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We study the evolution of opinions (or beliefs) over a social network modeled as a signed graph. The sign attached to an
edge in this graph characterizes whether the corresponding individuals or end nodes are friends (positive links) or enemies
(negative links). Pairs of nodes are randomly selected to interact over time, and when two nodes interact, each of them
updates its opinion based on the opinion of the other node and the sign of the corresponding link. This model generalizes
the DeGroot model to account for negative links: when two adversaries interact, their opinions go in opposite directions.
We provide conditions for convergence and divergence in expectation, in mean-square, and in almost sure sense and exhibit
phase transition phenomena for these notions of convergence depending on the parameters of the opinion update model
and on the structure of the underlying graph. We establish a no-survivor theorem, stating that the difference in opinions
of any two nodes diverges whenever opinions in the network diverge as a whole. We also prove a live-or-die lemma,
indicating that almost surely, the opinions either converge to an agreement or diverge. Finally, we extend our analysis to
cases where opinions have hard lower and upper limits. In these cases, we study when and how opinions may become
asymptotically clustered to the belief boundaries and highlight the crucial influence of (strong or weak) structural balance
of the underlying network on this clustering phenomenon.
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1. Introduction

1.1. Motivation

We all form opinions about economical, political, and so-
cial events that take place in society. These opinions can be
binary (e.g., whether one supports a candidate in an elec-
tion or not) or continuous (to what degree one expects a
prosperous future economy). Our opinions are revised when
we interact with each other over various social networks.
Characterizing the evolution of opinions and understanding
the dynamic and asymptotic behavior of the social belief
are fundamental challenges in the theoretical study of social
networks.

Building a good model on how individuals interact and
influence each other is essential for studying opinion dy-
namics. In interaction models, it is natural that a trusted
friend should have a different influence on opinion forma-
tion than would a dubious stranger. The observation that

sentiment influences opinions can be traced back to the
1940s when Heider (1946) introduced the theory of signed
social networks, where each interaction link in the social
network is associated with a sign (positive or negative) in-
dicating whether two individuals are friends or enemies.
Efforts to understand the structural properties of signed
social networks have led to the development of structural
balance theory, with seminal contributions by Cartwright
and Harary (1956) and Davis (1963, 1967). A fundamen-
tal insight from these studies, formalized in Harary’s theo-
rem (Harary 1953), is that local structural properties imply
hard global constraints on the social network formation.

In this paper, we attempt to model the evolution of opin-
ions in signed social networks when local hostile or antago-
nistic relations influence the global social belief. The relative
strengths and structures of positive and negative relations are
shown to have an essential effect on opinion convergence. In
some cases, tight conditions for convergence and divergence
can be established.

585

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
6.

15
2.

14
2.

35
] 

on
 0

1 
M

ar
ch

 2
01

7,
 a

t 1
3:

22
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

mailto:guodong.shi@anu.edu.au
mailto:alepro@kth.se
mailto:mikaelj@kth.se
mailto:baras@umd.edu
mailto:kallej@kth.se


Shi et al.: The Evolution of Beliefs over Signed Social Networks
586 Operations Research 64(3), pp. 585–604, © 2016 INFORMS

1.2. Related Work

The concept of signed social networks was introduced
by Heider (1946). His objective was to formally distinguish
between friendly (positive) and hostile (negative) relation-
ships. The notion of structural balance was introduced to
understand local interactions and formalize intricate local
scenarios (e.g., two of my friends are enemies). A num-
ber of classical results on social balance was established
by Harary (1953), Cartwright and Harary (1956), Davis
(1963, 1967), who derived critical conditions on the global
structure of the social network which ensure structural bal-
ance. Social balance theory has since become an impor-
tant topic in the study of social networks. On one hand,
efforts are made to characterize and compute the degree
of balance for real-world large social networks, e.g., Fac-
chetti et al. (2011). On the other hand, dynamical models
are proposed for the signs of social links with the aim of
describing stable equilibria or establishing asymptotic con-
vergence for the sign patterns, e.g., Galam (1996) (where a
signed structure was introduced as a revised Ising model of
political coalitions, where two competing world coalitions
were shown to have one unique stable formation); Macy
et al. (2003) (who verified convergence to structural bal-
ances numerically for a Hopfield model); and Marvel et al.
(2011) (where a continuous-time dynamical model for the
link signs was proposed under which convergence to struc-
tural balance was proven).

Opinion dynamics is another longstanding topic in the
study of social networks; see Jackson (2008) and Easley
and Kleinberg (2010) for recent textbooks. Following the
survey Acemoglu and Ozdaglar (2011), we classify opinion
evolution models into Bayesian and non-Bayesian updat-
ing rules. Their main difference lies in whether each node
has access to and acts according to a global model or not.
We refer to Banerjee (1992), Bikhchandani et al. (1992),
and more recent work (Acemoglu et al. 2011) for Bayesian
opinion dynamics. In non-Bayesian models, nodes follow
simple local updating strategies. DeGroot’s model (De-
Groot 1974) is a classical non-Bayesian model of opinion
dynamics, where each node updates its belief as a convex
combination of its neighbors’ beliefs; e.g., DeMarzo et al.
(2003), Golub and Jackson (2010), Jadbabaie et al. (2012).
Note that DeGroot’s model relates to averaging consensus
algorithms; e.g., Tsitsiklis (1984), Xiao and Boyd (2004),
Boyd et al. (2006), Tahbaz-Salehi and Jadbabaie (2008),
Fagnani and Zampieri (2008), Touri and Nedić (2011),
Matei et al. (2013). Nonconsensus asymptotic behaviors,
e.g., clustering, disagreement, and polarization, have been
investigated for linear or nonlinear variations of DeGroot-
type update rules, Krause (1997), Blondel et al. (2009,
2010), Dandekar et al. (2013), Shi et al. (2013), Li et al.
(2013). Various models from statistical physics have also
been applied to study social opinion dynamics; please refer
to Castellano et al. (2009) for a survey.

The influence of misbehaving nodes in social networks
hase been studied only to some extent. For instance, in

Acemoglu et al. (2010), a model of the spread of mis-
information in large societies was discussed. There, some
individuals are forceful, meaning that they influence the
beliefs of some of the other individuals they meet but do
not change their own opinions. In Acemoglu et al. (2013),
the authors studied the propagation of opinion disagreement
under DeGroot’s model, when some nodes stick to their
initial beliefs during the entire evolution. This idea was
extended to binary opinion dynamics under the voter model
in Yildiz et al. (2013). In Altafini (2012, 2013), the author
proposed a linear model for belief dynamics over signed
graphs. In Altafini (2013), it was shown that a bipartite
agreement, i.e., clustering of opinions, is reached as long
as the signed social graph is strongly balanced in the sense
of the classical structural balance theory (Cartwright and
Harary 1956), which presents an important link between
opinion dynamics and structure balance. However, in the
model studied in Altafini (2012, 2013), all beliefs con-
verge to a common value, equal to zero, if the graph is not
strongly balanced. This behavior seems to be difficult to
interpret and justify from real-world observations. A game-
theoretical approach for studying the interplay between
good and bad players in collaborative networks was intro-
duced in Theodorakopoulos and Baras (2008).

1.3. Contribution

We propose and analyze a new model for belief dynam-
ics over signed social networks. Nodes randomly execute
pairwise interactions to update their beliefs. In case of a
positive link (representing that the two interacting nodes are
friends), the update follows DeGroot’s update rule, which
drives the two beliefs closer to each other. On the con-
trary, in case of a negative link (i.e., when the two nodes
are adversaries (enemies)), the update increases the differ-
ence between the two beliefs. Thus, two opposite types
of opinion updates are defined, and the beliefs are driven
not only by random node interactions but also by the type
of relationship of the interacting nodes. Under this sim-
ple attraction-repulsion model for opinions on signed social
networks, we establish a number of fundamental results on
belief convergence and divergence and study the impact
of the parameters of the update rules and of the network
structure on the belief dynamics.

Using classical spectral methods, we derive conditions
for mean and mean-square convergence and divergence
of beliefs. We establish phase transition phenomena for
these notions of convergence and study how the thresholds
depend on the parameters of the opinion update model and
on the structure of the underlying graph. We derive phase
transition conditions for almost sure convergence and diver-
gence of beliefs. The proofs are based on what we call the
Triangle lemma, which characterizes the evolution of the
beliefs held by three different nodes. We utilize probabilis-
tic tools such as the Borel–Cantelli lemma, the Martingale
convergence theorems, the strong law of large numbers, and
sample-path arguments.
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We establish two counterintuitive results about the way
beliefs evolve: (i) a no-survivor theorem, which states that
the difference between opinions of any two nodes tends
to infinity almost surely (along a subsequence of instants)
whenever the difference between the maximum and the
minimum beliefs in the network tends to infinity (along
a subsequence of instants), and (ii) a live-or-die lemma,
which demonstrates that almost surely, the opinions either
converge to an agreement or diverge. We also show that
networks whose positive component includes a hypercube
are (essentially, the only) robust networks in the sense that
almost sure convergence of beliefs holds irrespective of the
number of negative links, their positions in the network,
and the strength of the negative update.

The considered model is extended to cases where updates
may be asymmetric (in the sense that when two nodes
interact, only one of them updates its belief), and where
beliefs have hard lower and upper constraints. The latter
boundedness constraint adds slight nonlinearity to the belief
evolution. It turns out in this case that the classical social
network structural balance theory plays a fundamental role
in determining the asymptotic formation of opinions:

• If the social network is structurally balanced (strongly
balanced or complete and weakly balanced), i.e., the net-
work can be divided into subgroups with positive links
inside each subgroup and negative links among different
subgroups, then almost surely the beliefs within the same
subgroup will be clustered to one of the belief boundaries,
when the strength of the negative updates is sufficiently
large.

• In the absence of structural balance, and if the posi-
tive graph of the social network is connected, then almost
surely the belief of each node oscillates between the lower
and upper bounds and touches the two belief boundaries an
infinite number of times.

For balanced social networks, the boundary clustering re-
sults are established based on the almost sure happening of
suitable separation events; i.e., the node beliefs for a sub-
group become group polarized (either larger or smaller than
the remaining nodes’ beliefs). From this argument such
events tend to happen more easily in the presence of small
subgroups. As a result, small subgroups contribute to faster
clustering of the social beliefs, which is consistent with the
study of minority influence in social psychology (Nemeth
1986, Clark and Maass 1990), suggesting that consistent
minorities can substantially influence opinions. For unbal-
anced social networks, the established opinion oscillation
contributes to a new type of belief formation that comple-
ments polarization, disagreement, and consensus (Dandekar
et al. 2013).

1.4. Paper Organization

In §2, we present the signed social network model, specify
the dynamics along positive and negative links, and define
the problem of interest. Section 3 focuses on the mean and
mean-square convergence and divergence analysis, and §4

considers convergence and divergence in the almost sure
sense. In §5, we study a model with upper and lower belief
bounds and asymmetric updates. It is shown how structural
balance determines the clustering of opinions. Finally, con-
cluding remarks are given in §6. The proofs of the main
statements are in the appendices and some nonessential
proofs have been put in the online e-companion (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2015.1448).

