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Distributed Seeking of Nash Equilibria With
Applications to Mobile Sensor Networks

Miloš S. Stanković, Karl H. Johansson, and Dušan M. Stipanović

Abstract—We consider the problem of distributed convergence
to a Nash equilibrium in a noncooperative game where the players
generate their actions based only on online measurements of
their individual cost functions, corrupted with additive mea-
surement noise. Exact analytical forms and/or parameters of
the cost functions, as well as the current actions of the players
may be unknown. Additionally, the players’ actions are subject
to linear dynamic constraints. We propose an algorithm based
on discrete-time stochastic extremum seeking using sinusoidal
perturbations and prove its almost sure convergence to a Nash
equilibrium. We show how the proposed algorithm can be applied
to solving coordination problems in mobile sensor networks,
where motion dynamics of the players can be modeled as: 1) single
integrators (velocity-actuated vehicles), 2) double integrators
(force-actuated vehicles), and 3) unicycles (a kinematic model
with nonholonomic constraints). Examples are given in which the
cost functions are selected such that the problems of connectivity
control, formation control, rendezvous and coverage control are
solved in an adaptive and distributed way. The methodology is
illustrated through simulations.

Index Terms—Convergence, extremum seeking, learning, mobile
sensor networks, multi-agent control, Nash equilibrium, noncoop-
erative games, stochastic optimization.

I. INTRODUCTION

P ROBLEMS of distributed, multi-agent optimization, co-
ordination, estimation, and control have been the focus of

significant research in past years. Depending on the problem
setup and the available resources, agents may have access to
different measurements, different a priori information, such as
system models and sensor characteristics, and different inter-
agent communication channels. A possible approach to these
problems is game theoretic, where one formulates a noncooper-
ative game with players/agents selfishly trying to optimize their
individual cost functions by using locally available information.
Depending on the structure of the game, its Nash equilibria can
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have different properties and they may or may not correspond
to the optimal solution of some global optimization problem
[2]–[10].

The focus of this paper is on the problem of learning in
games, or designing algorithms that converge to a Nash equi-
librium. The majority of the existing literature in this area is
focused on algorithms based on a detailed model of the under-
lying game; that is, an algorithm is designed based on a specific
form of the players’ cost functions and properties. Furthermore,
it is usually assumed that the players can observe the actions of
the other players. In this way, the algorithms can be designed on
the basis of a best/better response strategy. For example, in [11],
convergence properties have been analyzed for such a class of
infinite, convex games. For games with finite action sets, where
the players can use mixed strategies, the convergence of the
underlying best response algorithm, called fictitious play, and
its modifications have been analyzed intensively (see [12] and
references therein). The recently proposed algorithms in [13]
and [14] deal with an information structure similar to the one
imposed in this paper, but require synchronization between the
agents, and the convergence is proved only for a special class of
games (weakly acyclic or potential games [4]) with finite action
sets. In [15] an interactive learning procedure based on trial and
error is proposed. A similar approach to the one proposed in
this paper, applied to quadratic games in markets, has appeared
independently in [16] and extended to non-quadratic cost
functions in [17], but the authors provided only local stability
analysis of a simpler one-dimensional scheme under strong
conditions. Also, none of the mentioned approaches can deal
with the measurement noise while taking into account specific
dynamics of the players.

Extremum seeking algorithms have received significant
attention recently in adaptive online optimization problems
involving dynamical systems. The basic algorithm, based on
introducing sinusoidal perturbations, has been treated in, e.g.,
[18]–[20]. In [21] and [22] a time-varying version of the algo-
rithm has been introduced, whose almost sure convergence has
been proved in the presence of measurement noise. It has been
demonstrated how this technique can be applied to autonomous
vehicles seeking a target in deterministic environments [23], or
optimal positioning in stochastic environments [22], [24].

In this paper, we propose a discrete-time algorithm for dis-
tributed seeking of a pure Nash strategy in infinite games where
the players generate their actions based solely on the measure-
ments of their individual cost functions, whose detailed analyt-
ical forms may be unknown. Furthermore, similarly as in the ex-
tremum seeking problems, we assume that the players may have
some (possibly unknown) linear dynamics , filtering the players’
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actions before affecting their cost functions. Also, the local mea-
surements of individual cost functions are not available directly,
they are filtered through a stable filter and corrupted with mea-
surement noise. The proposed algorithm is based on the time-
varying extremum seeking algorithm with sinusoidal perturba-
tions, under stochastic noise, analyzed in [22]. We formulate
sufficient conditions on the structure of the cost functions and on
the parameters of the proposed scheme, under which we prove
almost sure convergence to a Nash equilibrium. Some important
special cases (potential games and quadratic games), and pos-
sible extensions and limitations are treated in details.

The proposed algorithm can be applied to general noncoop-
erative games in which there is a need for adaptive learning
of Nash equilibria; that is, when the players may not know the
exact parameters of the cost functions and the current players’
actions and properties, or even if they do not know the exact ana-
lytical forms of the costs, but are able to obtain (noisy) values of
their individual costs at each time instance. The players may also
have some dynamics which imply certain constraints on their
capability of changing actions. These properties make the al-
gorithm appealing for distributed coordination and optimization
problems related to mobile sensor networks. These networks are
usually deployed in some only partially known or unknown and
noisy environments, lacking any communication infrastructure
and without some omniscient central or fusion node. The in-
formation that the agents have about the environment as well as
about the actions/properties of the other agents is limited only to
certain local sensing and local low bandwidth communications.

In certain scenarios, the individual cost for each agent can be
expressed as a sum of a locally defined goal, depending only on
the individual agent’s position/action (such as the one treated
in [22], [24], or [23]) and a “collective” goal, depending on the
positions/actions of the other agents. This is typical in connec-
tivity control problems [25]–[28]. By applying our scheme to
such problems the agents can adaptively achieve a compromise
between these locally defined goals, and a “collective” goal of
maintaining connectivity with the neighboring agents, without
detailed inter-agent communications and without position mea-
surements. We show that a special case of this scenario leads
to an adaptive solution of a formation control problem and a
rendezvous or consensus problem (see, e.g., [29], [30], and ref-
erences therein).

In some cases a cooperative control task to be performed by a
mobile network is expressed using a global cost function which
may depend on all the environmental parameters and proper-
ties/positions of all the agents. In these cases, to deal with the
agents’ lack of global information it is possible to design indi-
vidual cost functions which would capture the given information
structure constraints. The design should be done such that local
optimizations by individual agents (Nash equilibrium) leads to
an optimum of a global objective [3], [4], [9], [10]. Even though
the cost functions are designed, they usually depend on some pa-
rameters/functions (e.g., environmental conditions, individual
agents’ properties) which are unknown a priori and must be
learned (implicitly or explicitly) in the process of convergence
to a Nash equilibrium. A typical example for this scenario is
a coverage control problem as defined in [31] and formulated
as a potential game in [32]–[34]. Using our methodology, this

problem can be solved under much more realistic assumptions
on the information available to the agents. Specifically, in our
setting, the agents do not need any (absolute or relative) posi-
tion measurements and do not need a priori knowledge about
the distribution of the events to be detected (environmental den-
sity function) and about the specific detection capabilities of the
individual agents.

