all the spacecraft

ωi = −
∑

j∈Ni(σ(t))

aij(t)(wi − wj), ∀i ∈ V , (5)
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where aij(t) ≥ 0 is the weight of arc (j, i) for i, j ∈ V at t.

Proposition 3.1. Suppose that Assumption 3.1 holds and Gσ(t)
is uniformly jointly strongly connected. For multiple underac-
tuated spacecraft kinematic (1a), algorithm (5) guarantees that
partial attitude norm synchronization is achieved with respect to
W1. In particular, it follows that limt→∞ |wi(t)| = w∗, for all
bounded wi(0) and all i ∈ V , where w∗ is a positive constant.

Proof. Similar to the proof of Theorem 3.1, we use the
Lyapunov function candidate

V (W) = max
i∈V

Vi(wi),

where Vi(wi) = wiwi = |wi|2 for all i ∈ V and W =
[w1,w2, . . . ,wn].

Let V be the set containing all the agents that reach the
maximum of Vi, i ∈ V , at time t, i.e., V = {i ∈ V|Vi(t) =
V (t)}. It follows from Lemma 2.1 that the derivative of V
can be calculated as

D+V

= max
i∈V

V̇i

=max
i∈V




1 + |wi|2

2

∑

j∈Ni(σ(t))

aij(t)
(

wiwj + wiwj − 2|wi|2
)




≤ max
i∈V





1 + |wi|2

2

∑

j∈Ni(σ(t))

aij(t)(|wj |2 − |wi|2)






≤ 0,

where we have used the fact wiwj + wiwj ≤ |wi|2 + |wj |2
for all i, j ∈ V . This implies that |wi(t)|2 ≤ V (W(0)), for all
i ∈ V and all t ≥ 0. It thus follows that limt→∞ V (t) = Ṽ ,
where Ṽ is a positive constant. Therefore, we know that for
any ε > 0, there exists a t∗1(ε) ≥ 0 such that

Ṽ − ε ≤ V (t) ≤ Ṽ + ε, ∀t ≥ t∗1.

Suppose that limt→∞ Vi(t) = Ṽ does not hold for certain
i ∈ V . Then, based on Assumption 3.1 and following the
similar analysis of Lemma 4.3 given in [28], we can show the
contradiction with the fact that V (t∗) ≥ Ṽ − ε by choosing
ε sufficient small for some t∗ ≥ t∗1. Such a selection of ε
exists due to the fact that wi(0) is bounded for all i ∈ V . This
indicates a contradiction and shows that limt→∞ Vi(t) = Ṽ

for all i ∈ V . The desired result is proven.
We notice that Proposition 3.1 only claims that the norms of

all spacecraft’s partial attitudes reach synchronization. There
is no affirmative assertion on convergence of all spacecraft’s
partial attitudes. We next focus on the special case when the
angular velocity of the uncontrollable axis ω∗

i3 remains zero
for all i ∈ V and show that in addition to partial attitude
norm synchronization, partial attitude synchronization is also
achieved.

Proposition 3.2. Suppose that Assumption 3.1 holds and Gσ(t)
is uniformly jointly strongly connected. For multiple underac-
tuated spacecraft kinematic (1a) with ω∗

i3 ≡ 0, for all i ∈ V ,

algorithm (5) guarantees that limt→∞(wi(t) − wj(t)) = 0, for
all bounded wi(0) and i, j ∈ V .

Proof. We prove that limt→∞(wi(t)−wj(t)) = 0 for all i, j ∈
V using contradiction. We still use Vi = |wi|2 for all i ∈ V .
Based on the result of Proposition 3.1, we know that for any
ε > 0, there exists a t∗1(ε) ≥ 0 such that Ṽ − ε ≤ Vi(t) ≤
Ṽ + ε, ∀i ∈ V , ∀t ≥ t∗1, where Ṽ is a positive constant.

Suppose that there exist l, k ∈ V and t1 ≥ t∗1 such that
wl(t1) 6= wk(t1). We next show that there exists h ∈ V and
t∗ ≥ t1 such that Vh(t∗) < Ṽ − ε, which will indicate a
contradiction and prove the desired result.

