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Abstract—This paper considers the synchronization problem
of coupled nonlinear dynamical systems over time-varying inter-
action graphs. We first show that infinite joint connectivity is
necessary for achieving globally asymptotic synchronization. We
then show that the commonly used Lipschitz condition on the
nonlinear self dynamics is not sufficient to ensure synchronization
even for an arbitrarily large coupling strength. A sufficient
synchronization condition is established in terms of the times of
connectivity, the integral of the Lipschitz gain, and the network
parameters.

Index Terms—Multi-agent systems, nonlinear dynamical sys-
tems, time-varying interaction, synchronization.

I. INTRODUCTION

In recent years, the study on synchronization of coupled
nonlinear dynamical systems has attracted considerable at-
tention, partly due to that an increasing number of circuits
and systems can be described in such a framework. Examples
include arrays of Chua circuits [1], Lorenz systems [2], chaotic
systems [3]-[5], and other physical systems surveyed in [6].

The interaction among the dynamical systems is often
modeled by a graph. Most works in the literature studied the
case where the graph is fixed, e.g., [7]-[11]. It has been shown
that if the nonlinear self dynamics is globally Lipschitz, then
synchronization is achieved for a connected graph provided
that the coupling strength is sufficiently large.

For the case where the graph is time-varying, most at-
tention has been devoted to a few special cases, where the
self dynamics is a single integrator [12]-[18] or a neutrally
stable system [19]-[22]. For such systems, it has been shown
that synchronization is achieved if the interaction graph is
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uniformly jointly quasi-strongly connected or infinitely jointly
connected. When the self dynamics is nonlinear, the problem
becomes much more challenging and existing works mainly
focused on the special case where the interaction graph has
some particular structure. In particular, the authors of [23]
assumed that the graph is weakly connected and balanced at all
time and the self dynamics is globally Lipschitz. They showed
that synchronization is achieved if the coupling strength is
sufficiently large. A similar result was obtained in [24] for a
more general case where the interaction graph frequently has
a directed spanning tree. These special time-varying graphs
are rather restrictive compared to joint connectivity where the
interaction can be lost at any particular time.

The goal of this paper is to study synchronization of coupled
nonlinear dynamical systems over jointly connected graphs.
We begin to show that a weak form of graph connectivity,
infinite joint connectivity, is necessary for achieving global
asymptotic synchronization. For infinitely jointly connected
graphs, we show through an example that the commonly used
global Lipschitz condition on the nonlinear self dynamics
alone is not sufficient to ensure synchronization even for
an arbitrarily large coupling strength. We then establish a
sufficient condition for reaching synchronization in terms of
the times of connectivity, the integral of the Lipschitz gain,
and the network parameters.

The rest of the paper is organized as follows: In Section II,
we provide some background on graph theory and Dini deriva-
tive. Section III formulates the three synchronization problems
considered in this paper. Our main results are presented in
Section IV followed by concluding remarks.

II. PRELIMINARIES

Let us first recall some basic concepts from graph theory
[25]. A graph G = (V, &) consists of a nonempty finite set
of nodes V = {1,2,...,n} and a set of edges £ C V x V,
where an edge (j,7) € £ denotes that nodes 7 and j can obtain
each other’s information mutually. All neighbors of node ¢ are
denoted NV; := {j : (j,i) € £}. A path is a sequence of edges
of the form (i1,12), (i2,3),.... The graph G is connected if
each node has a path to any other node. For the graph G, the
weighted adjacent matrix A = [a;;] € R"*" is defined such
that a;; > 0if (4,4) € £ and a;; = 0 otherwise. The weighted
adjacency matrix A associated with the undirected graph is
not necessarily symmetric since a;; # aj; in general.
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In this paper, we model the time-varying interaction among
the coupled dynamical systems by a time-varying graph
Goty = (V,E5(1)), where o : [0,400) — P is a piecewise
constant function and P is a finite set of all possible graphs.
Go(+) remains constant for ¢ € [ts,tp41), £ = 0,1,... and
switches at t = t4, £ = 1,.... Throughout the paper, we
assume that infy(t;41 —tg) > 74 > 0, £ = 1,... with
limy_, o tg = 00, where 74 is a constant denoting the dwell
time [26]. The joint graph of G, during time interval
[ta,tp) with t, < t, < oo is defined by G([ta,ts)) =
Usegta i) 9(8) = V. Uiepr, 1) Eo(1))- Moreover, j is a neigh-
bor of i at time ¢ when (j,7) € £,(), and N;(o(t)) represents
the set of node neighbors of ¢ at time ¢. We denote {4, },cp
as the set of adjacency matrices associated with the graph
{Gp}pep. The upper Dini derivative of V(¢,z(t)) at ¢ is
defined as [27, pp.659]

