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Abstract— In this paper we consider the problem of dis-
tributed convergence to a Nash equilibrium based on minimal
information about the underlying noncooperative game. We
assume that the players/agents generate their actions based
only on measurements of local cost functions, which are
corrupted with additive noise. Structural parameters of their
own and other players’ costs, as well as the actions of the
other players are unknown. Furthermore, we assume that the
agents may have dynamics: their actions can not be changed
instantaneously. We propose a method based on a stochastic
extremum seeking algorithm with sinusoidal perturbations and
we prove its convergence, with probability one, to a Nash
equilibrium. We discuss how the proposed algorithm can be
adopted for solving coordination problems in mobile sensor
networks, taking into account specific motion dynamics of the
sensors. The local cost functions can be designed such that
some specific overall goal is achieved. We give an example in
which each agent/sensor needs to fulfill a locally defined goal,
while maintaining connectivity with neighboring agents. The
proposed algorithms are illustrated through simulations.

I. INTRODUCTION

Problems of distributed, multi-agent optimization, coor-
dination, estimation and control have been in the focus of
significant research in past years. Depending on the problem
setup and the available resources, agents may have access to
different measurements, different a priori information, such
as system models and sensor characteristics, and different
inter-agent communication channels. One approach to these
problems is game theoretic, since the agents can be treated as
players in a game. In this way, a decentralized optimization
or coordination problem can be formulated as a nonco-
operative game, where the players are selfishly trying to
optimize their local cost functions, based on locally available
information. Depending on the structure of the game, and the
design of the local cost functions, the Nash equilibria of the
underlying game can have different properties and they may
or may not correspond to the optimal solution to some global
optimization problem [1]–[7].

The focus of this paper is on the problem of learning in

games, or designing the algorithms that converge to a Nash
equilibrium. The majority of the existing literature in this
area is focused on the model-based algorithms; that is, the
algorithm is designed having in mind a specific form of the
players cost functions. Furthermore, it is usually assumed
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that the players can observe the actions of the other players.
In this way, the algorithms can be designed on the basis of the
“best response” strategy. For example, in [8], convergence
properties have been analyzed for such a class of infinite,
convex games. For the games with finite action sets, where
the players can use mixed strategies, the convergence of the
underlying best response algorithm, called fictitious play and
its modifications have been analyzed intensively (see [9] and
references therein). The recently proposed algorithms in [10]
and [11] deal with an information structure similar to the one
imposed in this paper, but require synchronization between
the agents, and the convergence is proved only for a special
class of games (weakly acyclic or potential games). Also,
non of the mentioned approaches deals with the dynamic
nature of the players while also taking into account the
measurement noise. A similar approach to the one proposed
in this paper, applied to deterministic games in markets, has
appeared independently in [12].

On the other hand, the extremum seeking algorithms
have received significant attention recently for dealing with
nonmodel-based online optimization problems involving dy-
namical systems. The basic algorithm, based on introducing
sinusoidal perturbations, has been treated in [13]. In [14]
and [15] a time varying version of the algorithm has been
introduced, whose convergence, with probability one, has
been proved in the presence of measurement noise. It has
been demonstrated how this technique can be applied to
autonomous vehicles source seeking in deterministic environ-
ments [16], or optimal positioning in stochastic environments
[14], [17].

In this paper we propose an algorithm for distributed
seeking of a pure Nash strategy in infinite games where
the players are generating their actions, based solely on the
measurements of their local cost functions, whose analytical
form is unknown. Furthermore, similarly as in the extremum
seeking problems, it is assumed that the agents may have
some local dynamics, so that their inputs are filtered through
stable filters before affecting the cost functions; hence, the
actions can not be changed instantaneously. Also, the local
measurements of cost functions are not available directly,
they are filtered through a stable filter, and corrupted with
measurement noise. The proposed algorithm is based on
the time-varying extremum seeking scheme with sinusoidal
perturbations, under stochastic noise, analyzed in [15]. We
formulate necessary conditions regarding the structure of the
players’ cost functions and regarding the parameters of the
proposed distributed scheme, under which we prove almost
sure (a.s.) convergence to a Nash equilibrium.