Since G([t1, t1 +T ∗)) is strongly connected, we can define
a time t2 = inft∈[t1,t1+T∗){∃i1 ∈ V\{l}|(i1, l) ∈ Eσ(t)}, and
a set V1 = {i1 ∈ V\{l}|(i1, l) ∈ Eσ(t2)} 6= ∅.

Note that for all i ∈ V , it follows that for all t ≥ t1,

V̇i =
1 + |wi|2

2

∑

j∈Ni(σ(t))

aij(t)
(

wiwj + wiwj − 2|wi|2
)

=
∑

j∈Ni(σ(t))

bij(wi, t)
(
−|wi − wj |2 − (|wi|2 − |wj |2)

)

≤ −
∑

j∈Ni(σ(t))

bij(wi, t)|wi − wj |2 + 2b̄∗(n− 1)ε.

where we define bij(wi, t) =
1+|wi|

2

2 aij(t) and easily derive

that b̄∗ , 1
2a∗ ≤ bij ≤ 1+V (W(0))

2 a∗ , b̄∗ for all i, j ∈ V . We
have also used the fact that

∣∣|wi(t)|2 − |wj(t)|2
∣∣ = |Vi(t) −

Vj(t)| ≤ 2ε for all i, j ∈ V and t ≥ t1. We next consider two
cases.

Case I: there exists a i1 ∈ V1 such that wl(t2) 6= wi1(t2). It
then follows from the definition of t2 that for all t ∈ [t2, t2 +
τ∗d ], V̇l ≤ −b̄∗|wl − wi1 |2 + 2b̄∗(n − 1)ε. Define a positive
constant φ∗ = |wl(t2)−wi1(t2)|2 > 0 and a function φµν(t) =
|wµ(t) − wν(t)|2 for any pair (µ, ν) ∈ V × V . It follows that
φµν(t) = Vµ + Vν − wµwν − wµwν . By noting the fact that
|ωi| ≤ 2(n−1)a∗

√
Ṽ + ε, for all i ∈ V , we know that |ẇi| ≤

(1 + Ṽ + ε)(n − 1)a∗
√
Ṽ + ε for all i ∈ V . In addition,

by noting that |wµ(t) − wν(t)|2 ≤ 2|wµ(t)|2 + 2|wν(t)|2 =
2(Vµ(t) + Vν(t)) for all t ≥ 0, bij ≤ b̄∗, for all i, j ∈ V and
Vi(t) ≤ Ṽ + ε, ∀i ∈ V , we know that

−b̄∗(n− 1)(4Ṽ + 2ε) ≤ V̇i ≤ b̄∗(n− 1)(4Ṽ + 6ε),

∀i ∈ V , ∀t ≥ t1.

Therefore, it follows that

φ̇li1 ≥ −4(1+ Ṽ +ε)(n−1)a∗(Ṽ +ε)−2b̄∗(n−1)(4Ṽ +2ε).

It thus follows that φli1 (t) ≥ φ∗

2 for all t ∈
[t2, t2+

φ∗

8(1+Ṽ+ε)(n−1)a∗(Ṽ+ε)+4b̄∗(n−1)(4Ṽ+2ε)
]. Define δ1 =

min{τ∗d , φ∗

8(1+Ṽ+ε)(n−1)a∗(Ṽ+ε)+4b̄∗(n−1)(4Ṽ+2ε)
}. It then fol-

lows that

Vl(t2 + δ1) ≤ Vl(t2)−
b̄∗φ

∗δ1

2
+ 2b̄∗(n− 1)δ1ε

≤ Ṽ − b̄∗φ
∗δ1

2
+ (2b̄∗(n− 1)δ1 + 1)ε.
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We then derive a contradiction with the fact that Vl(t2+δ1) ≥
Ṽ −ε by choosing ε sufficiently small. This proves the desired
result.

Case II: for all i1 ∈ V1, wi1(t2) = wl(t2). Then, based
on the definitions of t2 and V1, we know that the dynamics
ẇl =

ωl

2 + ωl

2 w2
l is reduced to ẇl = 0, ∀t ∈ [t1, t2]. Therefore,

we know that wl(t2) = wl(t1) and thus wi1(t2) = wl(t1), for
all i1 ∈ V1.