D+V(t, 2(1)) = lim sup V(t+0,z(t+9)) — V(e m(t))
6—0t d
The following lemma holds [28].

Lemma 1: Let V;(t,z) : RxRP - R (i =1,...,n) be con-
tinuously differentiable and V(¢,z) = max;=1, ., Vi(t, z).
If Z(t) = {i € {1,2,...,n} : V(t,x(t)) = Vi(t,z(t))} is
the set of indices where the' maximum is reached at ¢, then
DTV (t,2(t)) = maxiez(s) Vi(t, z(t)).

III. PROBLEM FORMULATION

Consider a network with n coupled nonlinear dynamical
systems. The dynamics of the systems are described by the
following equations:

&y = f(t,@i) +v aij(o(t))(z; —xi), i €V, (1)
JENi(a(t))

where z; € RP is the state of node 7, v > 0 is a coupling

gain, a;;(p) > 0 is the (4, j)-th entry of the adjacency matrix

A, associated with the graph G, for all p € P, and f(t,z;) :

[0, 00) xRP — RP is piecewise continuous in ¢ and continuous

in z; representing the nonlinear self dynamics of system :.

It is not hard to show that a, < a;(p) < a*, for
all a;;(p) # 0, all i,j € V, and all p € P, where
a* = maxpep,ijev aij(p) and a. = min,ep; jev{ala €
{a;j(p)} and a # 0}. We denote = [27, 5, ..., 2},]" € RP"
and assume that the initial time is tg > 0, and the initial state
x(to) = (2] (to), ..., xh (to))" € RP™,

For single integrators (i.e., f(t,z;) = 0 in (1)) over an
undirected graph, the following assumption is a necessary and
sufficient condition for achieving global asymptotic synchro-
nization [16].

Assumption 1: The time-varying graph G, is infinitely
jointly connected, i.e., G([t,00)) is connected for all ¢ > t.

Throughout the paper, we assume that Assumption 1 is
satisfied. We are interested in the following synchronization
problems.

Definition 1: System (1) achieves global asymptotic syn-
chronization if lim; oo (x;(t) — z;(t)) = 0, Vi,j € V,
Va; (t()) € RP.

Definition 2: System (1) achieves global exponential syn-
chronization if there exist constants &, > 0 and Ay > 0

2

such that [|z;(t) — 2;(t)|] < e Ela(to) — x;(to) ),
Vi7j ev, Vl‘i(to) € RP, YVt > to.

Definition 3: System (1) achieves global polynomial syn-
chronization if there exist constants & > 0 and Ay > 0 such
that [|l2i(t) — z;(t)|| < =32y l@i(to) — z;(to)ll, Vi, j € V.,
Vl‘l(to) € RP, Vt > t.

IV. MAIN RESULTS

In this section, we present our main results.

A. Necessity of Infinite Joint Connectivity

We begin to show that infinite joint connectivity given in
Assumption 1, is necessary for achieving global asymptotic
synchronization of (1).

Theorem 1: Assume that the equilibrium point z = z* of
% = f(t,x) is not asymptotically stable. If global asymptotic
synchronization is achieved for (1), then gg(t) is infinitely
jointly connected.