1.5. Notation and Terminology

An undirected graph is denoted by G = 4V1E5. Here V =

811 0 0 0 1 n9 is a finite set of vertices (nodes). Each element in
E is an unordered pair of two distinct nodes in V called an
edge. The edge between nodes i1 j ∈ V is denoted by 8i1 j9.
Let V∗ ⊆ V be a subset of nodes. The induced graph of
V∗ on G, denoted GV∗

, is the graph 4V∗1EV∗
5 with 8u1 v9 ∈

EV∗
, u1 v ∈ V∗ if and only if 8u1 v9 ∈ E. A path in G with

length k is a sequence of distinct nodes, v1v2 0 0 0 vk+1, such
that 8vm1 vm+19 ∈ E, m = 11 0 0 0 1 k. The length of a short-
est path between two nodes i and j is called the distance
between the nodes, denoted d4i1 j5. The greatest length
of all shortest paths is called the diameter of the graph,
denoted diam4G5. The degree matrix of G, denoted D4G5,
is the diagonal matrix diag4d11 0 0 0 1 dn5 with di denoting
the number of nodes sharing an edge with i1 i ∈ V. The
adjacency matrix A4G5 is the symmetric n×n matrix such
that 6A4G57ij = 1 if 8i1 j9 ∈ E and 6A4G57ij = 0 otherwise.
The matrix L4G5 2= D4G5− A4G5 is called the Laplacian
of G. Two graphs containing the same number of vertices
are called isomorphic if they are identical, subject to a per-
mutation of vertex labels.

All vectors are column vectors and denoted by lowercase
letters. Matrices are denoted with uppercase letters. Given
a matrix M , M ′ denotes its transpose and Mk denotes the
k-th power of M when it is a square matrix. The ij-entry
of a matrix M is denoted 6M7ij . Given a matrix M ∈ �mn,
the vectorization of M , denoted by vec4M5, is the mn× 1
column vector 46M7111 0 0 0 1 6M7m11 0 0 0 1 6M71n1 0 0 0 1 6M7mn5

′.
We have vec4ABC5 = 4C ′ ⊗ A5vec4B5 for all real matri-
ces A1B1C with ABC well defined. A square matrix M is
called a stochastic matrix if all of its entries are nonnega-
tive and the sum of each row of M equals one. A stochastic
matrix M is doubly stochastic if M ′ is also a stochastic
matrix. With the universal set prescribed, the complement
of a given set S is denoted Sc. The orthogonal complement
of a subspace S in a vector space is denoted S⊥. Depend-
ing on the argument, � · � stands for the absolute value of a
real number, the Euclidean norm of a vector, and the cardi-
nality of a set. Similarly with argument well defined, �4 · 5
represents the �-algebra of a random variable (vector) or
the spectrum of a matrix. The smallest integer no smaller
than a given real number a is denoted �a�. We use �4 · 5 to
denote the probability, Ɛ8 · 9 the expectation, and �8 · 9 the
variance of their arguments, respectively.
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Figure 1. (Color online) A signed social network.
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2. Opinion Dynamics over Signed Social
Networks

In this section, we present our model of interaction between
nodes in a signed social network, and describe the resulting
dynamics of the beliefs held by each node.

2.1. Signed Social Network and Peer Interactions

We consider a social network with n � 3 members, each
labeled by a unique integer in �1�2� � � � � n�. The network
is represented by an undirected graph G = �V�E� whose
node set V= �1�2� � � � � n� corresponds to the members and
whose edge set E describes potential interactions between
the members. Each edge in E is assigned a unique label,
either + or −. In classical social network theory, a + label
indicates a friend relation, whereas a − label indicates an
enemy relation (Heider 1946, Cartwright and Harary 1956).
The graph G equipped with a sign on each edge is then
called a signed graph. Let Epst and Eneg be the collection
of the positive and negative edges, respectively; clearly,
Epst ∩Eneg =� and Epst ∪Eneg = E. We call Gpst = �V�Epst�
and Gneg = �V�Eneg� the positive and the negative graph,
respectively; see Figure 1 for an illustration. Without loss
of generality, we adopt the following assumption through-
out the paper.

Assumption 1. The underlying graph G is connected, and
the negative graph Gneg is nonempty.

Actual interactions follow the model introduced in Boyd
et al. (2006): each node initiates interactions at the instants
of a rate-one Poisson process and at each of these instants
picks a node at random to interact with. Under this model,
at a given time, at most one node initiates an interac-
tion. This allows us to order interaction events in time and
to focus on modeling the node pair selection at interac-
tion times. The node selection process is characterized by
an n× n stochastic matrix P = �pij �, complying with the
graph G in the sense that pij > 0 always implies �i� j� ∈ E
for i �= j ∈V. The pij represents the probability that node i
initiates an interaction with node j . The node pair selection
is then performed as follows.

Definition 1. At each interaction event k � 0, (i) a node
i ∈ V is drawn uniformly at random, i.e., with probability
1/n; (ii) node i picks node j with probability pij . In this
case, we say that the unordered node pair �i� j� is selected.

The node pair selection process is assumed to be iden-
tically and independently distributed (i.i.d.); i.e., the nodes
that initiate an interaction and the selected node pairs are
identically distributed and independent over k � 0. For-
mally, the node selection process can be analyzed using the
following probability spaces. Let �E�� ��� be the prob-
ability space, where � is the discrete �-algebra on E,
and � is the probability measure defined by ���i� j�� =
�pij +pji�/n for all �i� j� ∈ E. The node selection pro-
cess can then be seen as a random event in the product
probability space �
�� ���, where 
 = E� = �� = ��0�
�1� � � � � �� ∀k��k ∈ E�, � = ��, and � is the product
probability measure (uniquely) defined by the following:
for any finite subset K ⊂�, ����k�k∈K�=

∏

k∈K ���k� for
any ��k�k∈K ∈ E�K�. For any k ∈ �, we define the coordi-
nate mapping Gk� 
→ E by Gk��� = �k, for all � ∈

(note that ��Gk =�k�=���k�), and we refer to �Gk� k=
0�1� � � �� as the node pair selection process. We further
refer to � k = ��G0� � � � �Gk� as the �-algebra capturing the
�k+ 1� first interactions of the selection process.

2.2. Positive and Negative Dynamics

Each node maintains a scalar real-valued opinion, or belief,
which it updates whenever it interacts with other nodes. We
let x�k� ∈�n denote the vector of the beliefs held by nodes
at the interaction event k.

The belief update depends on the relationship between
the interacting nodes. Suppose that node pair �i� j� is
selected at time k. The nodes that are not selected keep
their beliefs unchanged, whereas the beliefs held by nodes i
and j are updated as follows:
• (Positive Update) If �i� j� ∈ Epst, either node m ∈ �i� j�

updates its belief as

xm�k+ 1�= xm�k�+��x−m�k�− xm�k��

= �1−��xm�k�+�x−m�k�� (1)

where −m ∈ �i� j�\�m� and 0 � �� 1.
• (Negative Update) If �i� j� ∈ Eneg, either node m ∈

�i� j� updates its belief as

xm�k+ 1�= xm�k�−��x−m�k�− xm�k��

= �1+��xm�k�−�x−m�k�� (2)

where �� 0.
The positive update is consistent with the classical De-

Groot model (DeGroot 1974), where each node iteratively
updates its belief as a convex combination of the previous
beliefs of itself and of the neighbor with which it inter-
acts. This update naturally reflects trustful or cooperative
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relationships. It is sometimes referred to as naïve learning
in social networks, under which wisdom can be held by
the crowds (Golub and Jackson 2010). The positive update
tends to drive node beliefs closer to each other and can be
thought of as the attraction of the beliefs.

The dynamics on the negative edges, on the other hand,
are not yet universally agreed upon in the literature. Con-
siderable efforts have been made to characterize these mis-
trustful or antagonistic relationships, which has led to a
number of insightful models, e.g., Acemoglu et al. (2010,
2013), Altafini (2012), and Altafini (2013). Our negative
update rule enforces belief differences between interacting
nodes and is the opposite of the attraction of beliefs repre-
sented by the positive update.

2.3. Model Rationale

2.3.1. Relation to Non-Bayesian Rules. Our underly-
ing signed graph is a prescribed world with fixed trust or
mistrustful relations where nodes do not switch their rela-
tions. Two nodes holding the same opinion can be enemies
and vice versa. This contrasts Krause’s model, where trust-
ful relations are state dependent and nodes only interact
with nodes that hold similar opinions, i.e., whose beliefs
are within a given distance.

In our model, the signed graph classifies the social inter-
actions into two categories, positive and negative, each with
its own type of dynamics. Studies of stubborn agents in
social network (Acemoglu et al. 2013, Yildiz et al. 2013)
also classify nodes into two categories, but stubborn agents
do not account for the opinion of their neighbors. Our
model is more similar to the one introduced by Altafini
(2013), where the author proposed a different update rule
for two nodes sharing a negative link. The model in Altafini
(2013) is written in continuous time (beliefs evolve along
some ODE), but its corresponding discrete-time update
across a negative link 8i1 j9 ∈ Eneg is

xm4k+ 15= xm4k5−�4x−m4k5+ xm4k55

= 41 −�5xm4k5−�x−m4k51 m ∈ 8i1 j91 (3)

where � ∈ 40115 represents the negative strength. This
update rule admits the following interpretations:

• Node i attempts to trick her negative neighbors j , by
flipping the sign of her true belief (i.e., xi4k5 to −xi4k5)
before revealing it to j;

• Node i recognizes j as her negative neighbor and upon
observing j’s true belief, xj4k5, she tries to get closer to the
opposite view of j since xi4k+15 is a convex combination
of xi4k5 and −xj4k5.

In both of the two interpretations of the Altafini model,
the belief origin must be of some particular significance
in the nodes’ belief space. This is not the case for
our model, where the positive/negative dynamics describe
choices intended to keep close to friends and keep dis-
tance from enemies. When nodes i and j perform a negative

update in our model, if xi4k5 > xj4k5, then xi4k + 15 >
xi4k5 and if xi4k5 < xj4k5, then xi4k+ 15 < xi4k5. That is,
in either case, the node’s updated opinion is in a direction
away from the opinion of the interacting node (i.e., nodes
make an effort to “keep distance from the enemies" and do
not assign any special meaning to the belief origin).

Remark 1. The Altafini model (Altafini 2013) and the cur-
rent work are intended for building theories to opinion
dynamics over signed social networks. Indeed nontrivial
efforts have been made to model the dynamics of signed
social networks themselves (Galam 1996, Macy et al. 2003,
Marvel et al. 2011). It is intriguing to ask how opinions
and social networks shape each other in the presence of
trustful/mistrustful relations, where fundamental difficulty
arises in how to properly model such couplings as well as
the challenges brought by the couplings.

2.3.2. Relation to Bayesian Rules. Bayesian opinion
dynamics assume that there is a global model of the world
and individuals aim to realize asymptotic learning of the
underlying world (Banerjee 1992, Bikhchandani et al. 1992,
Acemoglu et al. 2011). It has been shown that a DeGroot
update can also serve as a naive learning approach as long
as the network somehow contains no dictators (Golub and
Jackson 2010).

We argue here our model corresponds to the situation
where nodes naively follow the code of keeping distance
with enemies and keeping close to friends rather than hav-
ing interest in some underlying world model. Our defi-
nition of the negative dynamics becomes quite natural if
one views the DeGroot type of update as the approach
of keeping close to friends. This simple yet informative
model leads to a number of nontrivial belief formations in
terms of convergence or divergence for unconstrained evo-
lution, consensus, clustering, or oscillation under bounded-
ness constraint.