The existing literature in the area of mobile sensor networks
which treats similar problems is mostly focused on specific sce-
narios requiring detailed sensing/comunication models as well
as the model of the environment, without taking specific mo-
bile robot dynamics into consideration (e.g., [14], [25]–[28],
[30]–[32], [35]–[38] and references therein).

The rest of the paper is organized as follows. In Section II
the problem setup and the algorithm description are given.
Section III is devoted to the convergence analysis, where we
prove that the algorithm converges almost surely (a.s.) to a
Nash equilibrium. We discuss possible extensions, limitations
and special cases in Section IV. In Section V, we give de-
tailed analysis of some concrete applications of the proposed
algorithm to mobile sensor networks (connectivity control,
formation control, rendezvous and coverage control), where
the dynamics of the mobile robots can be modeled as single
integrators, double integrators or unicycles. Simulation results
for networks of three agents are shown and discussed.

II. NASH EQUILIBRIUM SEEKING ALGORITHM

We consider a scenario in which agents are noncooper-
atively minimizing their individual cost functions by updating
their local actions, based only on their current local informa-
tion. We assume that the actions of the players belong to ,

, . Hence, we are dealing with
a noncooperative static game with infinite action spaces where
the optimality is characterized by a (pure) Nash equilibrium;
a point from which neither agent has incentive to deviate [2],
[5]. We assume that the information that each player has about
the underlying game is restricted solely to discrete-time mea-
surements of its individual cost function, which are, in addition,
filtered through (possibly unknown) stable, linear and time in-
variant (LTI) filter with transfer function and corrupted
with a measurement noise. The players may not have any di-
rect information about either the underlying structure of the
game (exact analytical forms of the cost functions) or the ac-
tions/properties of the players. Without loss of generality, let
us assume that each agent’s action space is two-dimensional,

, since we will apply this methodology to
vehicles’ coordination problems in the plane. The framework
can be extended to multidimensional action spaces in a straight-
forward way, as discussed later in Remark 5. Furthermore, the
agents may have some local dynamics, so that their actions are
filtered through (possibly unknown) stable LTI filter, having the
transfer function matrix , before affecting the measured
cost function , where denotes the ac-
tion of agent , while denotes the actions of all the other
agents. In general, each cost function does not necessarily
have to depend on the actions of all the other players. So, let
us define time-invariant neighbor sets , , whose
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Fig. 1. Nash equilibrium seeking scheme.

elements are indices of the agents whose actions affect the th
agent’s cost function.

Motivated by the fact that the formulated information struc-
ture relates to extremum seeking problems, we propose an al-
gorithm based on sinusoidal perturbations, depicted in Fig. 1,
where each agent implements a local, discrete-time (denoted by

), extremum seeking loop. The estimation of the gradient of
the individual cost function is performed by inserting a sinu-
soidal perturbation, with frequency and with positive, de-
terministic, time-varying amplitude , which, by passing
through the function , is being modulated by its local slope.
The estimate of the slope is found by the multiplication/demod-
ulation using the sinusoid with the same frequency and with pos-
itive, deterministic, time-varying amplitude . This slope
estimate is then used to move in the opposite direction (by the
negative integration block: ). Since all the information
needed to estimate the gradient is located in the amplitude of
the modulated sinusoidal perturbation, the measurements are fil-
tered by washout filters to eliminate any DC components,
and, hence, to improve the overall convergence properties. Also,
to improve the convergence properties, low-pass filters can be
added in the loop as part of the dynamics . Local decou-
pling between and dimensions is obtained using orthogonal
perturbations: cosine for and sine for (cf., [24] or [23]). Fur-
thermore, neighboring agents apply different frequency pertur-
bations, , , so that decoupling between their
gradient estimates is achieved.

The following equations model the behavior of the proposed
Nash equilibrium seeking algorithm:

(1)

(2)

(3)

for , where is the measurement noise of
agent

(4)

(5)

Throughout the paper, the expression denotes a time
domain vector obtained as the output of LTI system with the
transfer function matrix , with the input vector , and
with some arbitrary finite initial condition.

In what follows we are going to introduce assumptions
needed for proving the convergence of the algorithm to a Nash
equilibrium.

Assumption On the Measurement Noise:
(A.1) The random vectors (where

) are measurable with respect to
a flow of -algebras , mutually independent
and zero mean, and they satisfy

(6)

for some matrix , ( denotes math-
ematical expectation, the notation means that the
matrix is positive semidefinite, denotes any
matrix norm).

Assumptions On the Parameters of the Algorithm:
(A.2) The scalar sequences are decreasing,

, and , .
(A.3) The scalar sequences are decreasing,

, and , .
(A.4) , .
(A.5) for all and

.
(A.6) for all
and .
(A.7) when , for all

.
(A.8) , is a rational number, and

for all and .
According to (A.7), can be written as

(7)

for each and for some constants .
Assumptions (A.2)–(A.6) are standard assumptions on the

step size in recursive, stochastic and deterministic (sub)gra-
dient and extremum seeking algorithms (see, e.g., [22], and
[39]–[42]). They aim at reducing the effect of measurement
noise; however, to achieve convergence of the algorithm,
these parameters need to converge to zero slow enough so
that (A.4) is satisfied. A straightforward way of satisfying
Assumptions (A.2)–(A.7) is by simply taking
and where , ,

, and and can account for
asynchronicity between the agents.

Assumption on the Existence of a Nash Equilibrium:
(A.9) The individual cost functions are contin-
uously differentiable and strictly convex in local decision
variables , and there exists a Nash equilibrium, i.e., a
point for which the following holds:

(8)

where , , denotes the gradient of
with respect to local actions .
Due to strict convexity in local decision variables, (8) is
a necessary and sufficient condition for achieving a Nash
equilibrium [5], [43].
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Before stating the last three assumptions which ensure the
stability of the algorithm, let us define the tracking error for each
agent as

(9)

where is the th agent’s action in a Nash equilibrium. By
stacking together the individual two-dimensional vectors we de-
fine and

.
Assumptions Related to the Stability of the Algorithm:

(A.10) The LTI systems with transfer functions ,
and , , are asymptotically stable.