The proposed Nash equilibrium seeking algorithm is ap-

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 5598



pealing for dealing with distributed coordination and opti-
mization problems within mobile sensor networks, having
in mind that it does not require a detailed model of the
problem, that it is possible to include agents’ dynamics,
and that it copes with a stochastic environment. We give
an example on how to design local cost functions such that
the agents can fulfill some locally defined objectives, while
maintaining connectivity with the neighboring agents. The
proposed framework can also tackle more general distributed
optimization problems within mobile sensor networks, for-
mulated as noncooperative games (e.g., coverage control,
target assignment, randevouz). The existing literature in the
area of mobile sensor networks, in which game theory or
distributed optimization have been applied are based on
specific sensing models, do not take robot dynamics into
consideration or are only focused on specific scenarios (e.g.,
[18], [19], [11], [20] and references therein).

In Section II the problem setup and the algorithm de-
scription is given. Section III is devoted to the convergence
analysis of the algorithm. In Section IV we discuss possi-
ble applications within mobile sensor networks where the
vehicle dynamics can include single or double integration.
Simulation results for the network of three agents are shown
and discussed in Section V.

II. A NASH EQUILIBRIUM SEEKING ALGORITHM

We consider a scenario in which N agents are noncoopera-
tively minimizing their local cost functions by only updating
their local actions, based on their current local information.
We assume that the actions of the players belong to infinite
spaces (Rmi , i = 1, ..., N ). Hence, we are dealing with a
noncooperative static game with infinite strategy spaces of
the players where the optimality is characterized by a (pure)
Nash equilibrium; a point from which neither agent have
incentive to deviate [5].

We assume that the information that each player has about
the underlying game is restricted solely to the measurements
of its local cost function, which are, in addition, filtered
through an unknown stable filter and corrupted with a
measurement noise. The players do not have any direct
information about either the underlying structure of the game
or the actions of the other players. Motivated by the fact
that the formulated nonmodel based information structure
resembles the one in the extremum seeking problems, we
propose an algorithm based on sinusoidal perturbations,
depicted in Fig. 1.

Without loss of generality, we will assume that each
agent’s strategy space is two dimensional, ui = (xi, yi) ∈
R2, having in mind that we will apply this methodology to
vehicle coordination problems in the plane. The framework
can be extended to multi-dimensional strategy spaces in a
straightforward way. Furthermore, we assume that the agents
may have some local dynamics, so that their actions are
filtered through a stable filter, having the transfer function
matrix Fi(z), before affecting the measured cost function
Ji(ui, u−i), where ui denotes the action of agent i, while
u−i denotes the actions of all the other agents. In general,
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Fig. 1. Nash equilibrium seeking scheme

each cost function Ji doesn’t necessarily have to depend on
the actions of all the other players. So, let us define neighbor
sets Ni, i = 1, ..., N , whose elements are indices of the
agents whose actions affect the i-th agent’s cost function.

As shown in Fig. 1, each agent implements a local
extremum seeking loop. The estimation of the gradient of
the local cost function is performed by inserting a sinusoidal
perturbation, with frequency ωi, which, by passing through
the function Ji, is being modulated by its local slope. The es-
timate of the slope (found by the multiplication/demodulation
with the same frequency sinusoid) is then used to move
(by integration) in the opposite direction. Since all the
information needed to estimate the gradient is located in
the amplitude of the modulated sinusoidal perturbation, the
measurements are filtered by high pass filters Hi(z) in order
to eliminate any DC components, and, hence, to improve
the overall convergence properties. Also, in order to improve
the convergence properties, low pass filters can be added in
the loop as part of the dynamics Gi(z) and Fi(z). Local
decoupling between x and y dimensions is obtained using
orthogonal perturbations: sine for x, and cosine for y (cf.,
[17] or [16]). Furthermore, neighboring agents apply different

frequency perturbations, ωi "= ωj , j ∈ Ni, so that decoupling
between their gradient estimates is achieved.

Let us assume that the local cost functions Ji(ui, u−i) are
continuously differentiable, strictly convex in local decision
variables ui and that Ji(ui, u−i) → ∞ when ‖ui‖ → ∞.
These conditions guarantee existence of a Nash equilib-
rium in pure strategies [5], [21]. Under these conditions,
a necessary and sufficient condition for achieving a Nash
equilibrium is that all the gradients of Ji(ui, u−i) with
respect to ui are equal to zero:

gu(u∗) = [∇1J1(u
∗)T , ...,∇NJN (u∗)T ]T = 0, (1)

where u∗ denotes a Nash equilibrium and ∇iJi(u∗), i =
1, ..., N , denotes the gradient of Ji with respect to local
actions ui.