We note that it is an interesting open challenge to find
a proper model for Bayesian learning over signed social
networks since nodes must learn in the presence of negative
interactions, on the one hand, and may try to prevent their
enemies from asymptotic learning, on the other.

3. Mean and Mean-Square
Convergence/Divergence

Let x4k5 = 4x14k51 0 0 0 1 xn4k55
′1 k = 0111 0 0 0 be the (ran-

dom) vector of beliefs at time k resulting from the node
interactions. The initial beliefs x405, also denoted as x0,
is assumed to be deterministic. In this section, we inves-
tigate the mean and mean-square evolution of the beliefs
for the considered signed social network. We introduce the
following definition.

Definition 2. (i) Belief convergence is achieved in expec-
tation if limk→� Ɛ8xi4k5 − xj4k59 = 0 for all i and j; in
mean square if limk→� Ɛ84xi4k5 − xj4k55

29 = 0 for all i
and j .
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(ii) Belief divergence is achieved in expectation if
lim supk→� maxi1 j �Ɛ8xi4k5− xj4k59� = �; in mean square
if lim supk→� maxi1 j Ɛ84xi4k5− xj4k55

29= �.

The belief dynamics as described above can be written as

x4k+ 15=W4k5x4k51 (4)

where W4k5, k = 0111 0 0 0 are i.i.d. random matrices satis-
fying

�4W4k5=W+

ij 2= I−�4ei−ej54ei−ej5
′5=

pij +pji

n
1

8i1j9∈Epst1

�4W4k5=W−

ij 2= I+�4ei−ej54ei−ej5
′5=

pij +pji

n
1

8i1j9∈Eneg1

(5)

and em = 40 0 0 00 1 0 0 0 005′ is the n-dimensional unit vector
whose m-th component is 1. In this section, we use spectral
properties of the linear system (4) to study convergence and
divergence in mean and mean-square. Our results can be
seen as extensions of existing convergence results on deter-
ministic consensus algorithms, e.g., Xiao and Boyd (2004).

3.1. Convergence in Mean

We first provide conditions for convergence and divergence
in mean. We then exploit these conditions to establish the
existence of a phase transition for convergence when the
negative update parameter � increases. These results are
illustrated at the end of this subsection. For technical rea-
sons we adopt the following assumption in this subsection.

Assumption 2. There holds either (i) pii ¾ 1/2 for all
i ∈ V or (ii) P = 6pij 7 is doubly stochastic with n¾ 4.

Generalization to the case when Assumption 2 does not
hold is essentially straightforward but under a bit more
careful treatment.

3.1.1. Convergence/DivergenceConditions. DenoteP †

= 4P + P ′5/n. We write P † = P †
pst + P †

neg, where P †
pst

and P †
neg correspond to the positive and negative graphs,

respectively. Specifically, 6P †
pst7ij = 6P †7ij if 8i1 j9 ∈ Epst

and 6P †
pst7ij = 0 otherwise, whereas 6P †

neg7ij = 6P †7ij if
8i1 j9 ∈ Eneg and 6P †

neg7ij = 0 otherwise. We further intro-
duce the degree matrix D†

pst = diag4d+

1 0 0 0 d+
n 5 of the

positive graph, where d+

i =
∑n

j=11 j 6=i6P
†
pst7ij . Similarly,

the degree matrix of the negative graph is defined as
D†

neg = diag4d−
1 0 0 0 d−

n 5 with d−
i =

∑n
j=11 j 6=i6P

†
neg7ij . Then

L†
pst = D†

pst − P †
pst and L†

neg = D†
neg − P †

neg represent the
(weighted) Laplacian matrices of the positive graph Gpst

and negative graph Gneg, respectively. It can be easily
deduced from (5) that

Ɛ8W4k59= I −�L†
pst +�L†

neg0 (6)

Clearly, 1′ Ɛ8W4k59 = Ɛ8W4k591 = 1 where 1 = 41 0 0 015′

denotes the n × 1 vector of all ones, but Ɛ8W4k59 is not
necessarily a stochastic matrix since it may contain negative
entries.

Introduce yi4k5 = xi4k5 −
∑n

s=1 xs4k5/n and let y4k5 =

4y14k5 0 0 0 yn4k55
′. Define U 2= 11′/n and note that y4k5 =

4I −U5x4k5; furthermore, 4I −U5W4k5=W4k54I −U5=

W4k5−U for all possible realizations of W4k5. Hence, the
evolution of Ɛ8y4k59 is linear:

Ɛ8y4k+ 159= Ɛ84I −U5W4k5x4k59

= Ɛ84I −U5W4k54I −U5x4k59

= 4Ɛ8W4k59−U5Ɛ8y4k590

The following elementary inequalities

�Ɛ8xi4k5− xj4k59�¶ �Ɛ8yi4k59� + �Ɛ8yj4k59�1

�Ɛ8yi4k59�¶
1
n
Ɛ

n
∑

s=1

�xi4k5− xs4k5�
(7)

imply that belief convergence in expectation is equivalent
to limk→� �Ɛ8y4k59� = 0, and belief divergence is equiv-
alent to lim supk→� �Ɛ8y4k59� = �. Belief convergence or
divergence is hence determined by the spectral radius of
Ɛ8W4k59−U .

With Assumption 2, there always holds that

d+

i =

n
∑

j=11 j 6=i

6P †
pst7ij ¶

n
∑

j=11 j 6=i

4pij +pji5/n¶ 1/20

As a result, Geršhgorin’s Circle Theorem (see, e.g., The-
orem 6.1.1 in Horn and Johnson 1985) guarantees that
each eigenvalue of I −�L†

pst is nonnegative. It then follows
that each eigenvalue of I −�L†

pst −U is nonnegative since
L†

pstU = UL†
pst = 0 and the two matrices I − �L†

pst and U
share the same eigenvector 1 for eigenvalue one. Moreover,
it is well known in algebraic graph theory that L†

pst and
L†

neg are positive semidefinite matrices. As a result, Weyl’s
inequality (see Theorem 4.3.1 in Horn and Johnson 1985)
further ensures that each eigenvalue of Ɛ8W4k59−U is also
nonnegative. To summarize, we have shown the following:

Proposition 1. Let Assumption 2 hold. Belief convergence
is achieved in expectation for all initial values if �max4I −

�L†
pst + �L†

neg − U5 < 1; belief divergence is achieved in
expectation for almost all initial values if �max4I −�L†

pst +

�L†
neg −U5> 1.

In the above proposition and what follows, �max4M5
denotes the largest eigenvalue of the real symmetric ma-
trix M ; by “almost all initial conditions,” we mean that the
property holds for any initial condition y405 except if y405
is perfectly orthogonal to the eigenspace of Ɛ8W4k59−U
corresponding to its maximal eigenvalue �max4I − �L†

pst +

�L†
neg − U5. Hence the set of initial conditions where the

property does not hold has zero Lebesgue measure.
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The Courant-Fischer Theorem (see Theorem 4.2.11 in
Horn and Johnson 1985) implies

�max4I−�L†
pst +�L†

neg −U5

= sup
�z�=1

z′4I−�L†
pst +�L†

neg −U5z

=1+ sup
�z�=1

[

−�
∑

8i1 j9∈Epst

6P †7ij4zi−zj5
2

+�
∑

8i1 j9∈Eneg

6P †7ij4zi−zj5
2
−

1
n

( n
∑

i=1

zi

)2]

0 (8)

We see from (8) that the influence of Gpst and Gneg on
the belief convergence/divergence in mean are separated:
links in Epst contribute to belief convergence, whereas links
in Eneg contribute to belief divergence. As will be shown
later on, this separation property no longer holds for mean-
square convergence, and there may be a nontrivial correla-
tion between the influence of Epst and that of Eneg.

3.1.2. Phase Transition. Next we study the impact of
update parameters � and � on the convergence in expec-
tation. Define f 4�1�5 2= �max4I −�L†

pst +�L†
neg −U5. The

function f has the following properties under Assump-
tion 2:

(i) (Convexity) Since both L†
pst and L†

neg are symmetric,
f 4�1�5 is the spectral norm of I − �L†

pst + �L†
neg − U .

Because every matrix norm is convex, we have

f 4�4�11�15+ 41 −�4�21�255

¶ �f 4�11�15+ 41 −�5f 4�21�25 (9)

for all � ∈ 60117 and �11�21�11�2 ∈ �. This implies that
f 4�1�5 is convex in 4�1�5.

(ii) (Monotonicity) From (8), f 4�1�5 is nonincreasing
in � for fixed � and nondecreasing in � for fixed �. As a
result, setting �= 1 provides the fastest convergence when-
ever belief convergence in expectation is achieved (for a
given fixed �). Note that when � = 1, when two nodes
interact, they simply switch their beliefs.

When Gpst is connected, the second smallest eigenvalue
of L†

pst, denoted by �24L
†
pst5, is positive. We can readily see

that f 4�105 = 1 − ��24L
†
pst5 < 1. From (8), we also have

f 4�1�5 → � as � → � provided that Gneg is nonempty.
Combining these observations with the monotonicity of f ,
we conclude the following:

Proposition 2. Assume that Gpst is connected and let
Assumption 2 hold. Then for any fixed � ∈ 40117, there
exists a threshold value �? > 0 (that depends on �) such
that

(i) Belief convergence in expectation is achieved for all
initial values if 0 ¶ �<�?;

(ii) Belief divergence in expectation is achieved for
almost all initial values if �>�?.

We remark that belief divergence can only happen for
almost all initial values since if the initial beliefs of all the
nodes are identical, they do not evolve over time.

3.1.3. Examples. An interesting question is to deter-
mine how the phase transition threshold �? scales with the
network size. Answering this question seems challenging.
However, there are networks for which we can character-
ize �? exactly. Next we derive explicit expressions for �?

when G is a complete graph or a ring graph. These two
topologies represent the most dense and almost the most
sparse structures for a connected network.

Example 1 (Complete Graph). Let G = Kn, where Kn is
the complete graph with n nodes, and consider the node
pair selection matrix P = 411′ − I5/4n− 15. Let L4Kn5 =

nI − 11′ be the Laplacian of Kn. Then L4Kn5 has eigen-
value 0 with multiplicity 1 and eigenvalue n with multiplic-
ity n−1. Define L4Gneg5 as the standard Laplacian of Gneg.
Observe that

I −�L†
pst +�L†

neg −U

= I −�4L†
pst +L†

neg5+ 4�+�5L†
neg −U

= I −
2�

n4n− 15
L4Kn5+

24�+�5

n4n− 15
L4Gneg5−U0 (10)

Also note that L4Gneg5L4Kn5 = L4Kn5L4Gneg5 = nL4Gneg5.
From these observations, we can then readily conclude the
following:

�? =
n�

�max4L4Gneg55
−�0 (11)

Example 2 (Erdős-Rényi Negative Graph Over Com-
plete Graph). Let G = Kn with P = 411′ − I5/4n− 15. Let
Gneg be the Erdős-Rényi random graph (Erdős and Rényi
1960) where for any i1 j ∈ V, 8i1 j9 ∈ Eneg with probabil-
ity p (independently of other links). Note that since Gneg is
a random subgraph, the function f 4�1�5 becomes a ran-
dom variable, and we denote by P the probability measure
related to the randomness of the graph in Erdős-Rényi’s
model. Spectral theory for random graphs (Ding and Jiang
2010) suggests that

�max4L4Gneg55

pn
→ 11 as n→ � (12)

in probability. Now for fixed p, we deduce from (11) and
(12) that the threshold �? converges, as n grows large, to
�/p in probability. Now let us fix the update parameters �
and � and investigate the impact of the probability p on
the convergence in mean.