(A.11) a.s. for all , where is an
open ball in containing the origin and with bounded
radius. , , are analytic in an open ball

, containing , which is related to set in such a way
that for any point , , for all

[in accordance with (9)].
(A.12) There exists a continuously differentiable Lyapunov
function such that

for all (10)

where ,
,

,

, denotes the gradient of
, and denotes the corresponding block

diagonal matrix.
The boundedness Assumption (A.11) might be hard to check

a priori, but it can be guaranteed by introducing truncations or
projections of the players’ actions to a prespecified set, once
they leave a predefined region , containing , as discussed
later in Remark 1. Assumption (A.7) ensures that the matrix
defined in (A.12) is constant. This assumption can be removed
if we modify (A.12) as commented in Remark 4.

Assumption (A.12), besides stability of our algorithm, also
ensures uniqueness of the Nash equilibrium (see also [43]
where stability and uniqueness are ensured with a strong con-
dition called strict diagonal convexity). It will be evident in the
sequel (see Remark 2 in the next section) that this assumption
can be relaxed by allowing existence of multiple (possibly infi-
nite number of) Nash equilibria as long as an appropriate Lya-
punov function exists. In the case of quadratic cost functions,
Assumption (A.12) can be directly related to a matrix stability
condition, involving Jacobian of the vector function . If the
underlying game is a potential game [4], a natural choice for the
Lyapunov function is the potential function. These two impor-
tant special cases have been analyzed in detail in Section IV.

III. CONVERGENCE ANALYSIS

Before stating the main convergence theorem, let us intro-
duce a few lemmas that will be used in the proof. In Lemma 1
conditions for the convergence of the standard Robbins–Monro
stochastic approximation algorithm with state-dependent noise
are formulated (see, e.g., [40, Theorem 2.2.3]). In Lemma 2

[44, Lemma 2], conditions are introduced for a.s. convergence
of a stochastic process defined as a sum of a weighted cor-
related noise sequence. These conditions are formulated in
terms of statistical properties of the given sequence, which in
fact specify a class of noise with sufficiently slowly increasing
second moment and sufficiently fast decreasing correlations.
Lemma 3 and Lemma 4 are useful in the analysis of filtered,
uniformly bounded sequences whose difference tends to zero
with rate defined in conditions (A.2)–(A.5). In Lemma 5 we
prove convergence of sums of sinusoidal signals modulated
with fast enough vanishing signals, which will frequently
appear in the proof of the main theorem. Lemma 6 is a simple
modulation lemma useful in dealing with general filtered mod-
ulated sinusoidal signals. The proofs of Lemmas 3, 4, and 5 are
given in Appendix.

Lemma 1 [40, Theorem 2.2.3]1: Consider the following re-
cursive (Robbins–Monro) algorithm:

(11)

where , is a predefined deterministic sequence
of real numbers, is a vector function , and

is the “observation error” term which can depend
on . Assume that the following assumptions are satisfied:

(B.1) , , and
.

(B.2) There exists a continuously differentiable Lyapunov
function such that
for all , where is the set of zeros of (i.e.,

for every ), and
is nowhere dense.

(B.3) is uniformly bounded a.s. for all .
(B.4) a.s.
(B.5) is continuous.

Then, (a.s.) as , where
and denotes

Euclidean norm.
Lemma 2 [44, Lemma 2]: Let be a sequence of random

variables that is measurable with respect to a flow of -algebras
and such that and

and be a deterministic positive sequence of real numbers.
If the following conditions are satisfied:

(C.1) ;
(C.2) ;
(C.3) ;

where with ,
, then a.s.

Lemma 3: Assume that is a sequence of real numbers
which satisfies (A.2)–(A.5), is the transfer function matrix
of a stable LTI system and is a uniformly bounded vector
sequence. Then the following equation holds:

(12)

1This lemma is a special case of the cited theorem since Assumptions (B.2),
(B.4), and (B.5) are stronger than in [40], but they are sufficient for our conver-
gence analysis. That (B.4) implies the original Assumption (A2.2.3) of the cited
theorem follows directly from, e.g., [40, Theorem 2.4.1 ii)].
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where is a summable vector sequence, i.e.,
.

Lemma 4: Assume that is a sequence of real numbers
which satisfies (A.2)–(A.5), is the transfer function matrix
of a stable LTI system and is a bounded vector sequence
which satisfies

(13)

where is a uniformly bounded vector sequence. Then the
following equation holds:

(14)

where .
Lemma 5: Assume that , , are sequences

of real numbers which satisfy (A.2)–(A.7), and that bounded
scalar sequences , , satisfy

(15)

where are uniformly bounded sequences. Then
,

for every fixed , where ,
is a rational number, and is a constant.
Lemma 6 [19, Lemma 2]: If the transfer functions and

are stable, the following statement is true for any real
and and any uniformly bounded scalar sequence :

(16)

where denotes exponentially decaying terms.
Now we are in a position to prove the following main conver-

gence theorem:
Theorem 1: Consider the Nash equilibrium seeking al-

gorithm defined in (1)–(5) and shown in Fig. 1. Let As-
sumptions (A.1)–(A.12) be satisfied. Then the actions

of the players converge
to the Nash equilibrium a.s.

Proof: By substituting (3) into (9) we obtain

(17)

which can be written as a difference equation

(18)

After plugging (2) and (1) into (18), we obtain for each agent

(19)

Since we have assumed that the functions are ana-
lytic in the region containing [Assumption (A.11)] one

can write their Taylor series expansion around the Nash equilib-
rium point :

(20)

where denotes the gradient of at with respect
to the th player actions, denotes the gradient at

with respect to the actions of all the other players and
, and denote their corre-

sponding Jacobians at point . By substituting (9) into (20),
can be written as a sum of three terms:

(21)

which will be defined one by one. The first term contains
the terms that are linear with respect to the perturbation signal

; therefore, it is essential for achieving an adequate ap-
proximation of the gradient of the cost function (since it will be
demodulated by the multiplication with ). It is given by

(22)

where the last equality follows after calculating the gradient of
(20) with respect to . Term in (21) contains the deter-
ministic input terms (not depending on any , ):

(23)

Term in (21) contains the remaining terms:

(24)

By applying Lemma 6 to (given in (4)) we obtain

(25)

where ,
and denotes exponentially decaying

terms of appropriate dimension.
Now we focus on the essential term for achieving

the contraction of the tracking error, which is obtained
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at the right-hand side of (19) after plugging (21), and
is given by , where

. By plugging (25) into (22) and then into
this term, we can again apply Lemma 6 to all the obtained terms
because they all contain a modulated sinusoidal signal being
filtered by . Since the obtained signal is then multiplied
(demodulated) by , after some algebra, one obtains the
following equation:

(26)

where ,

, ,

, ,

, ,

, and

denotes exponentially decaying terms of appropriate
dimension.