The following equations model the behavior of the system:

wi(k) = Hi(z)[Gi(z)[Ji(ui(k), u−i(k))] + ni(k)], (2)

ui(k) = ui
0(k) + Fi(z)

[

−
1

z − 1
[ξi(k)]

]

, (3)

ξi(k) = εi(k)Ci(k)wi(k), (4)
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for i = 1, ..., N , where ni(k) is the measurement noise
of agent i, ui

0(k) = Fi(z)[αi(k) cos(ωik) αi(k) sin(ωik)]T

and Ci(k) = [cos(ωik − ϕi) sin(ωik − ϕi)]T . Throughout
the paper, the expression Y (z)[x(k)] denotes a time domain
vector whose components are obtained as the outputs of the
transfer function matrix Y (z) applied to the input vector
x(k).

For each agent, we define the tracking error as:

ũi(k) = u∗
i − ui(k) + ui

0(k), (5)

where u∗
i is the i-th agent’s action in the Nash equilibrium.

From the above equations it is easy to obtain the following
difference equation for the overall tracking error:

ũ(k + 1) = ũ(k) + F (z)[ε(k)C(k)w(k)], (6)

where ũ(k) = [ũ1(k)T , . . . , ũN (k)T ]T ,
F (z) = diag {F1(z), . . . , FN (z)},
ε(k) = diag {ε1(k), . . . , εN (k)}⊗ I2,
C(k) = diag {C1(k), . . . , CN (k)},
w(k) = [w1(k), . . . , wN (k)]T , I2 is 2x2 identity matrix and
⊗ denotes the Kronecker product.

III. CONVERGENCE ANALYSIS

In the convergence analysis, we will assume that the
following assumptions are satisfied:

(A.1) The random vectors n(k) (where n(k) =
[n1(k), . . . , nN (k)]T ) are mutually independent and zero
mean and they satisfy

E{n(k)n(k)T } = Σ(k) ≤ Γ, k = 1, 2, ... (7)

for some matrix Γ ≥ 0, ||Γ|| < ∞ (the notation A ≤ B
means that the matrix B − A is positive semidefinite; || · ||
denotes any matrix norm).

(A.2) The scalar sequences εi(k) are decreasing, εi(k) >
0, k = 1, 2, ..., and limk→∞ εi(k) = 0, i = 1, ..., N .

(A.3) The scalar sequences αi(k) are decreasing, αi(k) >
0, k = 1, 2, ..., and limk→∞ αi(k) = 0, i = 1, ..., N .

(A.4)
∑∞

k=1 εi(k)αi(k) = ∞, i = 1, ..., N .

(A.5)
∑∞

k=1 εi(k)εj(k) < ∞ for all i = 1, ..., N and
j ∈ Ni ∪ {i}.

(A.6) εi(k)αi(k) = O(εj(k)αj(k)) for all i, j = 1, ..., N .

According to (A.6), εi(k)αi(k) can be written as

εi(k)αi(k) = min
j

[εj(k)αj(k)](ci + o(εi(k)αi(k))), (8)

for each i = 1, ..., N and for some constants ci > 0.

(A.7) ũ(k) ∈ B a.s. for all k = 1, 2, ..., where B is
a compact connected subset of R2N containing the origin.
Ji(u), u = [uT

1 . . . uT
N ]T , i = 1, ..., N , are analytic in an

open set Bu, containing u∗, which is related to set B in
such a way that for any point ũ ∈ B, u∗ − ũ + u0(k) ∈ Bu,
for all k = 1, 2, ... (in accordance with (5), where u0(k) =
[u1

0(k)T , ..., uN
0 (k)T ]T ).

(A.8) There exists a continuously differentiable Lyapunov
function V (ũ) such that V (0) = 0 and

−gT (ũ)KT∇ũV (ũ) < 0, (9)

for all ũ "= 0, ũ ∈ B, where g(ũ) = gu(u∗ − ũ),
K = diag{c1K1, ..., cNKN},

Ki = Fi(1)

[

Re{θi} Im{θi}

−Im{θi} Re{θi}

]

, θi =

ejϕiFi(ejωi)Gi(ejωi)Hi(ejωi), and ∇ũV (ũ) denotes
the gradient of V (ũ).