Proof: We prove Theorem 1 by contraposition. Suppose
that G, (¢) is not infinitely jointly connected. Then there exists
t* > to such that the union graph G([t*, 00)) is not connected.
This implies that there exist two nonempty, disjoint subsets
V., C V and V, C V such that there is no link between sets
V, and V, for all ¢ > t*. Let us choose z,;(t*) = z* for
all i € V, and x; # z* for all i € V,, where x = x* is
the equilibrium point of & = f(¢,x). Then z;(t) = z* for
all ¢ € V, and for all ¢ > t*. In addition, &;(t) = f(¢,z;),
for all ¢ € V, and for all t > ¢*. Based on the fact that the
equilibrium point = «* of £ = f(¢, x) is not asymptotically
stable, we know that lim;_, o (2;(t) — z*) # 0 for all ¢ € V.
This shows that global asymptotic synchronization cannot be
achieved for (1). Hence, the result follows. |

B. Globally Lipschitz Self Dynamics

In the literature, it has been established that for fixed
connected graphs [2], [7]-[9], [11] and for some special
switching graphs [23], [24], synchronization is achieved for
a sufficiently large coupling ~ if the self dynamics satisfies
the following global Lipschitz assumption.

Assumption 2: The self dynamics f(t,z) is globally Lips-
chitz continuous in x with the Lipschitz constant L > 0, i.e.,
I£(t2) — )| < Lllz — yll, Yo,y € RP, ¥t > o,

The following example shows that for the general time-
varying graph satisfying Assumption 1, Assumption 2 alone
is not sufficient for achieving synchronization even if the
coupling strength + is arbitrarily large.

Example 1: Consider a group of two agents switching
between two graphs G; and G, with adjacency matrices
A = [J9] and Ay = [{ ], respectively. The self dynamics
is f(t,x;) = Lx;, where x; is scalar. The dynamics of each
system are described by

&1 = L1 +ya12(o(t)) (2 — x1),
j?g = LJ’JQ + 7@21(0’(t))($1 — .1‘2).
Note that a12(0(t)) = a21(c(t)) = 1 or 0 for all ¢ > tg. Then,

the relative dynamics can be written as

Z = (L — 2va12(c(t)))T, (3)
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where T = x1 — x9. Let the switching signal o(t) be equal
to 2 when t € [tg + 0* — 1,t9 + 0?) and equal to 1 when
t€fto+ 0% to+(0+1)2—1) for o=1,2,.... It is easy to
see that Assumption 1 is satisfied. It follows that the solution
of (3) is

Z(t) :e(Lf%)(ﬂf1)+L(p+1)pe(L72v)(tftof.92+1)§(t0)

for t € [to + 0* — 1,to + 0°), and

z(t) :e(L—27)p+L(p—1)pe(L—27)(t—to—92)§(tO)

for t € [to + 0%,to + (0 + 1)? — 1). Thus lim;_,+ Z(t) = oo
for any L > 0 and arbitrarily large . Hence, it is not enough
that the coupling strength ~ is arbitrarily large to achieve
synchronization.

C. Synchronization Conditions

In this section, we shall investigate, besides the global
Lipschitz condition, what additional condition is needed to
guarantee synchronization of (1). We make the following
global Lipschitz-like assumption regarding the self dynamics.

Assumption 3: There exists a continuous nonnegative
bounded function L(t) > 0 such that ||f(¢,z) — f(¢,y)|| <
L) ||lx —yll, Vz,y € RP, Vt > to.

We introduce the concept of times of connectivity. To do
so, for the case of switching graph G, (), we first introduce
a subsequence of the switching time sequence {{;}5° as
to=Ty <Ty <Ty..., where Ty, £ = 1,2,... is iteratively
obtained by

3
X (f(t,i) = f(t,2;) — e 2o PO gy gy
X3 aik (0(0) (i — ax,) + e i MO
k1EN;(a(t))
X (zi—ay)' Y ag,(o()(z; — o)
kaeNj(o(t))
1 —2 [t L(s)ds
D M 2}
y
< 1 —fo L(s)ds
< ——e o max Z aix, (o(t))

{4.5}€T1 X T2 k1N (o(t))

*(lwi = 25]1* = lloj — @, |?)