Now we take the first term on the right-hand side of (26) and
apply Lemma 3, to obtain

(27)

where and (a.s.),
.

By further applying Lemma 3 and then Lemma 4 to the first
term on the right-hand side of (27) one obtains

(28)

where ,

(compare with )

and contains all the summable terms, so that
(a.s.). It is easy to derive

that , where

, as given in (A.12).
Finally, coming back to the individual tracking equation (19),
by using (28), (26) and (21), we obtain the tracking equation
for the whole system:

(29)

where ,
, ,

,

,

(30)

,
, ,

,
, ,

,
, is 2 2 identity ma-

trix, denotes the Kronecker product, and we have
incorporated exponentially decaying terms in .

Because of Assumption (A.7), for each we can
write , where

and , so that, after plugging it in the
second term on the right-hand side of (29), we obtain

(31)
where is as given in (A.12) and where we have incorporated
the summable terms [according to (A.5)]
in .

Now it is obvious that the recursive equation (31) is actually
the Robbins–Monro algorithm (11), where is replaced by

, replaced by [which has a unique zero for
, according to (A.9) and (A.12)], and having the error

term equal to which contains
“structural” perturbation terms (depending on ), determin-
istic input terms, and a stochastic input term (depending on

). Therefore, we can apply Lemma 1 since by Assumption
(A.12), there exists a Lyapunov function that satisfies con-
dition (B.2) of the lemma [note that set is a singleton, i.e.,

because of (A.12)]. Therefore, a.s. if the “ob-
servation error” satisfies (B.4), i.e., if

converges (a.s.) (32)

Since the filter is linear and asymptotically stable, we
can switch the summation and filtering in the second term
in (32); hence, it is sufficient to show that and

converge (a.s.). We have already shown that
is summable a.s.

Furthermore, all the terms in
and in [obtained using (30)] can
only have one of the following two forms:

1) where is a bounded scalar
sequence possibly not containing a sinusoidal signal.
These terms can only originate from the higher order
terms in for which the
perfect matching of the multiples, sums or differences
of frequencies of multiplying sinusoids happen, e.g., if

for some and . These
terms are summable due to Assumption (A.6).



910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 4, APRIL 2012

2) A vanishing sinusoidal signal multiplied with filtered
terms having the following forms ,
where denotes either or scalar coordinate and

for all . Also, each
satisfies (15), with in place of , so that

one can apply Lemma 4 and Lemma 5 and conclude
that they are summable. It is important to observe that
some of the sinusoidal signals multiplying the above
terms, will originate from the terms in or
containing the th perturbation , , multiplied
with a different frequency sinusoid contained in
[Assumption (A.8)]. By converting these products of
sinusoids into summations, these terms will end up having
the above-mentioned, summable forms.

Therefore, and
converge a.s.

Finally, we are left to show that the stochastic input terms
, which are independent sequences [by

(A.1)] filtered through stable filters and multiplied with
, are summable a.s. We will treat these terms using

Lemma 2. Namely, we need to show that they satisfy conditions
(C.1)–(C.3), for , ,
where denotes either or .
Following the approach presented in [22], for condition (C.1)
we have, for

(a.s.) (33)

where we used the fact that a.s. for ,
a.s. for [Assumption (A.1)],

and is the impulse response sequence of . Further-
more, from (33), we have

(34)

for some positive constants and , where we used
(A.1), the fact that for and

for [ is the th
diagonal element of in (6)], together with the fact
that is a decreasing sequence. The last term in
(34) goes to zero when because and

, since the washout
filter is exponentially stable. Therefore, the condition

(C.1) is satisfied. Condition (C.2) follows directly from As-
sumptions (A.1) and (A.5). To prove condition (C.3) we have

(35)

for some , where we used (34) and Assumptions (A.1),
(A.2), and (A.5).

Therefore, we have shown that the sum in (32) converges a.s.,
which proves that converges to zero a.s. This proves the
theorem, having in mind the tracking error definition (9) and
Assumption (A.3).

Remark 1 (on the Boundedness Assumption): In the proof of
the theorem we have frequently used the boundedness assump-
tion (A.11). This is a standard assumption for convergence
analysis of stochastic approximation algorithms (see, e.g.,
[40]–[42]). However, in practice it might be hard to check the
boundedness a priori. To ensure that this condition is satisfied,
the algorithm can be modified by introducing truncation, or
projection into some prespecified ball , containing the Nash
equilibrium, whenever the estimate leaves the predefined
region , containing the set . Based on the results from [40],
Theorem 1.4.1, for the convergence of this truncated algorithm
it is sufficient that , for
all the points in the projection set , where is the
Lyapunov function defined in (A.12) and denotes the
boundary of . This means that the value of the Lyapunov
function evaluated at any point in the projection
set should be less than the smallest value evaluated on the
boundary of . Obviously, this is not a restrictive condition
due to the nature of the Lyapunov function. Under this assump-
tion, it has been shown in [40] that the number of truncations
can only be finite, which means that for large enough the
algorithm simply reduces to the one without truncations, but
now with guaranteed boundedness of by the algorithm
construction. Since the Nash equilibrium is not known a priori
the set must be chosen conservatively so that it is guaranteed
that the equilibrium is in its interior.

Remark 2 (Non-Unique Nash Equilibrium): For clarity of
presentation we assumed that the Nash equilibrium is unique,
i.e., we assumed that (10) holds for all . However, Lemma
1 allows that the set of zeros of function is not just a sin-
gleton, so that (A.12) can be easily relaxed such that (10) holds
for all , where is now defined as in (9) but with respect
to any Nash equilibrium (which we denote here by ), and
is the set of all points for which satisfies (8). Under
this relaxed assumption, Lemma 1 can still be directly applied to
equation (31) (assuming that the technical condition that
is nowhere dense is satisfied). Hence, the algorithm will con-
verge to a set of Nash equilibria, provided that the appropriate
Lyapunov function exists. This is an important generalization
since it allows many practical applications (see Section V-D2
where an application to robotic networks is presented in which
the set of Nash equilibria forms a linear subspace).
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Having in mind the generality of the cost functions , it
might be the case that there exist multiple separated (locally)
stable Nash equilibria (or separated sets of equilibria) [5]. This
means that for each one of them (or for each separated set) there
exists a different Lyapunov function but applied to a different
domain [ball in (A.11)]. Therefore, the algorithm will con-
verge to an equilibrium which belongs to the ball in which
the algorithm is initialized. Note that the set is in this case
analogous to the region of attraction of an equilibrium in stan-
dard Lyapunov stability theory.