Next, we define the set V1 = {l}⋃V1. Since G([t1 +
T ∗, t1 + 2T ∗)) is strongly connected, we can define a time
t3 = inft∈[t2,t1+2T∗){∃i2 ∈ V\V1, i1 ∈ V1|(i2, i1) ∈ Eσ(t)},
and a set V2 = {i2 ∈ V\V1|(i2, i1) ∈ Eσ(t3)}. Following the
previous analysis on node l, we can show that Vi1 (t3 + δ2) <
Ṽ − ε for some i1 ∈ V1 when wi2(t3) 6= wi1(t3), for some
i2 ∈ V2. Otherwise, for the case that wi2(t3) = wi1 (t3) for
all i2 ∈ V2, we know that wi1(t) remain unchanged for all
i1 ∈ V1 during t ∈ [t2, t3] based on the definitions of t3 and
V2. It then follows that wi1(t3) = wi1(t2) = wl(t1) for all
i1 ∈ V1 and thus wi2(t3) = wl(t1) for all i2 ∈ V2.

Then, we define V2 = V1

⋃V2 and repeat the above anal-
ysis. At worst case, we finally have Vn−2 = V\{k} and the
time tn = inft∈[tn−1,t1+(n−1)T∗){∃in−2 ∈ Vn−2|(k, in−2) ∈
Eσ(t)}. By noting that win−2(tn) = wl(t1), for all in−2 ∈
Vn−2 and the earliest condition of wl(t1) 6= wk(t1), we
know that it must have wk(tn) 6= win−2(tn), for some
in−2 ∈ Vn−2. Therefore, we derive a contradiction with the
fact that Vin−2(tn + τ∗d ) ≥ Ṽ − ε by choosing ε sufficient
small. This proves the desired result.

Remark 3.1. Due to the existence of complex internal non-
linear dynamics and the leaderless couplings of spacecraft,
we introduce in the proof of Proposition 3.2 a contradiction
argument, instead of a direct Lyapunov approach as was used in
the proof of Theorem 3.1. Also, note that the synchronization
of wi, i ∈ V in Proposition 3.2, does not necessarily guarantee
that the symmetry axes of all spacecraft are eventually aligned.
In fact, all symmetry axes of the spacecraft may converge to the
surface of a cone centered around the third axis of the inertial
frame. The emergence of such a collective behavior is caused
by the underactuated attitude dynamics, and cannot be observed
in the classical coupled linear systems.

B. Constant and oscillatory steady-state behaviors

We notice that there is no affirmative assertion on the
pattern of the steady-state behavior when multiple spacecraft
reach partial attitude synchronization according to Proposition
3.1. It turns out that the uncontrollable angular velocity ω∗

i3

plays an important role in forming the pattern of the steady-
state behavior. We next show that different selections on ω∗

i3

produce different steady-state behaviors using simulations.
1) Constant steady-state behavior: We first consider the

case that angular velocities ω∗
i3 are nonidentical for all i ∈ V

and show that final attitudes of all the spacecraft present a
constant steady-state behavior. In particular, we still consider
that there are four spacecraft (n = 4) in the group. The weight
aij is chosen to be 1 when (j, i) ∈ E . The communication
graph G switches between G1 (Fig. 1) and G2 (Fig. 2) at time
instants t̺ = ̺, ̺ = 0, 1, . . . .

0 5 10 15 20 25 30 35
−0.5

0

0.5

t (s)

w
i
1

 

 
1
2
3
4

0 5 10 15 20 25 30 35
−0.5

0

0.5

t (s)

w
i
2

 

 
1
2
3
4

Fig. 5. Nonidentical ω∗
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Fig. 6. Identically nonzero ω
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i3

Fig. 5 shows the trajectories of wi1 and wi2 for all i =
1, 2, 3, 4. We see that attitude synchronization is achieved
while the final attitudes of all the spacecraft converge to
zero. This is an interesting observation since intuitively, a
weakly coupled and strongly heterogeneous network may
not display coherent behavior. However, the simulation result
shows that final trajectories of all the agents converges to the
constant origin as if each agent is commanded with an absolute
damping. This also presents the coherent behavior. Note that
the above behavior can be always observed as long as ω∗

i3 are
nonidentical for all i ∈ V .