(A.9) ωi ∈ (0,π) and ωi "= ωj for all i = 1, ..., N and
j ∈ Ni.

Observe here that Assumption (A.8), besides stability of
our algorithm, also ensures uniqueness of the Nash equilib-
rium u∗ (see also [21] where stability and uniqueness have
been ensured with the, so called, strict diagonal convexity
condition). The following theorem deals with the asymptotic
behavior of the algorithm.

Theorem 1. Consider the multi-agent system with Nash
equilibrium seeking scheme defined in (2)-(4) and shown in
Fig. 1. Let the Assumptions (A.1)–(A.9) be satisfied. Then
the actions u(k) = [u1(k)T . . . uN (k)T ]T of the players
converge to the Nash equilibrium u∗ almost surely.

Proof. Recall that the tracking error for each agent satis-
fies:

ũi(k + 1) − ũi(k) =

Fi(z)[εi(k)Ci(k)Hi(z)[Gi(z)[Ji(ui(k), u−i(k))] + ni(k)]].
(10)

Since we have assumed that the functions Ji(ui, u−i) are
analytic in the region Bu containing u∗ (Assumption (A.7))
one can obtain their Taylor series expansion around the Nash
equilibrium point u∗, and by using (5) write it as the sum
of three terms defined below:

Ji(ui(k), u−i(k)) = Li(k) + Di(k) + di(k). (11)

The first term Li(k) is linear with respect to the perturbation
signal ui

0; therefore, it is essential for achieving the adequate
approximation of the gradient of the cost function (since it
will be demodulated by the multiplication with Ci(k)). It is
given by:

Li(k) = ui
0(k)T∇iJi(u

∗ − ũ). (12)

The term di(k) in (11) contains the deterministic input
terms (not depending on any ũi, i = 1, ..., N ) and Di(k)
contains all the remaining terms. Now we focus on the
term Fi(z)[εi(k)Ci(k)Mi(z)[Li(k)]] obtained from (10) and
(11), where Mi(z) = Hi(z)Gi(z), since it is essential for
achieving the contraction of the tracking error. By plugging
(12) into (11) and then into (10), applying a modulation
lemma (e.g., Lemma 2 from [22]), and taking into account
multiplication with Ci(k), after some algebra, one obtains
the following equation:

Ci(k)Mi(z)[Li(k)] =Qi(z) [Ai(k)∇iJi(u
∗ − ũ)]

+ Si(k)Pi(z) [Ai(k)∇iJi(u
∗ − ũ)] ,

(13)

where Qi(z) =

[

Q1
i (z) Q2

i (z)

Q2
i (z) −Q1

i (z)

]

, Q1
i (z) =

−Re{ejϕiMi(ejωiz)}, Q2
i (z) = Im{ejϕiMi(ejωiz)},
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Ai(k) =

[

αi
1(k) αi

2(k)

αi
2(k) −αi

1(k)

]

, αi
1(k) =

Re{Fi(ejωiz)[αi(k)]}, αi
2(k) = Im{Fi(ejωiz)[αi(k)]},

Pi(z) =

[

P 1
i (z) P 2

i (z)

P 2
i (z) −P 1

i (z)

]

, P 1
i (z) = −Re{Mi(ejωiz)},

P 2
i (z) = Im{Mi(ejωiz)} and Si(k) =

[

cos(2ωik − ϕi) sin(2ωik − ϕi)

sin(2ωik − ϕi) − cos(2ωik − ϕi)

]

.

Following the methodology developed in [15], after plug-
ging (13) into (10), we decompose the first term in the
following way:

Fi(z) [εi(k)Qi(z)[Ai(k)∇iJi(u
∗ − ũ)]] =

εi(k)Bi(z)[Ai(k)∇iJi(u
∗ − ũ)] + δ1

i (k), (14)

where Bi(z) = Fi(z)Qi(z) and it can be shown [15]
that ||

∑∞
k=1 δ

1
i (k)|| < ∞ (a.s.), i = 1, ..., N . By

applying similar decompositions (whose goal is to ex-
tract the essential term allowing the contraction of the
algorithm, while proving that all the other terms are
summable a.s.) it can be shown that the whole term
(14) can be put in the form −εi(k)αi(k)Ki∇iJi(u∗ −
ũ) + δi(k), where Ki = −Bi(1)Ai

f (1), Ai
f (z) =

[

Re{Fi(e
jωiz)} Im{Fi(e

jωiz)}

Im{Fi(e
jωiz)} −Re{Fi(e

jωiz)}

]