Remark 3: From the analysis of the deterministic input term
, given in (23), it can be concluded that convergence can

be achieved even without the washout filters since the
DC value in will be multiplied by [see (30)
and (29)] resulting in the summable term, by Lemma 5. How-
ever, it is beneficial to include these filters, since this DC gain
is unknown and can be very large so that in the initial iterations
it can cause large fluctuations. Also, for this deterministic input
term to converge faster, it is beneficial that , ,
decay faster [condition (A.6)], but slow enough so that (A.4) is
satisfied.

Remark 4: Assumption (A.7) ensures that the variables ,
, in the matrix in the main recursion (31), are

constant. If we remove this assumption, then, in general, ac-
cording to (7), these variables can diverge to infinity and we
will have a time-dependent matrix . Therefore, if we re-
move (A.7), we need to make Assumption (A.12) stronger, i.e.,
instead of (10) we may assume that the following holds:

(36)

for all , . This condition follows directly from [40,
Theorem 2.8.1], which is actually an extension of Lemma 1 for
the case of time-varying function in (11).

Remark 5 (Multi-Dimensional Action Spaces): So far we
have focused on the case of two-dimensional agents’ action
spaces, since we are going to consider coordination problems
in the plane. The proposed methodology and the proof of
convergence can be easily extended to the multidimensional
action spaces for each agent, i.e., , with being
any natural number. Indeed, in this case we can allow each
agent to implement a sinusoid of different frequency for each
component of their local action spaces. It is easy to conclude
that, for this case all the results will still hold, with the only
difference that the matrix will now always be diagonal, and
positive definite for

(37)

assuming that and ,
. If the agents use the same frequency for at most

two components of the action spaces (with orthogonal phase
shifts), as in the 2-D case shown in Fig. 1, then will be di-
agonal only if

(38)

Otherwise, it will be block diagonal with 2 2 antisymmetric
diagonal blocks, as defined in (A.12), and positive definite under
(37).

IV. DISCUSSION

1) Potential Games: If the underlying game is a potential
game [4], the vector in (8) will be equal to the gradient of the
potential function. Denoting the potential function with
and assuming that it has a unique minimum in (which
is also a Nash equilibrium), we can choose the Lyapunov func-
tion (shifted potential function such that

corresponds to the minimum), so that the condition
(10) will always be satisfied if is positive definite (since

). Therefore, in this case, Assumption (A.12)
can be replaced with the condition (37), which guarantees pos-
itive definiteness of . In fact, this condition ensures that the
phase shift of the sinusoidal perturbation, induced by the filters

, , and , is close enough to the phase shift
of the multiplying sinusoids. The case when there exist multiple
equilibria (e.g., if is positive semidefinite) can be treated
similarly, as commented in Remark 2.

2) Quadratic Cost Functions: In the case of quadratic cost
functions there is a direct interpretation of the stability condition
in terms of a Jacobian matrix stability. Assume that the cost
functions are given by

(39)

where , , ,
, , . Condition (8) becomes now

(40)

which can be written as

(41)

where and

...
...

...
(42)

where we assume that if . Therefore, the game
admits a Nash equilibrium if and only if the system (41) has a
solution. If the matrix is invertible the system admits a unique
Nash equilibrium given by . From (40) and (41)
it is easy to derive that so that we can choose a
quadratic Lyapunov function , where is
chosen such that the condition (10) is satisfied. Such a matrix

will always exist if the matrix is stable (Hurwitz).
If we assume that the matrix is stable and strictly diago-
nally dominant, then the stability of the whole matrix is
ensured for all positive definite and diagonal matrices . From
the definition of matrix one can deduce that it will be posi-
tive definite and diagonal under condition (38). Therefore, strict



912 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 4, APRIL 2012

diagonal dominance of together with condition (38) ensures
stability, independently of the locally chosen parameters of the
proposed algorithm. Furthermore, a diagonal form of the matrix

can always be ensured by applying sinusoidal perturbations
with different frequencies for the and coordinates of each
agent, as commented in Remark 5 in the context of the multi-
dimensional case. In this case, condition (38) can be relaxed to
(37). Also, if matrix is stable and symmetric (implying that
the underlying game is a potential game), for the stability of ma-
trix it is sufficient that is positive definite, ensured by
(37).

The case of quadratic cost functions is important, since it rep-
resents a second order approximation of other types of nonlinear
cost functions around the equilibrium point. The constant matrix

obtained above can be replaced by the Jacobian of the vector
evaluated at the point . Then, the above global sta-

bility analysis for quadratic case can be applied for obtaining
local stability conditions for general nonlinearities.

3) On the Vanishing Gains: Theoretically, for Assumptions
(A.2)–(A.6) to be satisfied it is not required that the gains
and and and are synchronized among the
agents. Specifically, if and , it
is not required that and , for .
However, if the asynchronicity among the agents is high so
that the gains of some agents have already reached low enough
values such that their further changes are negligible, while the
gains of the other agents have not, the algorithm will practically
never exactly reach the Nash equilibrium. This problem is re-
lated to the problem of slow convergence of stochastic approxi-
mation algorithms (see, e.g., [40], [45] or [41]). In order to deal
with it, we can relax Assumptions (A.2)–(A.5) and define pos-
itive lower bounds for the time varying coefficients and

, at the expense of not being able to completely eliminate
the noise influence. In this way, the algorithm could also track
the position of the Nash equilibrium in the cases when it has
some constant drift and is slowly changing in time. The lower
bounds should be chosen in such a way as to achieve a compro-
mise between the tracking capabilities of the algorithm, the con-
vergence rate and the noise immunity. In this case the conver-
gence analysis would require a quantification of the asymptotic
expected value of the Lyapunov function (as was done
in, e.g., [46] for similar iterative stochastic schemes), which is
analogous to boundedness of solutions in classical, determin-
istic, stability theory. Also, if it is possible to neglect the mea-
surement noise influence, for large enough we can assume that
the amplitudes are approximately constant, so that the scheme
in this case reduces to deterministic Nash equilibrium seeking
with constant amplitudes, for which global practical stability
(in continuous time) have been analyzed in [33], [34] and for
which some local stability results are presented in [17]. Further-
more, it is possible to apply adaptive procedures for selecting
the gains and based on the observations of the noisy
cost functions, by following similar principles presented in, e.g.,
[47].

4) Selection of the Perturbations Frequencies: Assumption
(A.8) ensures decoupling of the agents’ gradient estimates (by
ensuring summability of all the terms in (23) and(24) after mul-
tiplication with the sinusoids of different frequency). Note that it
is only necessary that the frequencies of neighboring agents are

different. This ensures scalability, since the assigned frequen-
cies can be repeated for the agents which do not affect each
others’ cost functions.