D

k}zENj (a(t))

ajiy (0 () (lzj — zill* = llzi — 2, [1?)

IN
|

max
{i,j}E€T1 XT>

LD

k2eN; (o (t))

D

k1EN;(o(t))

aik, (0(t)(Vij — Vik,)

ajky (0(8))(Vij = Viky) p <0

)

where the equality follows from Lemma 1 and (1), the first
inzeqléality follows from Assumption 3 and the fact that £ab <
% for all a,b € R, and the last inequality follows from
(6). Therefore, V (t,z(t)) < V(tg,x(ty)) = V. [

Remark 1: In view of Lemma 2, we see that if the initial
state zp € Qg at t = tg, where Qg = {x € RP*"|V (¢, x) < S},

T, =inf{t > Ty : G([Ty_1,t)) is connected, T,_; € {t;}5°}.then every solution of (1) lies in £23. Also note that €2 is

Let J(t) denote how many jointly connected graphs can be
found during [to,t): J(¢) = max{¢:t > T;}.

We are now ready to present the sufficient synchronization
condition in terms of the times of connectivity J(¢) and the
integral of the Lipschitz gain L(t).

Theorem 2: Let Assumptions 1 and 3 hold. Global asymp-
totic synchronization is achieved for (1) if

. 2 [t
Jim () = = /t L{s)ds) = o, @
where p is a constant depending on the network parameters,
explicitly given in the proof as (21).
The proof is based on the convergence analysis of the scalar
quantity

Vit = Vii(t, x), 5
(t,2) {i,gg\}jxv i) ©®)
where
1 _ t L(s)ds
Vlt.a) = 5 O i) - 0. ©)

In order to prove Theorem 2, the following lemma is needed.
Lemma 2: Along solutions to (1), DYV (t,2) < 0 for all
t>0.
Proof: Let T (t) x Z5(t) be the set containing all the node
pairs that reach the maximum at time ¢, i.e., Z;(¢) x Zo(t) =
{{i,7} € V x V|V;;(t) = V(¢)}. It is not hard to obtain that

1 oyt s)ds
max {e 2Jiy L(e)d (z;
{id}eTixT, |y

D+V: —xj)T

compact. Together with the facts that f(¢, x) is piecewise con-
tinuous in ¢ and globally Lipschitz in z and a, < a;;(p) < a*,
for all a;;(p) #0, all 4,5 € V, and all p € P, it follows that
(1) has a unique solution over ¢ € [tg, 00) [27, Theorem 3.3].

Proof of Theorem 2: For any node i1 € V, let us define
a constant £; > tq as

il = inf{t Z to : 37;2, such that {il,ig} S 50(75)}.

Note that ¢; + 74 < T3. Then, for t € [t1,{1 + 74), it follows
that

‘./ili2 < -7 Z Qi1 kq (U(t))(‘/iliz - ngz’ﬂ)
ki1€N, (o(t))\{i2}
-7 Qizko (U(t))(viliz - Vi1k2)
ka €N, (D)\ {31}
= Qiyiy (U(t))'y‘/illé = Qiyiy (U(t))’y‘/iliz
2(n —2)a*
< — 0y (Viu () - 200y,

where a, and a* are given in Section IIl and o = 2(n—2)a*+
2as. Therefore, we obtain

Vivia (01 + 74) < 1 Vo, @)
where
2a _
Bi=1- 5 (1 —e 7)€ (0,1). 8)