(compare with Ai(k))

and δi(k) contains all the summable terms, so that
||

∑∞
k=1 δi(k)|| < ∞ (a.s.). It is easy to derive that the

matrices Ki have the form as defined in Assumption (A.8).
Finally, by plugging this term into (13) and then back into

the tracking equations (10), and by using (11) and (A.6), we
obtain the tracking equation for the whole system:

ũ(k + 1) = ũ(k) − ρ(k)Kg(ũ(k)) + φ(k) + F (z)[ε(k)π(k)],
(15)

where K is as given in (A.8), φ(k) =
δ(k) + ε(k)S(k)P (z)[A(k)g(ũ(k))], π(k) =
C(k)M(z)[d(k) + D(k)] + C(k)H(z)[n(k)],
α(k) = diag{α1(k), ...,αN (k)} ⊗ I2, δ(k) =
[δ1(k)T , ..., δN (k)T ]T , P (z) = diag{P1(z), ..., PN (z)},
M(z) = diag{M1(z), ...,MN (z)}, S(k) =
diag{S1(k), ..., SN (k)}, A(k) = diag{A1(k), ..., AN (k)},
D(k) = [D1(k), ..., DN (k)]T , d(k) = [d1(k), ..., dN (k)]T ,
H(z) = diag{H1(z), ...,HN (z)}, ρ(k) = ε(k)α(k)
and where we have incorporated the summable terms
ρ(k)[o(εi(k)αi(k)))] (according to (A.5)) in the term δ(k).

Now it is obvious that the recursive equation (15) is
actually the Robbins-Monro algorithm to which we can
directly apply Theorem 2.2.3 from [23], having in mind that,
by Assumption (A.8), there exists a Lyapunov function V (ũ)
that satisfies conditions of this theorem. Therefore, ũ → 0
a.s. if the “error” term satisfies

∞
∑

k=1

{φ(k) + F (z)[ε(k)π(k)]} converges (a.s.). (16)

Having in mind that the filter F (z) is linear and asymp-
totically stable, we can switch the summation and filtering

in (16); hence it is enough to show that
∑∞

k=1 φ(k) +
ε(k)π(k) converges (a.s.). We have already shown that δ(k)
is summable a.s.

Furthermore, all the terms in ε(k)S(k)P (z)[A(k)g(ũ(k))]
and in ε(k)C(k)M(z)[D(k)], actually contain a sinusoidal
signal multiplied with filtered terms having the following
forms χn1

1 χn2

2 · · ·χnN

N , where χi denotes either xi or yi

scalar coordinate and ni ∈ {0, 1, 2, ...} for all i ∈ {1, ..., N}.
Therefore, by applying the same methodology exposed in
[15] for proving convergence of similar sums, it can be
shown that the sum of all these terms converges a.s. under the
assumptions (A.2), (A.3), (A.5) and (A.7). It is important to
observe that the terms in Di(k) containing the j-th perturba-
tion uj

0 will be multiplied with a different frequency sinusoid
contained in Ci(k) (Assumption (A.9)). By converting this
product of sinusoids into a summation, these terms will end
up having the same, summable, form and can be treated in
the same way as the other terms.

For the deterministic input terms, contained in
εi(k)Ci(k)Mi(z)[di(k)] it is obvious that all of them
will have the form c0εi(k)αi(k) sin(ω(i, j)k + φ(i, j)),
where ω(i, j) and φ(i, j) depend on ωi, ωj , ϕi and ϕj

for j ∈ Ni and c0 is a constant. This form is summable
according to results in [15].

Finally, the stochastic input terms
εi(k)Ci(k)Hi(z)[ni(k)], which are independent sequences
filtered through stable filters Hi(z) and multiplied with
εi(k), can be treated using the results from [24], which
deal with stochastic approximation algorithms with colored
noise. Under the adopted assumptions (A.2), (A.3) and
(A.5) it can be shown that these terms satisfy the necessary
conditions to be summable a.s. (see also [15] where a
similar problem is treated in an analogous way).

Therefore, we have shown that (16) is satisfied, which
proves the theorem.