2) Oscillatory steady-state behavior: We next consider the
case that angular velocities ω∗

i3 are identically nonzero for
all i ∈ V and show that final attitudes of all the spacecraft
present an oscillatory steady-state behavior. Fig. 6 shows the
trajectories of wi1 and wi2 for all i = 1, 2, 3, 4. We see that
attitude synchronization is achieved while final attitudes of all
the spacecraft converge to time-varying bounded curves. Note
that the above behavior can be always observed as long as
ω∗
i3 are identically nonzero for all i ∈ V . Also note that for

the case of all zero ω∗
i3, time-varying bounded curves reduce

to a consensus to a nonzero constant, which is similar to
the coherent behavior presented for the consensus of multiple



2325-5870 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2562503, IEEE
Transactions on Control of Network Systems

7

single integrators.

IV. FULL ATTITUDE CONTROL OF MULTIPLE

UNDERACTUATED SPACECRAFT

In this section, we study full attitude control problem. We
focus on the kinematic (2), where ω∗

i3 is zero, for all i ∈ V
and the manifold P is defined as P = {(w1, z1, . . . ,wn, zn) :
z1 = · · · = zn = 0,w1 = · · · = wn = 0}.

The following attitude control algorithm is proposed for all
the spacecraft

ωi = − γ1wi − j
bi(t)zi +

∑
j∈Ni(σ(t))

aij(t)(zi − zj)

wi
,

∀i ∈ V , (6)

where aij(t) > 0 is the weight of arc (j, i) for i, j ∈ V at t,
bi(t) ≥ 0 is a continuous function denoting the self damping
weight, and γ1 is a positive constant to be determined. In
addition to Assumption 3.2, we also assume that bi(t) satisfies
the following condition:

Assumption 4.1. There exists a constant b∗ > 0 such that for
all i ∈ V , and t ≥ 0, bi(t) ≤ b∗.

Theorem 4.1. Suppose that Assumptions 3.1, 3.2 and 4.1 hold
and Gσ(t) is uniformly jointly strongly connected. Also assume
that zi(0) ∈ (−π, π], wi(0) 6= 0 and bounded, for all i ∈ V . For
multiple underactuated spacecraft (2), algorithm (6) guarantees
that full attitude control is achieved with respect to P if γ1 is
chosen sufficiently small. In particular, it follows that

• wi(t) 6= 0, for all i ∈ V and for all t ≥ 0.
• limt→∞ wi(t) = 0, for all i ∈ V .
• limt→∞ zi(t) = 0, for all i ∈ V .
• The control input ωi remains bounded for all i ∈ V and all
t ≥ 0.

Proof. It is clear that the closed-loop system (2) with dis-
tributed attitude algorithm (6) can be written as

ẇi = −γ1
2
(1 + |wi|2)wi

− j
1

2



bi(t)zi +
∑

j∈Ni(σ(t))

aij(t)(zi − zj)




(
1

wi
− wi

)
, (7a)

żi = −bi(t)zi −
∑

j∈Ni(σ(t))

aij(t)(zi − zj), i ∈ V . (7b)

Note that the above equations hold for (C\{0})× R× · · · ×
(C\{0})×R. We first show that wi(t) 6= 0, for all i ∈ V and
for all t ≥ 0 given wi(0) 6= 0, for all i ∈ V .

Consider the Lyapunov function candidate

Vi = |wi|2

for all i ∈ V . The derivative of Vi along (7a) can be calculated
as

V̇i = 2Re(ẇiwi) = −γ1(1 + |wi|2)|wi|2 = −γ1(1 + Vi)Vi.

It is not hard to show that Vi(t) = 1
cieγ1t−1 , where ci =

1+|wi(0)|
2

|wi(0)|2
is a bounded constant for all i ∈ V . Therefore, it

follows that |wi(t)| =
√

1
cieγ1t−1 based on the definition of

Vi. Therefore, wi(t) 6= 0 for all t ≥ 0 and we know that
limt→∞ wi(t) = 0, for all i ∈ V .