• If p < �/4�+�5, we show that P6f 4�1�5 < 17 → 1,
when n → �, i.e., when the network is large, we likely
achieve convergence in mean. Let � < �/44�+�5p5−1. It
follows from (12) that

P4f 4�1�5<15

=P
(

1−
2�

n4n−15
n+

24�+�5

n4n−15
�max4L4Gneg55<1

)
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=P44�+�5�max4L4Gneg55<�n5

=P
(

�max4L4Gneg55

pn
<

�

4�+�5p

)

¾P
(

∣

∣

∣

∣

�max4L4Gneg55

pn
−1

∣

∣

∣

∣

<�

)

→11 as n→�0 (13)

• If p > �/4�+�5, we similarly establish that
P4f 4�1�5 > 15 → 1, when n → �, i.e., when the net-
work is large, we observe divergence in mean with high
probability.

Hence we have a sharp phase transition between con-
vergence and divergence in mean when the proportion of
negative links p increases and goes above the threshold
p? = �/4�+�5.

Example 3 (Ring Graph). Denote Rn as the ring graph
with n nodes. Let A4Rn5 and L4Rn5 be the adjacency and
Laplacian matrices of Rn, respectively. Let the underly-
ing graph G = Rn with only one negative link (if one has
more than two negative links, it is easy to see that diver-
gence in expectation is achieved irrespective of � > 0).
Take P = A4Rn5/2. We know that L4Rn5 has eigenvalues
2 − 2 cos42�k/n5, 0 ¶ k ¶ n/2. Applying Weyl’s inequal-
ity we obtain f 4�1�5¾ 1 + 4�−�5/n. We conclude that
�? <�, irrespective of n.

3.2. Mean-Square Convergence

We now turn our attention to the analysis of the mean-
square convergence and divergence. Define:

Ɛ8�y4k5�29=Ɛ8x4k5′4I−U5x4k59

=x405′Ɛ8W405000W4k−154I−U5

·W4k−15000W4059x4050 (14)

Again based on inequalities (7), we see that belief conver-
gence in mean square is equivalent to limk→� Ɛ8�y4k5�29= 0,
and belief divergence to lim supk→� Ɛ8�y4k5�29= �. Define

ê4k5=











Ɛ8W405 0 0 0W4k− 154I −U5

·W4k− 15 0 0 0W40591 k¾ 11

I −U1 k = 00

(15)

Then ê4k5 evolves as a linear dynamical system (Fagnani
and Zampieri 2008):

ê4k5= Ɛ8W405 0 0 0W4k− 154I −U5W4k− 15 0 0 0W4059

= Ɛ8W4054I −U5W415 0 0 0W4k− 154I −U5

·W4k− 15 0 0 0W4154I −U5W4059

= Ɛ84W4k5−U5ê4k− 154W4k5−U591 (16)

where in the second equality we have used the facts that
4I − U52 = I − U and 4I − U5W4k5 = W4k54I − U5 =

W4k5 − U for all possible realizations of W4k5, and the
third equality is due to W4k5 and W405 are i.i.d. We can
rewrite (16) using an equivalent vector form:

vec4ê4k55=ävec4ê4k− 1551 (17)

where ä is the matrix in �n2×n2
given by

ä = Ɛ84W405−U5⊗ 4W405−U59

=
∑

8i1 j9∈Gpst

6P †7ij44W
+

ij −U5⊗ 4W+

ij −U55

+
∑

8i1 j9∈Gneg

6P †7ij44W
−

ij −U5⊗ 4W−

ij −U550

Let S� be the eigenspace corresponding to an eigenvalue �
of ä. Define

�? 2= max8� ∈ �4ä52 vec4I −U5y S⊥

� 91

which denotes the spectral radius of ä restricted to the
smallest invariant subspace containing vec4I − U5; i.e.,
S 2= span8äkvec4I −U51k = 0111 0 0 09. Then mean-square
belief convergence/divergence is fully determined by �?:
convergence in mean square for all initial conditions is
achieved if �? < 1, and divergence for almost all initial
conditions is achieved if �? > 1.

Observing that � ¶ 1 for every � ∈ �4W+

ij 5 and �¾ 1
for every � ∈ �4W−

ij 5, we can also conclude that each link
in Epst contributes positively to �max4ä5 and each link in
Eneg contributes negatively to �max4ä5. However, unlike
in the case of the analysis of convergence in expecta-
tion, although �? defines a precise threshold for the phase-
transition between mean-square convergence and diver-
gence, it is difficult to determine the influence Epst and Eneg

have on �?. The reason is that they are coupled in a non-
trivial manner for the invariant subspace S. Nevertheless,
we are still able to propose the following conditions for
mean-square belief convergence and divergence:

Proposition 3. Belief convergence is achieved for all ini-
tial values in mean square if

�max4I − 2�41 −�5L†
pst + 2�41 +�5L†

neg −U5< 13

belief divergence is achieved in mean square for almost
all initial values if �max4I − �L†

pst + �L†
neg − U5 > 1 or

�min4I − 2�41 −�5L†
pst + 2�41 +�5L†

neg −U5> 1.

The condition �max4I − �L†
pst + �L†

neg − U5 is sufficient
for mean square divergence, in view of Proposition 1 and
that ¬1 divergence implies ¬p divergence for all p¾ 1. The
other conditions are essentially consistent with the upper
and lower bounds of �? established in Proposition 4.4 of
Fagnani and Zampieri (2008). Proposition 3 is a conse-
quence of Lemma 3 (see appendix).

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
6.

15
2.

14
2.

35
] 

on
 0

1 
M

ar
ch

 2
01

7,
 a

t 1
3:

22
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Shi et al.: The Evolution of Beliefs over Signed Social Networks
Operations Research 64(3), pp. 585–604, © 2016 INFORMS 593

4. Almost Sure Convergence/Divergence
In this section, we explore the almost sure convergence of
beliefs in signed social networks. We introduce the follow-
ing definition.

Definition 3. Belief convergence is achieved almost
surely (a.s.) if �4limk→� �xi4k5 − xj4k5� = 05 = 1 for all
i and j; Belief divergence is achieved almost surely if
�4lim supk→� maxi1 j �xi4k5− xj4k5� = �5= 1.

Basic probability theory tells us that mean-square belief
convergence implies belief convergence in expectation
(mean convergence); similarly, belief divergence in expec-
tation implies belief divergence in mean square. However,
in general there is no direct connection between almost sure
convergence/divergence and mean or mean-square conver-
gence/divergence. Finally observe that, a priori, it is not
clear that either a.s. convergence or a.s. divergence should
be achieved.

Although the analysis of the convergence of beliefs in
mean and square-mean mainly relied on spectral arguments,
we need more involved probabilistic methods (e.g., sample-
path arguments, martingale convergence theorems) to study
almost sure convergence or divergence. We first establish
two insightful properties of the belief evolutions: (i) the
no-survivor property, stating that in case of almost sure
divergence, the difference between the beliefs of any two
nodes in the network tends to infinity (along a subsequence
of instants); (ii) the live-or-die property, which essentially
states that the maximum difference between the beliefs
of any two nodes either grows to infinity or vanishes to
zero. We then show a zero-one law and a phase transition
of almost sure convergence/divergence. Finally, we inves-
tigate the robustness of networks against negative links.
More specifically, we show that when the graph Gpst of
positive links contains a hypercube, and when the positive
updates are truly averaging, i.e., �= 1/2, then almost sure
belief convergence is reached in finite time, irrespective of
the number of negative links, their positions in the net-
work, and the negative update parameter �. We believe that
these are the only networks enjoying this strong robustness
property.

4.1. The No-Survivor Theorem

The following theorem establishes that in the case of almost
sure divergence, there is no pair of nodes that can survive
this divergence: for any two nodes, the difference in their
beliefs grow arbitrarily large.

Theorem 1 (No-Survivor). Fix the initial condition and
assume almost sure belief divergence. Then

�4lim sup
k→�

�xi4k5− xj4k5� = �5= 1 for all i 6= j ∈ V0

Observe that the above result only holds for the almost
sure divergence. We may easily build simple network

examples where we have belief divergence in expectation
(or mean square), but where some node pairs survive, in the
sense that the difference in their beliefs vanishes (or at least
bounded). The no-survivor theorem indicates that to check
almost sure divergence, we may just observe the evolution
of beliefs held at two arbitrary nodes in the network.

4.2. The Live-or-Die Lemma and Zero-One Laws

Next we further classify the ways beliefs can evolve.
Specifically, we study the following events: for any initial
beliefs x0,

£x0
0
= 8lim sup

k→�

max
i1 j

�xi4k5− xj4k5� = 091

¤x0
0
= 8lim sup

k→�

max
i1 j

�xi4k5− xj4k5� = �91

£∗

x0

0
= 8lim inf

k→�
max
i1 j

�xi4k5− xj4k5� = 091

¤∗

x0

0
= 8lim inf

k→�
max
i1 j

�xi4k5− xj4k5� = �91

and

£
0
= 8lim sup

k→�

max
i1 j

�xi4k5− xj4k5� = 0 for all x0 ∈�n91

¤
0
= 8∃ (deterministic) x0

∈�n1

s.t. lim sup
k→�

max
i1 j

�xi4k5− xj4k5� = �90

We establish that the maximum difference between the
beliefs of any two nodes either goes to �, or to zero. This
result is referred to as live-or-die lemma:

Lemma 1 (Live-or-Die). Let � ∈ 40115 and � > 0. Sup-
pose Gpst is connected. Then (i) �4£x05 + �4¤x05 = 1;
(ii) �4£∗

x05+�4¤∗

x05= 1.
As a consequence, almost surely, one of the following

events happens:

8 lim
k→�

max
i1 j

�xi4k5− xj4k5� = 093

8 lim
k→�

max
i1 j

�xi4k5− xj4k5� = �93

8lim inf
k→�

max
i1 j

�xi4k5− xj4k5� = 03

lim sup
k→�

max
i1 j

�xi4k5− xj4k5� = �90

The live-or-die lemma deals with events where the initial
beliefs have been fixed. We may prove stronger results on
the probabilities of events that hold for any initial condi-
tion, e.g., £, or for at least one initial condition, e.g., ¤:

Theorem 2 (Zero-One Law). Let � ∈ 60117 and � > 0.
Both £ and ¤ are trivial events (i.e., each of them occurs
with probability equal to either 1 or 0) and �4£5+�4¤5
= 1.
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To prove this result, we show that � is a tail event, and
hence trivial in view of Kolmogorov’s zero-one law (the
same kind of argument has been used by Tahbaz-Salehi
and Jadbabaie 2008 and Touri and Nedić 2011). From the
live-or-die lemma, we then simply deduce that � is also
a trivial event. Note that �x0 and �x0 may not be trivial
events. In fact, we can build examples where ���x0�= 1/2
and ���x0� = 1/2. The detailed proof of Theorem 2 has
been put in the e-companion of this paper.