Remark 1. If the underlying game is a potential game

[4], the vector (1) will be equal to the gradient of the
potential function. It is obvious that, in this case, we can
choose this potential function (shifted such that V (0) = 0
and assuming its strict convexity) as a Lyapunov function,
so that the condition (9) will always be satisfied if K is
positive definite. Therefore, in this case, Assumption (A.8)
can be replaced with the simple condition: −π

2
< ϕi +

Arg
{

Fi(ejωi)Hi(ejωi)Gi(ejωi)
}

< π
2

, Fi(1) > 0, i =
1, ..., N , which ensures the positive definiteness of K. In fact,
this condition ensures that the phase shift of the sinusoidal
perturbation, induced by the filters Fi(z), Hi(z) and Gi(z),
is close enough to the phase shift −ϕi of the multiplying
sinusoids.

Remark 2. In the case of quadratic cost functions Assump-
tion (A.8) has the following direct interpretation in terms of
a Jacobian matrix stability. Assume that the cost functions
are given by

Ji(ui, u−i) =uT
i Ri

iiui + uT
i ri + ki

+
∑

j∈Ni

uT
i Rijuj + uT

j Ri
jjuj + uT

j ri
j , (17)
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where Ri
ii ∈ R2×2, Ri

ii > 0, Rij ∈ R2×2,Ri
jj ∈ R2×2, ri ∈

R2, rj
i ∈ R2. The condition (1) becomes now Ru∗ = −r,

where r = [rT
1 , ..., rT

N ]T and

R =













2R1
11 R12 . . . R1N

R21 2R2
22 . . . R2N

...
...

...

RN1 RN2 . . . 2RN
NN













. (18)

It is obvious that, in this case g(ũ) = Rũ. Therefore, we
can choose a quadratic Lyapunov function V (ũ) = ũT Pũ,
where P > 0 is chosen such that the condition (9) is satisfied.
Such a matrix P > 0 will always exist if the matrix KR is
stable (Hurwitz). If we assume that the matrix R is stable
and strictly diagonally dominant, then the stability of the
whole matrix KR is ensured for all positive definite and
diagonal matrices K. From the definition of matrix K it
is obvious that it will be positive definite and diagonal if
ϕi + Arg

{

Fi(ejωi)Hi(ejωi)Gi(ejωi)
}

= 0, Fi(1) > 0, i =
1, ..., N .

Remark 3. The boundedness assumption (A.7) is a stan-
dard assumption for convergence analysis of many stochastic
approximation algorithms (see, e.g., [25], [26], [23]). How-
ever, in practice it might be hard to check the boundedness
a priori. In order to ensure that this condition is satisfied,
the algorithm can be modified by introducing truncation,
or projection into some prespecified set S, containing the
Nash equilibrium, whenever the estimate u(k) leaves the
predefined region Bu, containing the set S. Based on the
results from [23], Theorem 1.4.1 it can be shown that the
number of truncations can only be finite, which means that
for large enough k the algorithm simply reduces to the
one without truncations, but with guaranteed boundedness
of ũ(k) by the algorithm construction.

Remark 4. Assumptions (A.2)–(A.5) are standard assump-
tions on the step size in recursive, stochastic and determinis-
tic (sub)gradient algorithms (see e.g. [27], [23], [26]). They
aim at reducing the effect of measurement noise; however,
in order to achieve convergence of the algorithm, they need
to converge to zero slow enough so that (A.4) is satisfied. A
straightforward way of satisfying Assumptions (A.2)–(A.6)
is by simply taking εi(k) = eik−mε and αi(k) = aik−mα

where 0.5 < mε < 1, 0 < mα < 0.5, mε + mα ≤ 1 and
ei and ai can account for asynchronicity between the agents
(note that for this case, ci = eiai, according to the above
notation).

IV. APPLICATION TO MOBILE SENSOR NETWORKS

It is straightforward to modify the scheme from Fig. 1 and
adapt it for problems involving self-organizing networks of
autonomous vehicles (mobile sensors), where the vehicles,
treated as players in a game, are seeking positions corre-
sponding to a Nash equilibrium. In Fig. 2 a scheme involving
force actuated vehicles (double integrators) is shown (see
also [17], [16] where similar schemes are proposed for single
agent systems). The discrete-time integrator from Fig. 1 is
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Fig. 2. Nash equilibrium seeking scheme for force actuated vehicles

now contained in the vehicle dynamics, and moved in front of
the perturbing signal, whose phase now needs to be adjusted
to compensate for the integrators phase shift. Also, a discrete-
time differentiator is added in order to compensate double
integration of the vehicle. Therefore, it can be shown [17]
that the overall equivalent discrete-time scheme is actually
the scheme from Fig. 1, with the input filters having the
transfer function Fi(z) = 1+z−1. Furthermore, the vehicles
may have any additional stable dynamics, since they can be
incorporated in Fi(z) and Gi(z).