For system (7b), it is not hard to show that maxi∈V |zi(t)| ≤
ρ1e

−̺1tmaxi∈V |zi(0)| by choosing a function V1 =
maxi∈V z

2
i and following the similar analysis on the proof of

Theorem 3.1, where ρ1 and ̺1 are positive constants related
to parameters n, T ∗, τ∗d , a∗, a∗, T

∗
, and b∗. Therefore,

limt→∞ zi(t) = 0, for all i ∈ V . Also, based on the fact
that D+V1 ≤ 0, we know that zi(t) ∈ (−π, π], for all t ≥ 0
and i ∈ V .

We finally show that ωi is bounded, for all i ∈ V . It follows
from the fact maxi∈V |zi(t)| ≤ ρ1e

−̺1tmaxi∈V |zi(0)| that
for all i ∈ V ,

|ωi(t)|

≤γ1|wi(t)|+
b∗|zi(t)|+ 2(n− 1)a∗ maxi∈V |zi(t)|

|wi(t)|
≤γ1|wi(0)|+ρ1(b∗ + 2(n− 1)a∗)max

i∈V
|zi(0)|e−̺1t

√
cieγ1t − 1

<γ1|wi(0)|+ρ1(b∗ + 2(n− 1)a∗)max
i∈V

|zi(0)|
√
cie

−(̺1−0.5γ1)t.

Therefore, |ωi| ≤ γ1|wi(0)| + ρ1(b
∗ + 2(n −

1)a∗)maxi∈V |zi(0)|
√
ci, if we choose γ1 < 2̺1.

A. Discussions on the case without self damping term

In this section, we consider the case without self damping
term bi(t)zi and show that all zi(t), i ∈ V , synchronize to a
possible non-zero final state. The algorithm takes the following
form for all the spacecraft

ωi = − γ2wi − j

∑
j∈Ni(σ(t))

aij(t)(zi − zj)

wi
, ∀i ∈ V , (8)

where aij(t) > 0 is the weight of arc (j, i) for i, j ∈ V at t
and γ2 is a positive constant to be determined.

Proposition 4.1. Suppose that Assumption 3.1 holds and Gσ(t)
is uniformly jointly strongly connected. Also assume that
zi(0) ∈ (−π, π], wi(0) 6= 0 and bounded, for all i ∈ V . For
multiple underactuated spacecraft (2), algorithm (8) guarantees
that full attitude synchronization is achieved if γ2 is chosen
sufficiently small. In particular, it follows that

• wi(t) 6= 0, for all i ∈ V and for all t ≥ 0.
• limt→∞ wi(t) = 0, for all i ∈ V .
• limt→∞(zi(t)− zj(t)) = 0, for all i, j ∈ V .
• The control input ωi remains bounded for all i ∈ V and all
t ≥ 0.

Proof. It is clear that the closed-loop system (2) with dis-
tributed attitude algorithm (8) can be written as

ẇi = −γ2
2
(1+|wi|2)wi−j

1

2

∑

j∈Ni(σ(t))

aij(t)(zi−zj)
(
1

wi
− wi

)
,

(9a)
żi = −

∑

j∈Ni(σ(t))

aij(t)(zi − zj), i ∈ V . (9b)

Note that the above equations hold for (C\{0})× R× · · · ×
(C\{0})× R.
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Following the similar analysis of Theorem 4.1, we can show
that wi(t) 6= 0 for all t ≥ 0 and limt→∞ wi(t) = 0, for all
i ∈ V .

We next show that limt→∞(zi(t)−zj(t)) = 0, for all i, j ∈
V . Consider the following function U = max{i,j}∈V×V Vij ,

where Vij(z) = (zi(t) − zj(t))
2 for all {i, j} ∈ V × V and

z = [z1, z2, . . . , zn]
T. We first establish the following claim

(proof can be found in Appendix).
Claim I: U(z(t)) ≤ ρ2e

−̺2tU(z(0)), where U(z(0)) =
max{i,j}∈V×V Vij(z(0)), ρ2 = 1

1−βN
∗

and ̺2 = 1
NT1

ln 1
1−βN

∗

with N = n(n−1)
2 , T1 = T ∗ + 2τ∗d and β∗ = (1 −

e−((2n−3)a∗+a∗)τ
∗

d ) a∗
(2n−3)a∗+a∗

e−2(n−1)a∗NT1 .
It follows from Claim I that limt→∞ U(t) = 0 and thus

limt→∞(zi(t)− zj(t)) = 0, for all i, j ∈ V .
We finally show that ωi is bounded, for all i ∈ V using