4.3. Phase Transition

As for the convergence in expectation, for fixed positive
update parameter �, we are able to establish the existence
of thresholds for the value � of the negative update param-
eter, which characterizes the almost sure belief convergence
and divergence.

Theorem 3 (Phase Transition). Suppose Gpst is con-
nected. Fix � ∈ �0�1� with � �= 1/2. Then

(i) there exists ����� > 0 such that ���� = 1 if 0 �
�<��;

(ii) there exists ����� > 0 such that

��lim inf
k→�

max
i� j

�xi�k�− xj�k�� =��= 1

for almost all initial values if �>��.

It should be observed that the divergence condition in
(ii) is stronger than our notion of almost sure belief diver-
gence (the maximum belief difference between two nodes
diverges almost surely to �). Also note that �� � ��, and
we were not able to show that the gap between these two
thresholds vanishes (as in the case of belief convergence in
expectation or mean-square).

4.4. Robustness to Negative Links:
The Hypercube

We have seen in Theorem 3 that when � �= 1/2, one single
negative link is capable of driving the network beliefs to
almost sure divergence as long as � is sufficiently large.
The following result shows that the evolution of the beliefs
can be robust against negative links. This is the case when
nodes can reach an agreement in finite time. In what fol-
lows, we provide conditions on � and the structure of
the graph under which finite time belief convergence is
reached.

Proposition 4. Suppose there exist an integer T � 1 and a
finite sequence of node pairs �is� js� ∈ Gpst� s = 1�2� � � � � T
such that W+

iT jT
� � �W+

i1j1
=U . Then ����= 1 for all �� 0.

Proposition 4 is a direct consequence of the Borel-
Cantelli Lemma. If there is a finite sequence of node pairs
�is� js� ∈ Gpst� s = 1�2� � � � � T such that W+

iT jT
· · ·W+

i1j1
= U ,

then

��W�k+ T � � � �W�k+ 1�=U��
(

p∗

n

)T

�

for all k� 0, where p∗ = min�pij + pji� �i� j� ∈ E�. Noting
that UW�k�=W�k�U = U for all possible realizations of
W�k�, the Borel-Cantelli Lemma guarantees that

�� lim
k→�

W�k� � � �W�0�=U�= 1

for all �� 0, or equivalently, ����= 1 for all �� 0. This
proves Proposition 4.

The existence of such finite sequence of node pairs under
which the beliefs of the nodes in the network reach a com-
mon value in finite time is crucial (we believe that this
condition is actually necessary) to ensure that the influence
of Gneg vanishes. It seems challenging to know whether this
is at all possible. As it turns out, the structure of the pos-
itive graph plays a fundamental role. To see that, we first
provide some definitions.

Definition 4. Let G1 = �V1�E1� and G2 = �V2�E2� be a
pair of graphs. The Cartesian product of G1 and G2, denoted
by G1 �G2, is defined by

(i) the vertex set of G1 �G2 is V1 ×V2, where V1 ×V2

is the Cartesian product of V1 and V2;
(ii) for any two vertices �v1� v2�� �u1� u2� ∈V1×V2, there

is an edge between them in G1 � G2 if and only if either
v1 = u1 and �v2� u2� ∈ E2 or v2 = u2 and �v1� u1� ∈ E1.
Let K2 be the complete graph with two nodes. The m-
dimensional hypercube Hm is then defined as

Hm
=K2 �K2 � � ��K2
︸ ︷︷ ︸

m times

�

An illustration of hypercubes is in Figure 2.
The following result provides sufficient conditions to

achieve finite-time convergence, whose proof can be found
in the E-companion.

Proposition 5. If �= 1/2, n= 2m for some integer m> 0,
and Gpst has a subgraph isomorphic with an m-dimensional
hypercube, then there exists a sequence of �n log2 n�/2
node pairs �is� js� ∈ Gpst� s = 1� � � � � �n log2 n�/2 such that
W+

i�n log2 n�/2j�n log2 n�/2
· · ·W+

i1j1
=U .

Next we derive necessary conditions for finite time con-
vergence. Let us first recall the following definition.

Definition 5. Let G = �V�E� be a graph. A matching of
G is a set of pairwise nonadjacent edges in the sense that
no two edges share a common vertex. A perfect matching
of G is a matching that matches all vertices.

Figure 2. The hypercubes H1, H2, and H3.D
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Proposition 6. If there exist an integer T ¾ 1 and a se-
quence of node pairs 8is1 js9 ∈ Gpst1 s = 1121 0 0 0 1 T such
that W+

iT jT
· · ·W+

i1j1
=U , then �= 1/2, n= 2m, and Gpst has

a perfect matching.

In fact, in the proof of Proposition 6 (see e-companion),
we show that if W+

iT jT
0 0 0W+

i1j1
=U , then a subset of

88i11 j191 0 0 0 1 8iT 1 jT 99

forms a perfect matching of Gpst.
We have seen that the belief dynamics and convergence

can be robust against negative links, but this robustness
comes at the expense of strong conditions on the number
of the nodes and the structure of the positive graph.

5. Belief Clustering and Structural
Balance

So far we have studied the belief dynamics when the node
interactions are symmetric and the values of beliefs are
unconstrained. The results illustrate that often either con-
vergence or divergence can be predicted for the social net-
work beliefs. Although this symmetric and unconstrained
belief update rule is plausible for ideal social network mod-
els, in reality these assumptions might not hold. That is,
when 8i1 j9 is selected, it might happen that only one of
the two nodes in i and j updates its belief; there might be
a hard constraint on beliefs: xi4k5 ∈ 6−A1A7 for all i and
k and for some A> 0.

In this section, we consider the following model for the
updates of the beliefs. Define

°A4z5=











−A1 if z <−A3

z1 if z ∈ 6−A1A73

A1 if z >A0

(18)

Let a1b1 c > 0 be three positive real numbers such that
a + b + c = 1, and define the function �2 E → � so that
�48i1 j95 = � if 8i1 j9 ∈ Epst and �48i1 j95 = −� if 8i1 j9 ∈

Eneg. Assume that node i interacts with node j at time k.
Nodes i and j update their beliefs as
[Asymmetric and Constrained Belief Evolution]

xi4k+ 15=°A441 − �5xi4k5+ �xj4k55 and

xj4k+ 15= xj4k51 with probability a3

xj4k+ 15=°A441 − �5xj4k5+ �xi4k55 and

xi4k+ 15= xi4k51 with probability b3

xm4k+ 15=°A441 − �5xm4k5+ �x−m4k551

m ∈ 8i1 j91 with probability c0

(19)

Enforcing the belief within the interval 6−A1A7 can be
viewed as a social member’s decision based on her fun-
damental model of the world. With asymmetric and con-
strained belief evolution, the dynamics become essentially
nonlinear, which brings new challenges in the analysis. We
continue to use � to denote the overall probability measure
capturing the randomness of the updates in the asymmetric
constrained model.

5.1. Balanced Graphs and Clustering

We introduce the notion of balance for signed graphs, for
which we refer to Wasserman and Faust (1994) for a com-
prehensive discussion.

Definition 6. Let G = 4V1E5 be a signed graph. Then
(i) G is weakly balanced if there is an integer k ¾ 2

and a partition of V = V1 ∪ V2 0 0 0 ∪ Vk, where V11 0 0 0 1Vk

are nonempty and mutually disjoint, such that any edge
between different Vi’s is negative, and any edge within each
Vi is positive.

(ii) G is strongly balanced if it is weakly balanced with
k = 2.

Harary’s balance theorem states that a signed graph G is
strongly balanced if and only if there is no cycle with an
odd number of negative edges in G (Cartwright and Harary
1956), whereas G is weakly balanced if and only if no cycle
has exactly one negative edge in G (Davis 1967).

It turned out that with certain balance of the underlying
graph, clustering arises for the social network beliefs. We
make the following definition.

Definition 7. (i) Let G be strongly balanced subject to
partition V = V1 ∪ V2. Then almost sure boundary belief
clustering for the initial value x0 is achieved if there are two
random variables B†

14x
05 and B†

24x
05, both taking values in

8−A1A9, such that

�
(

lim
k→�

xi4k5= B†
14x

051 i ∈ V13

lim
k→�

xi4k5= B†
24x

051 i ∈ V2

)

= 10 (20)

(ii) Let G be weakly balanced subject to partition V =

V1 ∪V2 0 0 0∪Vm for some m¾ 2. Then almost sure bound-
ary belief clustering for the initial value x0 is achieved if
there are there are m random variables, B]

14x
051 0 0 0 1B]

m4x
05,

each of which takes values in 8−A1A9, such that

�
(

lim
k→�

xi4k5= B]
j 4x

051 i ∈ Vj1 j = 11 0 0 0 1m
)

= 10 (21)

In the case of strongly balanced graphs, we can show
that beliefs are asymptotically clustered when � is large
enough, as stated in the following theorem.

Theorem 4. Assume that G is strongly balanced under
partition V = V1 ∪V2 and that GV1

and GV2
are connected.

For any � ∈ 40115\81/29, when � is sufficiently large, for
almost all initial values x0, almost sure boundary belief
clustering is achieved under the update rule (19).

In fact, there holds B†
14x

05 + B†
24x

05 = 0 almost surely
in the above boundary belief clustering for strongly bal-
anced social networks. Theorem 4 states that for strongly
balanced social networks, beliefs are eventually polarized
to the two opinion boundaries.

The analysis of belief dynamics in weakly balanced
graphs is more involved, and we restrict our attention to
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complete graphs. In social networks, this case means that
everyone knows everyone else—which constitutes a suit-
able model for certain social groups of small sizes (a class-
room, a sport team, or the United Nations;, see Easley
and Kleinberg 2010). As stated in the following theorem,
for weakly balanced complete graphs, beliefs are again
clustered.

Theorem 5. Assume that G is a complete and weakly bal-
anced graph under the partition V = V1 ∪ V2 0 0 0∪ Vm with
m ¾ 2. Further assume that GVj

1 j = 11 0 0 0 1m are con-
nected. For any � ∈ 40115\81/29, when � is sufficiently
large, almost sure boundary belief clustering is achieved
for almost all initial values under (19).

Remark 2. Under the model (3), it can be shown (see
Altafini 2013, Shi et al. 2015)

(i) if G is strongly balanced and � ∈ 40115, then there
are two values z14x

05 and z24x
05 such that

�
(

lim
k→�

xi4k5=z14x
051 i∈V11 lim

k→�
xi4k5=z24x

051i∈V2

)

=10

(22)

(ii) if G is not strongly balanced (i.e., even if it is weakly
balanced) and � ∈ 40115, then

�
(

lim
k→�

xi4k5= 01 i ∈ V
)

= 11 (23)

where the impact of the initial beliefs is entirely erased
from the asymptotic limit.

Our Theorem 4 appears to be similar to (22), but the
clustering in Theorem 4 is due to fundamentally differ-
ent reasons: along with the strong balance of the social
network, it is the nonlinearity in the constrained update
(°A4 · 5) and the sufficiently large � that makes the bound-
ary clustering arise in Theorem 4. In contrast, (22) is
resulted from the crucial condition that � ∈ 40115. Under
the Altafini model (3), even when � is sufficiently large, it
is easy to see that the boundary clustering in Theorem 5
can never happen for weakly balanced graphs.