V. APPLICATIONS TO MOBILE SENSOR NETWORKS

In order to apply the scheme depicted in Fig. 1 to the
problems involving self-organizing networks of autonomous
vehicles, with local sensory measurements (mobile sensor
networks), we need to introduce continuous-time blocks that
will model dynamics of the vehicles. In this problem set-
ting, the vehicles are treated as players in a game, that are
seeking positions corresponding to a Nash equilibrium. We are
going to propose schemes for three frequently used models
of autonomous vehicles in practice: velocity-actuated vehicles
(single integrators), force-actuated vehicles (double integra-
tors), and nonholonomic unicycles. Then we will apply these
schemes to some typical problems in mobile robotic sensor
networks: connectivity control, formation control, rendezvous
and coverage control.

A. Velocity-Actuated Vehicles

In this subsection, we assume that the players of a Nash game
are velocity-actuated autonomous vehicles moving in a plane.
Hence, we model them as point masses such that

(43)

where , are the positions of the ve-
hicles and and are the velocity inputs. We will consider
the proposed discrete-time Nash equilibrium seeking algorithm
connected to (43), as shown in Fig. 2. The main difference, com-
pared to the scheme in Fig. 1, besides its hybrid dynamics (ZOH
denotes zero-order-hold blocks, and is the sampling period),
is that the integrators are moved in front of the perturbing signal,
whose phase now needs to be adjusted to compensate for the
integrators phase shift. Therefore, the perturbing signals
and will have the following forms:

(44)

(45)

for all . These signals can easily be mapped to the
vehicle output, so we simply obtain

(46)

(47)
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Fig. 2. Nash equilibrium seeking scheme for velocity-actuated vehicles.

Therefore, these mappings are the same as the corresponding
mappings in Fig. 1, except for the multiplication with which
can be incorporated in the filter . We conclude that the
equivalent overall discrete-time scheme corresponding to Fig. 2
is the scheme in Fig. 1 with , . Hence,
all the results from the previous section can be applied immedi-
ately. We summarize in the following corollary.

Corollary 1: Consider the system of networked velocity-ac-
tuated vehicles with Nash equilibrium seeking scheme defined
in Fig. 2 where the perturbation signals and are de-
fined in (44) and (45). Let Assumptions (A.1)–(A.12) be sat-
isfied, with and . Then the positions

of the vehicles converge to the
Nash equilibrium a.s.

B. Force-Actuated Vehicles

In Fig. 3, a scheme involving force-actuated vehicles (double
integrators) is shown. The discrete-time integrator from Fig. 1 is
again contained in the vehicle dynamics and moved in front of
the perturbing signal. However, because of the vehicle’s double
integration, a discrete-time differentiator is needed to compen-
sate one integration. Therefore, the perturbing signals are the
same as in the single integrator case, given by (44) and (45).
The equations modeling the behavior of the scheme are similar
to the ones for the scheme in Fig. 2. The only difference is that
we have now

(48)

(49)

where denotes the -transform, the inverse
Laplace transform, so that and are the equivalent
discrete-time positions of the vehicles. By the following calcu-
lation:

(50)

we conclude that the overall equivalent discrete-time scheme
corresponding to Fig. 3 is the one in Fig. 1 with the input filters
having the 2 2 diagonal transfer function matrices

. Therefore, we can for-
mulate the following corollary:

Corollary 2: Consider the system of networked force-actu-
ated vehicles with Nash equilibrium seeking scheme defined in
Fig. 3 where the perturbation signals and are de-
fined in (44) and (45). Let Assumptions (A.1)–(A.12) be satis-
fied, with and

. Then the positions
of the vehicles converge to the Nash equilibrium a.s.

C. Unicycles

Finally, we are going to consider the case in which the mobile
robots are modeled as unicycles, having the sensors collocated
at the centers of the vehicles. The equations of motion of the
vehicles/sensors are

(51)

where are the coordinates of the centers of the
vehicles, their orientations and , are the forward and
angular velocity inputs, respectively, and . For
this vehicle model, because of the inherent nonholonomic con-
straints, the scheme from Fig. 1 cannot be applied directly, as in
the case of single and double integrators. In this case, we are in-
stead going to apply a scalar feedback, for each agent: we adjust
only the forward velocity input , keeping the angular velocity

constant. Similar schemes have been effectively applied in
[24] and [48] for single agent extremum seeking problems. The
whole scheme containing both the vehicle and the discrete-time
control algorithm is represented in Fig. 4. Our immediate con-
cern is the mapping of the continuous-time unicycle variables
to their discrete-time equivalents. It is straightforward to show
that we have (see also [24])

(52)

(53)

where . Assuming that the perturbation signal is
given by

(54)

we obtain that its maps to the cost function inputs,

and

, are

(55)
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Fig. 3. Nash equilibrium seeking scheme for force-actuated vehicles.

Fig. 4. Nash equilibrium seeking scheme for unicycles.

(56)

After further applying standard trigonometric transformations
and by doing the discrete-time integration we obtain

(57)

(58)

where , and and

are and, therefore, absolutely sum-
mable due to (A.2). Now, we define the “perturbation signal”

[compare to in (4)], and con-
sider the tracking error given by(9). Therefore, from (52) and
(53) we obtain the following recursive tracking error equation,
analogous to (19), for each agent

(59)
where and

.
By converting the products of sinusoids in (59) into sums, and

by proceeding in an analogous way to the proof of Theorem 1

[the derivation after equation (19)], we obtain the same tracking
equation (31) but with a slightly different matrix . Namely,
from (59), (57), and (58) it can be seen that the blocks of

matrix will be the sums of two terms,

, because of the presence of two “perturbing” signals, and
two “demodulating” signals, originating from conversion of the
products of sinusoids in (59) into sums with frequencies
and and with corresponding phase shifts. Therefore, we
replace Assumption (A.12) with (A.12’), which differs only in
the definition of :

(A.12’) There exists a continuously differentiable Lyapunov
function such that

(60)

for all , , where ,

,

for , , and

. The other terms in the
overall tracking equation will remain the same, except for the
structural differences in the “perturbation” terms inside in
(31), which will remain summable a.s. if Assumption (A.8) is
replaced by:

(A.8’) , : are rational
numbers, , and for all permutations of
set , and , the following
holds: , ,

, and
.

Thus, we have proved the following theorem:
Theorem 2: Consider the system of networked unicycles

with Nash equilibrium seeking scheme defined in Fig. 4 where
the perturbation signal is defined in (54). Let Assumptions
(A.1)–(A.7), (A.8’), (A.9)–(A.11), and (A.12’) be satisfied.
Then the positions of the
vehicles converge to the Nash equilibrium a.s.