Claim I. It follows from the fact max{i,j}∈V×V |zi(t) −
zj(t)| ≤ √

ρ2e
−

̺2
2 t

√
U(z(0)) that for all i ∈ V

|ωi(t)| ≤ γ2|wi(t)|+
(n− 1)a∗ max{i,j}∈V×V |zi(t)− zj(t)|

|wi(t)|
≤ γ2|wi(0)|+

√
ρ2(n− 1)a∗

√
U(z(0))e−0.5̺2t

√
cieγ2t − 1

< γ2|wi(0)|+
√
ρ2(n− 1)a∗

√
ci
√
U(z(0))e−0.5(̺2−γ2)t.

Therefore, |ωi| ≤ γ2|wi(0)| +√
ρ2(n − 1)a∗

√
ci
√
U(z(0)),

if we choose that γ2 < ̺2.
Proposition 4.1 is verified by the simulation in Figs. 7 and

8. In particular, the communication topologies are chosen the
same as in Section III-B. The control gain γ2 is chosen as
γ2 = 0.1. Figs. 7 and 8 show, respectively, the trajectories of
attitudes wi1, wi2, zi and the control inputs ωi1 and ωi2, for
i = 1, 2, 3, 4. We see that attitude synchronization is achieved
while the control inputs remain bounded.

V. CONCLUDING REMARKS

We studied attitude coordinated control problem of multiple
underactuated spacecraft in this paper. A special parametriza-
tion was used to describe the attitude kinematics. We proposed
partial attitude coordination protocols and full attitude coordi-
nation protocols. The symmetry axes of all the spacecraft were
shown to be aligned under a general connectivity assumption.
The discussions on the cases without self damping term
provided some insight into the collective behaviors of multiple
underactuated systems. Future work includes the extension of
the kinematic study in this paper to the dynamic case and
using rotation matrix as attitude parameterization to avoid
singularity.
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APPENDIX: THE PROOF OF CLAIM I

Proof. Let V1 × V2 be the set containing all the agent
pairs that reach the maximum of Vij , {i, j} ∈ V × V at time
t, i.e., V1(t) × V2(t) = {{i, j} ∈ V × V|Vij(t) = U(t)}.
The derivative of U can be calculated as D+U ≤ 0. Using
comparison lemma (using 0 and U(z(0)) as the roles of
f(t, u) and u0 for Lemma 3.4 of [29]) , we know that
U(z(t)) ≤ U(z(0)), for all t ≥ 0.

Define T1 = T ∗+2τ∗d . We analyze the trajectory of U(z(t))

during the time interval [0, NT1], where N = n(n−1)
2 . Based

on the definition of U , we know that for all t ∈ [0, NT1],
Vij(z(t)) ≤ U∗, ∀{i, j} ∈ V × V , where U∗ := U(z(0)). Let
us first consider agent i1 ∈ V and focus on the time interval
[0, T1]. Since agent i1 is the root, it follows from uniformly
jointly strongly connected assumption that there exists a time
t1 and an agent i2 ∈ V \ {i1} such that (i1, i2) ∈ E during
t ∈ [t1, t1 + τ∗d ) ⊂ [0, T1]. Then for all t ∈ [t1, t1 + τ∗d ),
we know that V̇i1i2 ≤ −α(Vi1i2 − (2n−3)a∗

α U∗), where α =
(2n − 3)a∗ + a∗. It thus follows that Vi1i2 ≤ α̂1U

∗, where
α̂1 = (1− e−ατ

∗

d ) (2n−3)a∗

α + e−ατ
∗

d < 1. Then, we know that
for all t ∈ [t1 + τ∗d , NT1],

V̇i1i2 ≤ −
∑

k∈Ni1 (σ(t))

ai1k(t)(Vi1i2 − Vi2k)

−
∑

k∈Ni2 (σ(t))

ai2k(t)(Vi1i2 − Vi1k)

≤− 2(n− 1)a∗(Vi1i2 − U∗).