The distribution of the clustering limits established in
Theorems 4 and 5 relies on the initial value. In this way,
the initial beliefs make an impact on the final belief limit,
which is either A or −A. The boundary clustering is due to
the hard boundaries of the beliefs as well as the negative
updates (ironically, the larger the better), whose mechanism
is fundamentally different with the opinion clustering phe-
nomena resulted from missing of connectivity in Krause
types of models (Krause 1997, Blondel et al. 2009, 2010,
Li et al. 2013) or nonlinear bias in the opinion evolution
(Dandekar et al. 2013).

Remark 3. Note that in the considered asymmetric and
constrained belief evolution, we take symmetric belief
boundaries 6−A1A7 just for simplifying the discussion.
Theorems 4 and 5 continue to hold if the belief boundaries

are chosen to be 6A1B7 for arbitrary −� < A < B < �.1

Letting A = 01B = 1, our boundary clustering results in
Theorems 4 and 5 are then formally consistent with the
belief polarization result, Theorem 3, in Dandekar et al.
(2013). It is worth mentioning that Theorem 3 in Dan-
dekar et al. (2013) relies on a type of strong balance (the
two-island assumption) and that the initial beliefs should
be separated, whereas Theorems 4 and 5 hold for almost
arbitrary initial values.

The proof of Theorems 4 and 5 is obtained by establish-
ing the almost sure happening of suitable separation events,
i.e., the node beliefs for a subnetwork become group polar-
ized (either larger or smaller than the remaining nodes’
beliefs). From the analysis it is clear that such events tend
to happen more easily for small subnetworks in the parti-
tion of (strongly or weakly) balanced social networks. On
the other hand, boundary belief clustering follows quickly
after the separation event, even in the presence of large
subgroups. For a large subgroup, the boundary clustering
to a consensus for its members is more a consequence of
the “push” by the already separated small subgroups rather
than the trustful interactions therein. This means relatively
small subgroups contribute to faster occurrence of the clus-
tering of the entire social network beliefs. Therefore, these
results are in strong consistency with the research of minor-
ity influence in social psychology (Nemeth 1986, Clark and
Maass 1990), which suggests that consistent minorities can
substantially modify people’s private attitudes and opinions.

5.2. When Balance is Missing

Since the boundary constraint only restricts the negative
update, similar to Theorem 3, for sufficiently small �,
almost sure state consensus can be guaranteed when the
positive graph Gpst is connected.

In absence of any balance property for the underlying
graph, belief clustering may not happen. However, we can
establish that when the positive graph is connected, then
clustering cannot be achieved when � is large enough. In
fact, the belief of a given node touches the two bound-
aries −A and A an infinite number of times. Note that if
the positive graph is connected, then the graph cannot be
balanced.

Theorem 6. Assume that the positive graph Gpst is con-
nected. For any � ∈ 40115\81/29, when � is sufficiently
large, for almost all initial beliefs, under (19), we have for
all i ∈ V,

�
(

lim inf
k→�

xi4k5= −A1 lim sup
k→�

xi4k5=A
)

= 10 (24)

Theorem 6 suggests a new class of collective formation
for the social beliefs beyond consensus, disagreement, or
clustering studied in the literature.
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Figure 3. (Color online) Strongly balanced (left) and weakly balanced (right) social graphs.

Notes. The negative links are shadowed. Nodes within the same subgraph in the balance partition are marked with the same color.

Figure 4. (Color online) The evolution of beliefs for strongly balanced (left) and weakly balanced (right) graphs.
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Note. The beliefs of nodes within the same subgraph in the balance partition are marked with the same color.

Remark 4. The condition that � being sufficiently large in
Theorems 4 and 5 is just a technical assumption ensuring
almost sure boundary clustering. Practically, one can often
encounter such clustering even for a small �, as illustrated
in the coming numerical examples. On the other hand, The-
orem 6 relies crucially on a large �, whereas a small �
leads to belief consensus even in the presence of the nega-
tive edges.

5.3. Numerical Examples

We now provide a few numerical examples to illustrate the
results established in this section. We take A= 1 so that the
node beliefs are restricted to the interval �−1�1�. We take
�= 1/3 for the positive dynamics and a= b= c= 1/3 for
the random asymmetric updates. The pair selection process
is given by that when a node i is drawn, it will choose
one of its neighbors with equal probability 1/deg�i�, where
deg�i� is the degree of node i in the underlying graph G.

First of all we select two social graphs, one strongly bal-
anced and the other weakly balanced, as shown in Figure 3.
We take �= 0�2 and randomly select the nodes’ initial val-
ues. It is observed that the boundary clustering phenomena
established in Theorems 4 and 5 practically show up in

every run of the random belief updates. We plot one of
their typical sample paths in Figure 4, respectively, for the
strongly balanced and weakly balanced graphs in Figure 3.
In fact one can see that the clustering is achieved in around
300 steps.

Next, we select a social graph that is neither strongly nor
weakly balanced, as in Figure 5. In Figure 6, we plot one
of the typical sample paths of the random belief evolution
with � = 0�2, where clearly belief consensus is achieved.

Figure 5. (Color online) A social network that is nei-
ther strongly nor weakly balanced.

Note. The negative links are dashed.
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Figure 6. (Color online) The social network beliefs tend to a consensus with �= 0�2.
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Figure 7. (Color online) The belief oscillation for a particular node with �= 7.
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In Figure 7, we plot one of the typical sample paths of the
random belief evolution for a selected node with � = 7,
where the node belief alternatively touches the two bound-
aries −1 and 1 in the plotted 5,000 steps.

These numerical results are consistent with the results in
Theorems 4–6.

6. Conclusions
The evolution of opinions over signed social networks was
studied. Each link marking interpersonal interaction in the
network was associated with a sign indicating friend or
enemy relations. The dynamics of opinions were defined
along positive and negative links, respectively. We have
presented a comprehensive analysis to the belief conver-
gence and divergence under various modes: in expectation,
in mean-square, and almost surely. Phase transitions were
established with sharp thresholds for the mean and mean-
square convergence. In the almost sure sense, some sur-
prising results were presented. When opinions have hard
lower and upper bounds with asymmetric updates, the clas-
sical structure balance properties were shown to play a key
role in the belief clustering. We believe that these results
have largely extended our understanding to how trustful and
antagonistic relations shape social opinions.

Some interesting directions for future research include
the following topics. Intuitively, there is some natural cou-
pling between the structure dynamics and the opinion evo-
lution for signed networks. How this coupling determines
the formation of the social structure is an interesting ques-
tion bridging the studies on the dynamics of signed graphs
(e.g., Marvel et al. 2011) and the opinion dynamics on
signed social networks (e.g., Altafini 2012, 2013). It will
also be interesting to ask what might be a proper model,
and what the role of structure balance is, for Bayesian opin-
ion evolution on signed social networks (e.g., Bikhchandani
et al. 1992).

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2015.1448.
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Appendix A. The Triangle Lemma

We establish a key technical lemma on the relative beliefs of three
nodes in the network in the presence of at least one link among
the three nodes. Denote Jab4k5 2= �xa4k5−xb4k5� for a1b ∈ V and
k¾ 0. The proof of this lemma can be found in the e-companion.

Lemma 2. Let i01 i11 i2 be three different nodes in V. Suppose
8i01 i19 ∈ E. There exist a positive number � > 0 and an integer
Z > 0 such that

(i) there is a sequence of Z successive node pairs leading to
Ji1i24Z5¾ �Ji0i1405;

(ii) there is a sequence of Z successive node pairs leading to
Ji1i24Z5¾ �Ji0i2405.

Here � and Z are absolute constants in the sense that they do
not depend on i01 i1, or i2 nor on the values held at these nodes.

Appendix B. Proof of Theorem 1

Introduce

Xmin4k5= min
i∈V

xi4k53 Xmax4k5= max
i∈V

xi4k50

We define 84k5 = Xmax4k5−Xmin4k5. Suppose belief divergence
is achieved almost surely. Take a constant N0 such that N0 >8405.
Then almost surely

K1 2= inf
k
884k5¾N09

is a finite number. Then K1 is a stopping time for the node pair
selection process Gk1 k = 011121 0 0 0 since

8K1 = k9 ∈ �4G01 0 0 0 1Gk−15

for all k = 1121 0 0 0 becausse 84k5 is, indeed, a function of
G01 0 0 0 1Gk−1. Strong Markov Property leads to GK1

1GK1+11 0 0 0

are independent of FK1−1, and they are i.i.d. with the same dis-
tribution as G0 (e.g., Theorem 4.1.3 in Durrett 2010).

Now take two different (deterministic) nodes i0 and j0. Since
84K15¾N0, there must be two different (random) nodes i∗ and j∗
satisfying xi∗4K15 < xj∗4K15 with Ji∗j∗4K15 ¾ N0. We make the
following claim.

Claim. There exist a positive number �0 > 0 and an integer
Z0 > 0 (�0 and Z0 are deterministic constants) such that we can
always select a sequence of node pairs for time steps K11K1 + 11
K1 +Z0 − 1 that guarantees Ji0j04K1 +Z05¾ �0N0.

First of all, note that i∗ and j∗ are independent with GK1
1

GK1+11 0 0 0 1 since i∗1 j∗ ∈FK1−1. Therefore, we can treat i∗ and j∗
as deterministic and prove the claim for all choices of such i∗
and j∗ (because we can always carry out the analysis conditioned
on different events 8i∗ = i1 j∗ = j9, i1 j ∈ V). We proceed the proof
recursively taking advantage of the Triangle Lemma.

Suppose 8i01 j09 = 8i∗1 j∗9, the claim holds trivially. Now sup-
pose i0 y 8i∗1 j∗9. Either Ji0i∗4K15 ¾ N0/2 or Ji0j∗4K15 ¾ N0/2
must hold. Without loss of generality we assume Ji0i∗4K15¾N0/2.
Since G is connected, there is a path i0i1 0 0 0 i� j0 in G with � ¶
n− 2.

Based on Lemma 2, there exist � > 0 and integer Z > 0 such
that a selection of node pair sequence for K11K1 + 11 0 0 0 1K1 +

Z− 1 leads to

Ji0i14K1 +Z5¾ �Ji0i∗4K15¾
�N0

2

since 8i01 i19 ∈ E. Applying recursively the Triangle Lemma based
on 8i11 i291 0 0 0 1 8i� 1 j09 ∈ E, we see that a selection of node pair
sequence for K11K1 + 11 0 0 0 1K1 + 4� + 15Z− 1 will give us

Ji0j04K1 + 4� + 15Z5¾ ��+1Ji0i∗4K15¾
��+1N0

2
0

Since � ¶ n − 2, the claim always holds for �0 = �n−1/2 and
Z0 = 4n− 15Z, independently of i∗ and j∗.