D. Applications

In mobile sensor networks the information that the agents
have about the environment as well as about the actions and
properties of the other agents is typically limited to certain local
sensing and local low bandwidth communications. Therefore,
the proposed schemes can be effectively applied here, due to
their adaptive nature and because the problem is approached
in the framework of noncooperative games, which can effec-
tively capture distributed information structure constraints. The
problem of designing individual cost functions in such a way
that a Nash equilibrium corresponds to some global goal or a
Pareto optimal point has been treated extensively in the existing
literature (see, e.g., [3], [6], [9], [10]). In general, achieving a
social (centralized) goal is not an easy task in noncooperative
scenarios. The agents are acting selfishly (locally) and the co-
operation is to be imposed by proper design of the agents’ cost
functions. In what follows, we are going to present some exam-
ples of how to select the agents’ costs such that, by applying
the proposed Nash equilibrium seeking algorithm, some typical
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problems in mobile sensor networks can be solved in an adap-
tive and distributed way.

1) Connectivity Control: Connectivity control in mobile
robotic networks has been analyzed intensively in the existing
literature. In many practical applications these networks are
designed for achieving some primary objective, assuming
that the overall connectivity is preserved or kept above some
threshold level. In these situations, connectivity preserving can
be considered as a secondary objective (see, e.g., [25]–[28] and
references therein). In what follows we propose an approach
related to [25], [27], where the authors use potential functions
for locally preserving existing links in the network while
performing some primary objective. However, our approach
does not require any direct inter-agent or absolute position
measurements and can be applied to the robots with any motion
dynamics mentioned in previous subsections.

Broadening the scenarios analyzed in [22] and [24], where
an agent is either searching for a source of some signal with un-
known distribution, or positioning itself to an optimal sensing
point for an estimation task, in our interconnected problem set-
ting, the individual costs of the agents can be designed to achieve
a compromise between the mentioned “local” goals, and a “col-
lective” goal of keeping good connections with selected neigh-
boring agents. This can be important in, for example, distributed
estimation where the local estimators are communicating with
each other to improve the overall performance (see, e.g., [49]).
Hence, the cost functions for agents can be written as sums

where corresponds
to a “local” goal (depending only on the decision of agent )
and is an interconnection term defining a “collec-
tive” goal. The former one can correspond to the variance of the
agents’ intercommunication noise, or it can be the reciprocal
value of the signal power received from the neighbors, which
can be directly measured. In the latter case, assuming that the
signal power is inversely proportional to the squared distance
between the agents, i.e., , and taking
its reciprocal value as the interconnection term which is to be
minimized, we can define quadratic cost functions as

(61)

where we assumed that local goals are strictly convex
quadratic functions, i.e., that , is the Euclidian
norm and the coefficients are selected a priori, reflecting the
importance of the signal received from the th agent. Also, we
assume that the communication topology is fixed, i.e., that the
sets are time-invariant for all . Therefore, the elements of the
matrix in (42) are ,

. It is straightforward to check that the matrix
is strictly diagonally dominant and stable. Hence, in this case
the game will always admit a unique Nash equilibrium and the
condition (A.12) is satisfied for any diagonal positive definite

[see conditions (37) and (38)]. Therefore, when deployed,
the mobile agents do not need to know the parameters of the
cost functions (61): they only need to measure the “local” costs
and the power of a signal received from the neighbors.

2) Formation Control and Rendezvous: Consider the fol-
lowing cost functions

which correspond to a formation control problem (see,
e.g., [30]), where are the desired vectors of inter-agent dis-
tances, and are positive constants. Note that this can be
considered as a special case of the connectivity control costs
(61) where the quadratic term corresponding to the “local” ob-
jective is zero ( ) and where .
Therefore, the matrix is not going to be strictly diagonally
dominant anymore since at least one eigenvalue is 0. Hence, if
the desired distances are feasible, i.e., if they are defined
such that (41) has a solution, we will have infinite number of
Nash equilibria. Furthermore, observe that, in this case, the ma-
trix is actually the weighted Laplacian matrix of the graph
defined by the coefficients . Hence, by relaxing (A.12) to
allow multiple equilibria as commented in Remark 2, we can
again apply our Nash equilibrium seeking schemes. The set
of Nash equilibria has to satisfy linear equation (41), so that
(31), without the “structural perturbation” and noise terms, rep-
resents, in this case, a standard linear formation control algo-
rithm (or a consensus algorithm with constant input term , see,
e.g., [29], [30]) with time-varying gains ( ), so that we can
choose standard Lyapunov function applied to these problems
(see, e.g., [29]). However, in order to obtain the values of the
individual costs, the agents need to measure their own absolute
positions and distances to the neighbors (or neighbors’ absolute
positions), which might not be more efficient than just using
a gradient descent algorithm. Nevertheless, if we set
for all , and if the underlying, time-invariant
graph having the Laplacian matrix , is strongly connected [30],
the agents will converge to a single point, thus achieving a con-
sensus on positions, or rendezvous. In this case, the agents do not
need absolute position measurements or direct measurements
of inter-agent distances; convergence can be achieved based
only on the power of a signal received from the neighbors. A
similar algorithm has been analyzed in [50] where the almost
sure convergence to a consensus point is proved assuming that
the inter-agent state differences can be measured (with additive
noise). See also [32] where the consensus algorithm was treated
in the context of potential games.

3) Coverage Control: As mentioned in Section IV, if the un-
derlying game is a potential game, the potential function can
be chosen as a Lyapunov function in (A.12). Based on this re-
sult, it is possible to apply the proposed schemes to the coverage
control problem defined in [31] and formulated as a potential
game in [32], [33]. Namely, by taking the global coverage con-
trol objective function (as defined in [31]) as a potential func-
tion, it is possible to assign, so called, Wonderful Life individual
cost functions [3], [32], [33] to each agent. It can be shown that
these costs have physical meaning and that, assuming limited
detection radius, their value at the current position can be ob-
tained by only locally counting detected events and by com-
municating only with the close enough neighboring agents (see
also [33] where a detailed analysis of this problem is presented).
These cost functions actually encode a proximity based commu-
nication topology. By applying the proposed Nash equilibrium
seeking schemes, we can solve the coverage control problem in
a distributed way, without position measurements and without
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Fig. 5. Trajectories of the force-actuated vehicles.

any a priori knowledge about the distribution of the events to be
detected and about the detection capabilities of the individual
agents.