The formulated framework for Nash equilibrium seeking is
general, and allows the cost function to be designed in order
to reach some specific goal. For example, the game can be
designed in such a way that a Nash equilibrium corresponds
to some overall (centralized) goal or a Pareto optimal point.
In this scenario the proposed algorithm gives a solution to
online decentralized optimization or coordination problems
in multi-agent networks based only on the measurements
of local costs. However, in general, achieving a social
(centralized) goal is not an easy task, since the agents act
selfishly, so that some artificial cooperation structure needs
to be imposed on agents behavior (by proper design of the
agents’ cost functions) in order to enforce convergence to
an efficient equilibrium (see, e.g., [6], [2], [3], [7]). In what
follows, we are going to present a simple example of how
to construct the cost functions in order to deal with some
typical problems in mobile sensor networks.

Broadening the scenarios analyzed in [14], [17], where
an agent is either searching for a source of some signal
with unknown distribution, or positioning itself to an optimal
sensing point for some estimation task, in our interconnected
problem setting, the local cost functions of the agents can
be designed to achieve the mentioned local goals, while
keeping good connection with selected neighboring agents.
This can be important in distributed estimation where the
local estimators are communicating with each other in order
to improve the overall performance. Therefore the “inter-
connection” term in the cost functions can correspond to the
variance of the agents intercommunication noise, or it can be
the reciprocal value of the signal power received from the
neighbors. In the latter case, assuming that the signal power
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Fig. 3. Trajectories of the vehicles and coordinates of the first vehicle

is inversely proportional to the distance between the agents,
i.e., P (ui, uj) ∼ 1/||ui − uj ||2, and taking its reciprocal
value as the interconnection term which is to be minimized,
we can define quadratic cost functions as

Ji(ui, u−i) = uT
i riiui + uT

i ri + ki +
∑

j∈Ni

mij ||ui − uj ||
2,

(19)
where rii > 0, ||·|| is the Euclidian norm and the coefficients
mij are selected a priori, reflecting the importance of the
signal received from the j-th agent. Therefore, the elements
of the matrix R in (18) are Rij = diag{−2mij ,−2mij},
Ri

ii = rii − 1
2

∑

j∈Ni
Rij . It is straightforward to check that

the matrix −R is strictly diagonally dominant and stable.
According to Remark 2, this game will always admit a
unique Nash equilibrium and the condition (A.8) is satisfied
for any diagonal positive definite K.

V. EXAMPLE

In this example we illustrate the algorithm proposed in
Fig. 2 for a network of three force actuated vehicles, where
the cost functions are given by (19) with r11 = r22 = r33 =
[

1 0
0 1

]

, r1 = [2 − 2]T , r2 = [−2 − 2]T , r3 = [−4 2]T ,

k1 = 3, k2 = 3, k3 = 6, m12 = m21 = m23 =
m32 = 1 and m13 = m31 = 0. Hence, by solving (1)
we obtain that the unique Nash equilibrium is the point
u∗ = [−0.125 0.75 0.75 0.5 1.375 − 0.25]. For the
other system parameters we assume the following values:
the noise covariance matrix (7) is Σ(k) = diag{0.1 0.1 0.1},
ϕi = −π/4, T = 0.1, Hi(z) = z−1

z+0.07
(high pass filters),

εi(k) = 1.5k−0.65, αi(k) = 0.4k−0.25, for i = 1, 2, 3,
and ω1 = ω3 = 0.5π, ω2 = 0.7π. We are allowed to
pick the same frequencies for players 1 and 3 since they
are not interconnected. Trajectories of the vehicles and time
response for the first vehicle are shown in Fig. 3, for the
initial conditions u1(1) = [0 0]T , u2(1) = [0.5 0.5]T ,
u3(1) = [0 0.5]T . The time responses for the other two
vehicles are similar. The convergence to the Nash equilibrium
is evident.
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