We next define that

ty = inf{t >ty : Jig, s.t. {il,ig} € gg(t) or {ig,ig} S Sa(t)}-
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It follows from this definition that there is no edge between
the set {i1,72} and the set V\{i1, iz} for t € [t; 474, t2]. It is
then not hard to see that V;,, (t) < 0 for all t € [t; + 74, Ta].
This together with (7) implies that

Viiis (t2) < 1 Vo. )
Note that for all ¢ € [ta, t2 + T4,

Vivis < —2(n — 1)a*y(Viysy — Vo). (10)

By using the above relation, (8) and (9), we obtain that for all
t € [ta, T2 + 74),

Viiin (t) < BV, (11)

where 9
B -1— (1 _ e*a’YTd)&e*awTd
a )
and a3 =2(n — 1)a*
We next estimate V;,;, by considering two cases.
o Case I (i1,13) € Eq(t,)- Following a similar analysis to

that to obtain (7) for V;,;,, we obtain
Viyis (t2 + 1) < f1Va.
o Case II: (i1,i3) ¢ &,@,)- By the definition of 75, we
know that (i2,i3) ¢ €,,)- It then follows that for all
te ﬁg,%g + Td)
‘/;113 (t) < - 2(” - 1)0‘ 7(‘/;11'3 - ‘/0)
- ai3i27(‘/i1i3 - ‘/il'ig)'
We proceed our analysis for two subcases.

- Case Il(a): Vi, i, (t) > Viy4, (¢) for all ¢ € [ta, ta+74).
It then follows that

(12)

13)

(14)

2(n — 1)a* + a.f3
Q2
This shows that

a* + a..
ax(1-B)

Q2

where ap = 2(n — 1)
Vvilis(fgﬁ-’rd) S (1 — (1 — 6a2’de)> Vo.

(15)
— Case II(b): there exists a time t* € [t2,t2 +74) such
that

Viis (%) < Vi, (%) < BV (16)

Applying the same analysis as we obtained (10) to
(14) yields,

‘./ilis(t) < _2(n - 1)0‘*’7(%11'3 - VO) )

By using (16), (17) and a; < a9, we obtain that for
all t € [t*,ts + 7q),

Viig (2 +7a) < (1 — 7 *77(1 = B)) Vo

We shall find an upper bound for V; ;, for the above cases. It
follows from (12) and (18) that for Case II(b),

(18)

2a,

‘/1113 (t2 + Td) (1 —e€ (a1+o¢2)'y‘rd( - ea’wd)a> Vb
a
Also note that from (8) and (13), for Case I, we have

2a,
‘/;1z3(t2 +7’d) (1 — (1 _ e_a,wd)z> ‘/O

4

Therefore, the bound in Case II(b) is larger than that of

Case 1. By noting that %;E)(l — e Td)em®2VTd <

min{e=*2774(1 — f3), %;B)(l — e~ 2774} and comparing
(15) and (18), it is not hard to see that

T * 1 - B — _
Vilig(tQ “I‘Td) < (1 _ %(1 —e ocz’yﬂ'd)e a2'ym) VO
2

= B2Vo, (19)

where
2 2
52 =1 al;’; (1 _ 6*134277'd)e*a277'd(1 _ e*a'YTd,)S*Oél’YTd
€ (0,1).

Note that £y + 74 < T5. It follows from (11) and (19) that
Viik(t2 + 1a) < B2Vo, k € {iz,i3}.

We then proceed the above analysis for other nodes k €
V\{41}. Eventually, we obtain that

‘/ilk'(fn—l +Td) < Bn-1Vo, k € V\{Zl}a

where t,,_1 + 74 < T, _1.