Therefore, denoting p∗ = min8pij + pji2 8i1 j9 ∈ E9, the claim
we just proved yields that

�

(

Ji0j04K1 + 4n− 15Z5¾ �n−1N0

2

)

¾
(

p∗

n

)4n−15Z

0 (B1)

We proceed the analysis by recursively defining

Km+1 2= inf8k¾Km +Z02 84k5¾N091 m= 1121 0 0 0 0

Given that belief divergence is achieved, Km is finite for all m¾ 1
almost surely. Thus,

�

(

Ji0j04Km +Z05¾
�n−1N0

2

)

¾
(

p∗

n

)Z0

1 (B2)

for all m= 1121 0 0 0 0 Moreover, the node pair sequence

GK1
1 0 0 0 1GK1+Z0−13 0 0 0 0 0 0 3GKm

1 0 0 0 1GKm+Z0−13 0 0 0 0 0 0

are independent and have the same distribution as G0 (This is
because FK1

⊆ FK1+1 ⊆ · · · ⊆ FK1+Z0−1 ⊆ FK2
0 0 0. (see Theorem

4.1.4 in Durrett 2010)).
Therefore, we can finally invoke the second Borel-Cantelli

Lemma (cf. Theorem 2.3.6 in Durrett 2010) to conclude that
almost surely, there exists an infinite subsequence Kms

, s =

1121 0 0 0 1 satisfying

Ji0j04Kms
+Z05¾

�n−1N0

2
1 s = 1121 0 0 0 1 (B3)

conditioned on that belief divergence is achieved. Since � is
a constant and N0 is arbitrarily chosen, (B3) is equivalent to
�4lim supk→� �xi04k5 − xj04k5� = �5 = 1, which completes the
proof.

Appendix C. Proof of Lemma 1

(i) It suffices to show that �4lim supk→� 84k5 ∈ 6a∗1 b∗75 = 0 for
all 0 <a∗ < b∗. We prove the statement by contradiction. Suppose
�4lim supk→� 84k5 ∈ 6a∗1 b∗75= p > 0 for some 0 <a∗ < b∗.

Take 0 < � < 1 and define a = a∗41 − �51 b = b∗41 + �5. We
introduce

T1 2= inf
k
884k5 ∈ 6a1 b790
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Then T1 is finite with probability at least p. T1 is a stopping time.
GT1

1GT1+11 0 0 0 are independent of FT1−1, and they are i.i.d. with
the same distribution as G0.

Now since Gneg is nonempty, we take a link 8i?1 j?9 ∈ Eneg.
Repeating the same analysis as the proof of Theorem 1, the fol-
lowing statement holds true conditioned on that T1 is finite: there
exist a positive number �0 > 0 and an integer Z0 > 0 (�0 and
Z0 are deterministic constants) such that we can always select a
sequence of node pairs for time steps T11 T1 +11 T1 +Z0 −1 which
guarantees Ji?j?4T1 +Z05¾ �0a.

Here �0 and Z0 follow from the same definition in the proof
of Theorem 1. Take

m0 =

⌈

log2�+1

2b
�0a

⌉

and let 8i?1 j?9 be selected for T1 + Z01 0 0 0 1 T1 + Z0 + m0 − 1.
Then noting that 8i?1 j?9 ∈ Eneg, the choice of m0 and the fact that
Ji?j?4s + 15 = 42�+ 15Ji?j?4s5, s = T1 +Z01 0 0 0 1 T1 +Z0 +m0 − 1
lead to

84T1 +Z0 +m05¾ Ji?j?4T1 +Z0 +m05

¾ 42�+ 15m0�0a¾ 2b¾ 2b∗0

We have proved that

�484T1 +Z0 +m05¾ 2b∗ � T1 <�5¾
(

p∗

n

)Z0+m0

0 (C1)

Similarly, we proceed the analysis by recursively defining

Tm+1 2= inf8k¾ Tm +Z0 +m02 84k5 ∈ 6a1 b791 m= 1121 0 0 0 0

Given �4lim supk→� 84k5 ∈ 6a∗1 b∗75 = p, Tm is finite for all
m¾ 1 with probability at least p. Thus, there holds

�484Tm +Z0 +m05¾ 2b∗ � Tm <�5¾
(

p∗

n

)Z0+m0

1

m= 1121 0 0 0 0 (C2)

The independence of

GT1
1 0 0 0 1GT1+Z0+m0−13 0 0 0 0 0 0 3GTm

1 0 0 0 1GTm+Z0+m0−13 0 0 0 0 0 0

once again allows us to invoke the Borel-Cantelli Lemma to con-
clude that almost surely, there exists an infinite subsequence Tms

,
s = 1121 0 0 0 1 satisfying

84Tms
+Z0 +m05¾ 2b∗1 s = 1121 0 0 0 1 (C3)

given that Tm, m = 112 0 0 0, are finite. In other words, we have
obtained that

�
(

lim sup
k→�

84k5¾ 2b∗

∣

∣

∣

lim sup
k→�

84k5 ∈ 6a∗1 b∗7
)

= 11 (C4)

which is impossible, and the first part of the theorem has been
proved.

(ii) It suffices to show that �4lim infk→� 84k5 ∈ 6a∗1 b∗75 = 0
for all 0 < a∗ < b∗. The proof is again by contradiction. Assume
that �4lim infk→� 84k5 ∈ 6a∗1 b∗75 = q > 0. Let a1b, and T1 2=

infk884k5 ∈ 6a1 b79 as defined earlier. T1 is finite with probability
at least q.

Let `0 ∈ V satisfying x`0
4T15=Xmin4T15. There is a path from

`0 to every other node in the network since Gpst is connected. We
introduce

V†
t 2= 8J 2 d4`01 j5= t in Gpst91 t = 01 0 0 0 1diam4Gpst5

as a partition of V. We relabel the nodes in V\8`09 in the follow-
ing manner.

`s ∈ V†
11 s = 11 0 0 0 1 �V†

1�3

`s ∈ V†
21 s = �V†

1� + 11 0 0 0 1 �V†
1� + �V†

2�3

0 0 0 0 0 0

`s ∈ V†
diam4Gpst5

1 s =

diam4Gpst5−1
∑

t=1

�V†
t �1 0 0 0 1 n− 10

Then the definition of V†
t and the connectivity of Gpst allow us to

select a sequence of node pairs in the form of

GT1+s = 8`�1 `s+191 8`�1 `s+19 ∈ Epst with �¶ s1

for s = 01 0 0 0 1 n− 2. Next we give an estimation for 8 under the
selected sequence of node pairs.

• Since 8`01 `19 is selected at time T1, we have

x`0
4T1 + 15 = 41 −�5x`0

4T15+�x`1
4T15

¶ 41 −�5Xmin4T15+�Xmax4T153

x`1
4T1 + 15 = 41 −�5x`1

4T15+�x`0
4T15

¶ 41 −�5Xmax4T15+�Xmin4T150

(C5)

This leads to x`s 4T1 + 15 ¶ 41 − �∗5Xmin4T15 + �∗Xmax4T151 s =

011, where �∗ = max8�11 −�9.
• Note that Xmax4T1 + 15 = Xmax4T15, and that either 8`01 `29

or 8`11 `29 is selected at time T1 + 1. We deduce

x`s 4T1 + 25¶ 41 −�5641 −�∗5Xmin4T15+�∗Xmax4T157

+�Xmax4T15

¶ 41 −�∗5
2Xmin4T15

+ 41 − 41 −�∗5
25Xmax4T151 s = 0113

x`2
4T1 + 25¶ �641 −�∗5Xmin4T15+�∗Xmax4T157

+ 41 −�5Xmax4T15

¶ 41 −�∗5
2Xmin4T15

+ 41 − 41 −�∗5
25Xmax4T151 (C6)

Thus we obtain x`s 4T1 +25¶ 41−�∗5
2Xmin4T15+41−41−�∗5

25 ·

Xmax4T151 s = 01112.
• We carry on the analysis recursively and finally get

x`s 4T1 + n− 15¶ 41 −�∗5
n−1Xmin4T15

+ 41 − 41 −�∗5
n−15Xmax4T151
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for s = 0�1�2� � � � � n− 1. Equivalently,

Xmax�T1 + n− 1�� �1−�∗�
n−1Xmin�T1�

+ �1− �1−�∗�
n−1�Xmax�T1�� (C7)

We conclude that

��T1 + n− 1�=Xmax�T1 + n− 1�−Xmin�T1 + n− 1�

=Xmax�T1 + n− 1�−Xmin�T1�

� r0��T1�� (C8)

where r0 = 1− �1−�∗�
n−1 is a constant in �0�1�.

With the above analysis taking

L0 =

⌈

logr0

a

2b

⌉

�

and selecting the given pair sequence periodically for L0 rounds,
we obtain

��T1 + �n− 1�L0�� r
L0
0 ��T1��

a

2b
· b=

a

2
<

a∗

2
� (C9)

In light of (C9) and the selection of the node pair sequence, we
have obtained that

�

(

��T1 + �n− 1�L0��
a∗

2

)

�
(

p∗

n

)�n−1�L0

(C10)

given that T1 is finite. We repeat the above argument for Tm+1,
m= 2�3 � � �. The Borel-Cantelli Lemma then implies

�

(

liminf
k→�

��k�� a∗

2

∣

∣

∣

∣

liminf
k→�

��k�∈ �a∗�b∗�

)

=1� (C11)

which is impossible and completes the proof.

Appendix D. Proof of Theorem 3

Theorem 3 is a direct consequence of the following lemmas.

Lemma 3. Suppose Gpst is connected. Then for every fixed � ∈

�0�1�, we have ����= 1 for all 0 � �<�� with

�� �= sup
{

�� ��1+�� <
�2�L

†
pst�

�max�L
†
neg�

��1−��

}

�

Lemma 4. Suppose � ∈ �0�1� with � �= 1/2. There exists a con-
stant �� > 0 such that

�
(

lim inf
k→�

max
i� j

�xi�k�− xj�k�� =�

)

= 1

for almost all initial beliefs when �>��.

Lemma 3 is proved utilizing a martingale convergence theorem,
whereas Lemma 4 is established in view of Kolmogorov’s strong
law of large numbers. Their detailed proofs can be found in the
e-companion.

Figure E.1. (Color online) There is a unique partition
of G into subgraphs following the con-
nected components of Gpst.

Note. Viewing each subgraph as a super node, the graph is connected and
has only negative edges.

Appendix E. Proof of Theorem 4

We first state and prove intermediate lemmas that will be useful
for the proofs of Theorems 4–6.

Lemma 5. Assume that � ∈ �0�1�. Let i1 � � � ik be a path in the
positive graph; i.e., �is� is+1� ∈Gpst� s = 1� � � � � k− 1. Take a node
i∗ ∈ �i1� � � � � ik�. Then for any � > 0, there always exists an inte-
ger Z����� 1, such that we can select a sequence of node pairs
from �is� is+1�� s = 1� � � � � k− 1 under asymmetric updates, which
guarantees

Ji∗is �Z��� 2A�� s ∈ �1� � � � � k�

for all initial condition xis �0�� s = 1� � � � � k.

Proof. The proof is easy and an appropriate sequence of node
pairs can be built just observing that Ji∗is � 2A for all s ∈

�1� � � � � k�. �

Lemma 6. Fix � ∈ �0�1� with � �= 1/2. Under belief dynamics
(19), there exist an integer Z0 � 1 and a constant �0 > 0 such
that

�

(

∃�i∗� j∗� ∈Gneg s.t. Ji∗j∗�Z0��
1

2n
��0�

)

��0� (E1)

Proof. We can always uniquely divide V into m0 � 1 mutually
disjoint sets V1� � � � � Vm0

such that Gpst�Vk�� k= 1� � � � �m0 are con-
nected graphs, where Gpst�Vk� is the induced graph of Gpst by
node set Vk. The idea is to treat each Gpst�Vk� as a super node
(an illustration of this partition is shown in Figure E.1). Since
G is connected and Gneg is nonempty, these super nodes form a
connected graph whose edges are negative.