This implies that for all t ∈ [t1 + τ∗d , NT1], Vi1i2(t) ≤(
(1− e−αNT1) + e−αNT1α̂1

)
U∗, where α = 2(n − 1)a∗.

Note that 1− (1− α̂1)e
−αNT1 < 1. Therefore, we know that

for all t ∈ [t1 + τ∗d , NT1],

Vi1i2(z(t)) ≤ α∗
1U

∗,

where α∗
1 = (1−(1−e−ατ∗

d )a∗α e
−αNT1). We next focus on the

time interval [T1, 2T1] and consider V1 = {i1, i2} together. We
know from uniformly jointly strongly connected assumption
that there exists a time instant t2 and an arc from h ∈ V1 to
i3 ∈ V \ {i1, i2} during [t2, t2 + τ∗d ) ⊂ [T1, 2T1]. We next
bound Vhi3 . This involves two different cases.

Case I: h = i1. Following the similar analysis on Vi1i2 , we
know that for all t ∈ [t2 + τ∗d , NT1],

Vi1i3(z(t)) ≤ α∗
1U

∗.
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Case II: h ∈ V1\{i1}. It then follows that for all t ∈ [t2, t2+
τ∗d ), V̇i1i3 ≤ −ai3h(Vi1i3 − Vi1h). To this end, we have two
subcases.

Case II.a: Vi1i3(z(t)) > Vi1h(z(t)) for all t ∈ [t2, t2 + τ∗d ).
It then follows that

V̇i1i3 ≤− (2n− 3)a∗(Vi1i3 − U∗)− a∗(Vi1i3 − α∗
1U

∗)

≤− α(Vi1i3 −
(2n− 3)a∗ + a∗α

∗
1

α
U∗)

This shows that Vi1i3(z(t2 + τ∗d )) ≤ α̂2U
∗, where α̂2 = 1 −

(1−e−ατ∗

d )
a∗(1−α

∗

1)
α . It follows that for all t ∈ [t2+τ

∗
d , NT1],

Vi1i3(z(t)) ≤
(
1− (1 − α̂2)e

−αNT1
)
U∗ = (1− β2

∗)U
∗,

where β∗ = (1− e−ατ
∗

d )a∗α e
−αNT1 .

Case II.b: there exists a time t∗ ∈ [t2, t2 + τ∗d ] such that
Vi1i3(z(t

∗)) ≤ Vi1h(z(t
∗)) ≤ α∗

1U
∗. It then follows that for

all t ∈ [t∗, NT1], Vi1i3(t) ≤
(
1− e−αNT1(1− α∗

1)
)
U∗.

Combining the above analysis, it is not hard to show that
for all t ∈ [t2+τ

∗
d , NT1], Vi1i3(z(t)) ≤ (1−β2

∗)U
∗. Then, we

consider V2 = {i1, i2, i3} together. We have actually shown
that for all t ∈ [2T1, NT1], Vi1k(z(t)) ≤ (1− β2

∗)U
∗, for all

k ∈ V2\{i1}, since (1 − β2
∗) ≥ α∗

1 = 1− β∗.
Continuing the above analysis, we can show that for all

t ∈ [(n− 1)T1, NT1] and for all k ∈ V\{i1},

Vi1k(z(t)) ≤ (1− βn−1
∗ )U∗. (10)

Next, we consider agent i2 as the root. Note that we have
shown that Vi2i1 satisfies (10). Therefore, we can similarly
show that that for all t ∈ [(2n−3)T,NT1], Vi2k(z(t)) ≤ (1−
β2n−3
∗ )U∗, for all k ∈ V\{i2}.
Finally, it follows that for all i, j ∈ V ,

Vij(z(NT1)) ≤ (1 − βN∗ )U∗.

Then, let ψ be the smallest positive integer satisfying t ≤
ψNT1. It then follows that

U(z(t)) ≤ (1 − βN∗ )ψ−1U∗

≤ 1

1− βN∗
(1− βN∗ )

t
NT1 U∗

= ρ2e
−̺2tU∗,

where ̺2 = 1
NT1

ln 1
1−βN

∗

and ρ2 = 1
1−βN

∗

. This proves the
desired claim.
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