Let us now consider node i and try to bound
Vigigs--+» Vigi,. By going through a similar analysis, we
obtain that szgk(%n + Td) < Bon_3Vo, k € V\{Zg} Con-
tinuing, we eventually obtain that Vi;(f(,—1)n/2 + Ta) <
Bn—1)n/2Vo, Vi,j € V, where B(,_1),/2 is a constant de-
pending on the network parameters, namely, 74, n, a*, a, and
7. Also note that Z(,_1yn/2 + Ta < T(n—1)n 2. Therefore, it
follows that V/(T(n,—1)n/24+1) < Bn—1)n/2Vo. We then have
that

J(t) 1
V(t,2(t) < B 2T Vo < ———e POV, (20)
Bn—1)n/2

where |c| denotes the largest integer not greater than ¢ € R

and 1 1
= In > 0.
g (n=1n/2+1" Bru_1yn/2
Note that lim;_, o J(t) = co based on Assumption 1. It thus
follows from (5), (6) and (20) that

i () — ; (1)

< 27762 i L(S)dS*PJ(t)V(tO7 2(to)).
ﬂ(n—l)n/Q

2L

max
{i,7}eVXV

Hence, global asymptot1c synchronlzatlon is achieved provided
that limy_, o (J ft = 0. ]

Remark 2: A necessary condltlon to ensure (4) is
lims 0 J(t) = oo. Since the dwell time assumption is
imposed, the maximum of J(¢) is bounded because each
time interval between two consecutive switching instants is
connected and at least 74 long. In such a case, (t tg)—1<
J(t) < 2(t —to), for all t > to + 74. This together with the
synchronization condition (4) implies that L(t) needs to be
bounded for all ¢ > tg. Therefore, in view of Theorem 1,
the global Lipschitz condition is necessary to achieve global
asymptotic synchronization but not sufficient.
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The following two corollaries provide sufficient conditions
for achieving global exponential synchronization and global
polynomial synchronization, respectively, provided that the
times of connectivity J(t) satisfies certain conditions.

Corollary 1: Let Assumptions 1 and 3 hold. If there exist
positive constants x > 0 and £ > 0 such that J(¢) > st — &,
for all ¢ > ¢y, then global exponential synchronization of (1)
is achieved when L(t) < &F.

Corollary 2: Let Assumptions 1 and 3 hold. If there exists
positive constants £ > 0 and £ > 0 such that J(t) > klnt—¢,
for all ¢ > tp, then global polynomial synchronization of (1)
is achieved when L(t) < &7.

Based on Corollaries 1 and 2, we can slightly revise Exam-
ple 1 so that global asymptotic synchronization is achieved.

Example 2: Let the switching signal o (t) be equal to 2 when
t € [to+o—1,to+0) and equal to 1 when ¢ € [to+o, to+o+1),
for p =1,3,.... Then, the solution of (3) is

z(t) = e(L_Q’Y)(p_l)""Lpe(L_Q’Y)(t_tO_0+1)f(t0)

fort € [to+0—1,t0 + 0), and

T(t) = el DHI=2mp Llt=to=)z (1)

for t € [to + o,to + 0 + 1). Therefore, lim;_, o T(t) = oo if
L < 7. This can be easily checked by the sufficient condition
in Corollary 1 by noting that J(¢t) > %, for all ¢ > tg.
Example 3: Let the switching signal o(t) be equal to 2
when t € [ty + 0% — 1,t9 + ¢?) and equal to 1 when t €
[to + 0%, to + (0 + 1) — 1) for o = 1,2,..., but the self
dynamics now be f(t,x;) = Lf”’, where z; is scalar. Then,
global asymptotic synchronization is achieved if L < 1. This
can be easily checked by the sufficient condition in Corollary 2

by noting that J(t) > v/t —2 > Int — 2, for all ¢ > to.

V. CONCLUDING REMARKS

This paper studied synchronization of coupled nonlinear
dynamical systems over time-varying graphs. We first showed
that infinite joint connectivity is necessary for achieving
global asymptotic synchronization. We then constructed a
simple example to show that the commonly used Lipschitz
condition on the self dynamics is not sufficient for achieving
synchronization in the case where the graph is infinitely jointly
connected. Finally, we established sufficient synchronization
conditions in terms of the times of connectivity, the integral
of the Lipschitz gain, and the network parameters.
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