E. Simulations

Example 1: In this example we illustrate the algorithm
proposed in Fig. 3 for a network of three force-actu-
ated vehicles where the cost functions are given by (61)

with , ,

, , , , ,
and . Hence,

by solving (41) we obtain that the unique Nash equilibrium
is the point .
It reflects the compromise between the agents’ “local” objec-
tives ( , and ), and the “collective”
objective of maintaining the network connectivity, deter-
mined by the values of the interconnection coefficients ( ,

, ). For the other system parameters
we assume the following values: the noise covariance ma-
trix (6) is , (this
phase shift is needed to compensate for the shift obtained
in (50) so that the matrix in (A.12) is positive definite),

, (washout filters), ,
, for , and ,

. We are allowed to pick the same frequencies for the
vehicles 1 and 3 since they are not interconnected. The trajec-
tories of the vehicles are shown in Fig. 5, and the coordinates,
as a function of time, for the first vehicle are shown in Fig. 6,
for the initial conditions , ,

. The time responses for the other two vehi-
cles are similar. The convergence to the Nash equilibrium while
eliminating the measurement noise, is evident. The final minor
fluctuations around the equilibrium point are due to the slow
convergence of the perturbation amplitudes
which are always present as additive inputs. These amplitudes
converge to zero much slower than the feedback signals (the
outputs of the integrators in Fig. 1) which are additionally
multiplied by . This can also be seen from the definition

Fig. 6. Coordinates of the first vehicle. The Nash equilibrium is shown as the
red line.

Fig. 7. Coordinates of the first vehicle: slower convergence rate. The Nash
equilibrium is shown as the red line.

of the tracking error (9) which converges to zero faster than the
perturbation signal alone.

In Fig. 7, a time response for the first agent is depicted for
the case of slower convergence of the gains which are
here , while all the other parame-
ters are kept the same. In this case, the convergence rate to the
Nash equilibrium is slower and the algorithm is more sensitive
to noise, compared to the responses in Fig. 6.

Example 2: In this example, we consider the formation con-
trol game, as presented in Section V-D2, performed by three uni-
cycles. Their goal is to reach a formation in which all mutual dis-
tances are the same, equal to 1. Therefore, we apply the scheme
shown in Fig. 4 with the cost functions given in (61) and with the
following parameters: , ,

, , , and
, whose Nash

equilibrium corresponds to the formation with all the inter-ve-
hicle distances equal to 1. The other parameters of the scheme
are , , ,

, , ,
( ), for , , ,
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Fig. 8. Trajectories of the unicycles.

Fig. 9. Distances between the unicycles.

and . It is easy to check that all the conditions nec-
essary for applying Theorem 2 are satisfied. Trajectories of the
unicycles are shown in Fig. 8, where we have assumed that all
the vehicles are initially at the origin. Trajectories are typical
for vehicles with rolling without slipping condition (due to non-
holonomic constraints) where spikes correspond to the points
where a vehicle changes direction of motion. Distances between
the vehicles, as functions of time, are shown in Fig. 9. It is evi-
dent that all the distances converge to the desired one. The center
of the formation depends on the initial conditions and the noise
realization. As in the previous example, the small fluctuations
after the Nash equilibrium has already been reached, are due
to the slow convergence of the perturbation amplitudes ,
compared to the convergence rate of the tracking error (9).

VI. CONCLUSION

We have proposed a method for distributive seeking of Nash
equilibria in noncooperative games, based only on measure-
ments of the individual cost functions, corrupted by noise. The
players are allowed to possess some local linear dynamics, so

that their actions are filtered before affecting the measured cost
functions. We have formulated conditions on the structure of
the game and on the parameters of the proposed scheme, under
which we proved almost sure convergence to a Nash equilib-
rium. It is demonstrated that the proposed method can be applied
to networks of mobile robots, where the robots can have single
integrator, double integrator or unicycle motion dynamics. We
argue that it is desirable and, in some cases, inevitable to use
the proposed algorithm for solving problems in mobile sensor
networks since these networks usually operate in only partially
known or unknown and unpredictable environments with dis-
tributed information structure constraints. We give examples
of how to formulate problems of connectivity control, forma-
tion control, rendezvous, and coverage control as noncooper-
ative games, which can then be directly solved using the pro-
posed framework. The proposed schemes have been illustrated
through simulations.

As a possible future research direction, one could consider
extending the proposed schemes such that they can handle
hard-constraints on the actions/positions of the players. In this
way, the convergence to a Nash equilibrium could be guaran-
teed while achieving a collision and/or obstacle avoidance.

APPENDIX

Proof of Lemma 3: From (12) it follows that
. If , is

the impulse response matrix of the system with the transfer
function matrix , we have

(62)

so that

(63)

where denotes exponentially decaying terms (due to pos-
sible nonzero initial condition), and can be considered as
the output of a time-varying MIMO system with the impulse
response matrix and input , i.e.,

. System is bounded-input,
bounded-output (b.i.b.o.) stable, having in mind that all the el-
ements of are absolutely summable under the formu-
lated assumptions [ is exponentially stable and satisfies
(A.2)–(A.5)]. Therefore, since satis-
fies Assumption (A.2) and is bounded.

Proof of Lemma 4: From (14) and the fact that
, where is the impulse response matrix of ,

we obtain

(64)
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where denotes exponentially decaying terms (due to pos-
sible nonzero initial condition). After iterating (13) times and
plugging into the first term in (64), we obtain

(65)

After regrouping the terms in (65), we obtain

(66)

where we have incorporated in due to its
exponential decaying. Defining a time varying system with
the impulse response matrix , where

, we can write

(67)

where is the output of when
the input is , which is uniformly bounded by assumption.
One can easily verify that is b.i.b.o. stable under the adopted
assumptions implying that is uniformly bounded. There-
fore, we can conclude that since
satisfies (A.5).

Proof of Lemma 5: By denoting
, we have that

(68)

for some , , where is the integer pe-
riod of . The first term in the last expression in (68) con-
verges due to the fact that satisfies (A.2). For the second
term we will show that , for
some constant . From (15), by using binomial expansion, it
follows that

(69)

for some . Therefore, due to the boundedness
of and it is easy to derive that

, for some uniformly bounded
and some constant , . From this it follows that

, for some large enough .
This proves that the last term in (68) is summable, due to (A.5),
which proves the lemma.
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Dragoslav Šiljak) in electrical engineering from
Santa Clara University, Santa Clara, CA, in 1996
and 2000, respectively.

He was an Adjunct Lecturer and Research Asso-
ciate with the Department of Electrical Engineering,
Santa Clara University, from 1998 to 2001, and a
Research Associate in Prof. Claire Tomlin’s Hybrid

Systems Laboratory, Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA, from 2001 to 2004. Since 2004, he has been a faculty
member in the Department of Industrial and Enterprise Systems Engineering
and Control and Decision Group of the Coordinated Science Laboratory at
the University of Illinois at Urbana-Champaign. His research interests include
decentralized control and estimation of interconnected systems with application
to control of formations of vehicles and sensor networks, stability of discon-
tinuous dynamic systems, differential game theory, and optimization with
application to multiple vehicle coordination and systems safety verification.