One can readily show that there exist two distinct nodes
�1��2 ∈V with �i ∈ V�i

� i= 1�2 (V�1
and V�2

can be the same, of
course) such that there is at least one negative edge between V�1

and V�2
and such that

J�1�2
�0�� 1

m0
��0�� (E2)
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Now select �1 ∈ V�1
and �2 ∈ V�2

such that 8�11 �29 ∈ Eneg. In
view of Lemma 5 and observing that asymmetric updates happen
with a strictly positive probability, we can always find �0 > 0 and
Z0 ¾ 1 (both functions of 4�1n1a1 b1 c5) such that

�

(

x�i 4Z05= x�i 4051 J�i�i 4Z05¶
1

4n
84051 i = 112

)

¾�01

(E3)

(because Gpst4V�i
51 i = 112 are connected graphs). (E1) follows

from (E2) and (E3) since m0 ¶ n. �

Lemma 7. Fix � ∈ 40115 with � 6= 1/2. Under belief dynam-
ics (19), there exists ��4�5 > 0 such that �4lim supk→� 84k5 =

2A5= 1 for almost all initial beliefs if �>��.

Proof. In view of Lemma 6, we have

�

(

84Z0 + t5¾ min
{

4�+ 15t

2n
840512A

})

¾
(

cp∗

n

)t

�01

t = 0111 0 0 0 0 (E4)

We can conclude that

�
(

lim sup
k→�

84k5= 2A
)

+�
(

lim sup
k→�

84k5= 0
)

= 1 (E5)

as long as � > 0 using the same argument as that used in the
proof of statement (i) in Lemma 1.

With (E4), we have

�

(

84Z0 + 15¾ �+ 1
2n

8405
)

¾ cp∗

n
�0 (E6)

conditioned on 8405 ¶ 4An/41 +�5. Therefore, we can invoke
exactly the same argument as that used in the proof of Lemma 4
to conclude that there exists ��4�5 > 0 such that

�
(

lim sup
k→�

84k5¾ 4An/41 +�5
)

= 1 (E7)

for all � > ��4�5. Combining (E5) and (E7), we get the desired
result. �

Lemma 8. Assume that the graph is strongly balanced under par-
tition V = V1 ∪ V2 and that GV1

and GV2
are connected. Let � ∈

40115\81/29. Fix the initial beliefs x0. Then under belief dynamics
(19), there are two random variables, B†

14x
051B†

24x
05 both taking

value in 8−A1A9, such that

�
(

lim
k→�

xi4k5= B†
11 i ∈ V13

lim
k→�

xi4k5= B†
21 i ∈ V2

∣

∣

∣

Esep4�5
)

= 1 (E8)

for all � > 0, where by definition, Esep4�5 is the �-separation event

Esep4�5 2=
{

lim sup
k→�

max
i∈V11 j∈V2

�xi4k5− xj4k5�¾ �
}

0

Proof. Suppose xi1405− xi2405¾ � > 0 for i1 ∈ V1 and i2 ∈ V2.
By assumption, GV1

and GV2
are connected. Thus, from Lemma 5,

there exist an integer Z1 ¾ 1 and a constant p̄ (both depending on
�1n1�1a1b) such that

min
i∈V1

xi4Z15− max
i∈V2

xi4Z15¾
�

2
(E9)

happens with probability at least p̄. Intuitively, Equation (E9)
characterizes the event where the beliefs in the two sets V1 and
V2 are completely separated. Since all edges between the two sets
are negative, conditioned on event (E9), it is then straightforward
to see that almost surely we have limk→� xi4k5 = A, i ∈ V1 and
limk→� xi4k5= −A, i ∈ V2.

Given Esep4�5, 8∃i1 ∈ V11 i2 ∈ V2 s.t. xi14k5− xi24k5¾ � for in-
finitely many k} is an almost sure event. Based on our previous
discussion and by a simple stopping time argument, the Borel-
Cantelli Lemma implies that the complete separation event hap-
pens almost surely given Esep4�5. This completes the proof. �
Lemma 9. Assume that the graph is strongly balanced under par-
tition V = V1 ∪V2 and that GV1

and GV2
are connected. Suppose

� ∈ 40115\81/29. Then under dynamics (19), there exists � suf-
ficiently large such that �4Esep4A/255 = 1 for almost all initial
beliefs.

Proof. Let us first focus on a fixed time instant k. Suppose
xi4k5−xj4k5¾A for some i1 j ∈ V. If i and j belong to different
sets V1 and V2, we already have maxi∈V11 j∈V2

�xi4k5 − xj4k5� ¾
A. Otherwise, say i1 j ∈ V1. There must be another node l ∈ V2.
We have maxi∈V11 j∈V2

�xi4k5− xj4k5� ¾ A/2 since either �xi4k5−

xl4k5� ¾ A/2 or �xj4k5− xl4k5� ¾ A/2 must hold. Therefore, we
conclude that

84k5¾A =⇒ max
i∈V11 j∈V2

�xi4k5− xj4k5�¾A/20 (E10)

Then the desired conclusion follows directly from Lemma 7. �
Theorem 4 is a direct consequence of Lemmas 8 and 9.

Appendix F. Proof of Theorem 5

The proof is similar to that of Theorem 4. We just provide the
main arguments.

First by Lemma 7 we have �4lim supk→� 84k5 = 2A5 = 1
for almost all initial values with sufficiently large �. Then as
for (E10), we have

84k5¾A =⇒ max
i∈Vs 1 j∈Vt 1 s 6=t∈8110001m9

�xi4k5− xj4k5�¾
A

m
1

(F1)

where m¾ 2 comes from the definition of weak balance. There-
fore, introducing

E∗

sep4�5 2=
{

lim sup
k→�

max
i∈Vs 1 j∈Vt 1 s 6=t∈8110001m9

�xi4k5− xj4k5�¾ �
}

1

we can show that �4E∗
sep4A/m55= 1 for almost all initial beliefs,

for sufficiently large �.
Next, suppose there exist a constant � > 0 and two node sets

Vi1
and Vi2

with i11 i2 ∈ 811 0 0 0 1m9 such that the complete sepa-
ration event

min
i∈Vi1

xi4k5− max
i∈Vi2

xi4k5¾ � (F2)
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happens. Recall that the underlying graph is complete. Then if
4�+ 15�¾ 2A, we can always select Z∗ 2= �Vi1

� + �Vi2
� negative

edges between nodes in the sets Vi1
and Vi2

so that after the
corresponding updates

xi4k+Z∗5=A1 i ∈ Vi1
1

xi4k+Z∗5= −A1 i ∈ Vi2
0

(F3)

One can easily see that we can continue to build the (finite)
sequence of edges for updates such that nodes in Vk will hold the
same belief in 8−A1A9, for all k = 11 0 0 0 1m. After this sequence
of updates, the beliefs held at the various nodes remain unchanged
(two nodes with the same belief cannot influence each other, even
in presence of a negative link; and two nodes with different beliefs
are necessarily enemies). To summarize, conditioned on the com-
plete separation event (F2), we can select a sequence of node pairs
under which belief clustering is reached, and this clustering state
is an absorbing state.

Finally, the Borel-Cantelli Lemma and �4E∗
sep4A/m55= 1 guar-

antee that almost surely the complete separation event (F2) hap-
pens an infinite number of times if � = A/2m in view of
Lemma 5. The end of the proof is then done as in that of
Theorem 4.

Appendix G. Proof of Theorem 6

Again the result is obtained by combining Lemmas 5 and 7 with
Borel-Cantelli lemma.

Endnote

1. This further confirms that in our model, the origin of the belief
space has no special meaning at all, in contrast to the model of
Altafini (2013).
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Erdős P, Rényi A (1960) On the evolution of random graphs. Publications
Math. Institute Hungarian Acad. Sci. 5:17–61.

Facchetti G, Iacono G, Altafini C (2011) Computing global structural bal-
ance in large-scale signed social networks. Proc. Natl. Acad. Sci.
108(52):20953–20958.

Fagnani F, Zampieri S (2008) Randomized consensus algorithms over
large scale networks. IEEE J. Selected Areas Comm. 26:634–649.

Galam S (1996) Fragmentation versus stability in bimodal coalitions.
Physica A 230:174–188.

Golub B, Jackson MO (2010) Naive learning in social networks and
the wisdom of crowds. Amer. Econom. J.: Microeconomics 2(1):
112–149.

Harary F (1953) On the notion of balance of a signed graph. Michigan
Math. J. 2(2):143–146.

Heider F (1946) Attitudes and cognitive organization. J. Psychol 21:
107–112.

Horn RA, Johnson CR (1985) Matrix Analysis (Cambridge University
Press, New York).

Jackson MO (2008) Social and Economic Networks, 1st ed. (Princeton
University Press, Princeton, NJ).

Jadbabaie A, Molavi P, Sandroni A, Tahbaz-Salehi A (2012) Non-
Bayesian social learning. Games Econom. Behav. 76:210–225.

Krause U (1997) Soziale dynamiken mit vielen interakteuren. Eine prob-
lemskizze. Proc. Modellierung Simul. von Dynamiken mit vielen
interagierenden Akteuren 37–51.

Li L, Scaglione A, Swami A, Zhao Q (2013) Consensus, polarization and
clustering of opinions in social networks. IEEE J. Selected Areas
Comm. 31:1072–1083.

Macy MW, Kitts JA, Flache A, Benard S (2003) Polarization in dynamic
networks: A Hopfield model of emergent structure. Dynam. Soc. Net-
work Modeling Anal. 162–173.

Marvel SA, Kleinberg J, Kleinberg RD, Strogatz SH (2011) Continuous-
time model of structural balance. Proc. Natl. Acad. Sci. 108(5):
1751–1752.

Matei I, Baras JS, Somarakis C (2013) Convergence results for the linear
consensus problem under Markovian random graphs. SIAM J. Control
Optim. 51(2):1574–1591.

Nemeth CJ (1986) Differential contributions of majority and minority
influence. Psych. Rev. 93(1):23–32.

Shi G, Johansson M, Johansson KH (2013) How agreement and disagree-
ment evolve over random dynamic networks. IEEE J. Selected Areas
Comm. 31:1061–1071.

Shi G, Li B, Johansson M, Johansson KH (2014) When do gossip algo-
rithms converge in finite time? The 21st Internat. Sympos. Math.
Theory of Networks and Systems 4MTNS5 (Groningen, Netherlands).

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
6.

15
2.

14
2.

35
] 

on
 0

1 
M

ar
ch

 2
01

7,
 a

t 1
3:

22
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Shi et al.: The Evolution of Beliefs over Signed Social Networks
604 Operations Research 64(3), pp. 585–604, © 2016 INFORMS

Shi G, Proutiere A, Johansson M, Baras JS, Johansson KH (2015)
Emergent behaviors over signed random dynamical networks: State-
flipping model. IEEE Trans. Control of Network Systems 2:142–153.

Tahbaz-Salehi A, Jadbabaie A (2008) A necessary and sufficient condition
for consensus over random networks. IEEE Trans. Autom. Control
53:791–795.

Theodorakopoulos G, Baras JS (2008) Game theoretic modeling of mali-
cious users in collaborative networks. IEEE J. Selected Areas Comm.
26:1317–1327.
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