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Finite-Time Consensus Using Stochastic Matrices
With Positive Diagonals

Julien M. Hendrickx, Guodong Shi, and Karl H. Johansson

Abstract—We discuss the possibility of reaching consensus in
finite time using only linear iterations, with the additional restric-
tions that the update matrices must be stochastic with positive
diagonals and consistent with a given graph structure. We show
that finite-time average consensus can always be achieved for
connected undirected graphs. For directed graphs, we show some
necessary conditions for finite-time consensus, including strong
connectivity and the presence of a simple cycle of even length.

Index Terms—Agents and autonomous systems, finite-time con-
sensus, sensor networks.

I. INTRODUCTION

The problem of how a set of autonomous agents can reach a
common state via only local information exchange is widely studied.
The problem becomes the average consensus problem when the limit
is restricted to the average value of the initial states. A standard
solution is given by consensus algorithms [1]-[3], where each node
iteratively updates its value as a convex combination of the values
of its neighbors. This corresponds to a linear dynamical system
whose state-transition matrices are stochastic matrices. The asymptotic
convergence of consensus algorithms has been extensively studied
under various graph conditions [1]-[10], including some work on the
optimization of the convergence rate, e.g., [4]. This convergence rate
affects indeed the performance of several more complex algorithms
using (part of) the consensus algorithms as subroutine.

Pushing this optimization to its limit leads to consensus algorithms
converging in finite time. It has been shown in the literature that finite-
time consensus can be reached via continuous-time protocols [11]—
[13]. Quantized consensus algorithms as well converge in finite time
[14], [15]. Discrete-time consensus algorithms converging in finite
time have also been recently discussed in [16]-[21], and the possibility
of reaching consensus in a finite number of steps via gossiping was
studied in [22], [23]. These algorithms share several of the advantages
of the centralized algorithms: They have a finite computational cost,
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and they guarantee that there exists a time at which all agents have
exactly the same value, as opposed to approximately the same value.
Actually, it has been shown that distributed algorithms converging in
finite time in some settings are faster than any possible centralized
algorithm [16]-[18].

In this paper, we investigate finite-time convergence for consensus
algorithms defined by a product of stochastic matrices with positive di-
agonal entries. The positivity condition means that agents always give
positive weights to their own states when computing their new states.
This natural condition is widely imposed in the existing literature on
consensus algorithms, e.g., [2], [3], [5]-[9], [19], [20], and is for exam-
ple automatically satisfied by any algorithm representing the sampling
of a continuous-time process. In the absence of positivity condition,
deciding whether consensus is reached becomes a fundamentally hard
problem [24], [25]. The restriction to stochastic matrices with positive
diagonal entries is one of the main differences between our work and
the results in [16]-[18], as they allow general real matrices, as long
as they are consistent with the graph under consideration. Similarly,
the authors of [21] only require their matrices to be column-stochastic
(i.e., nonnegative and having each column summing to 1) in order
to preserve the average value of z, but not necessarily stochastic.
Some of the algorithms that they obtain do however also satisfy our
requirements, as will be explained in Section II.

The problem we consider is also related to the finite-time consensus
computation problems [26], [27], where computing the consensus limit
in finite steps from a given asymptotically convergent algorithm was
considered. Compared to the problem considered in this paper, those
methods require more memory and node computations.

We now introduce the problem under consideration. A matrix A €
R™*™ is stochastic if it is nonnegative and A1 = 1, i.e., the elements
of any of its row sum to one. We say that a stochastic matrix is
consistent with a graph G(V, E) with V' = {1, ..., n} if A;; > 0 for
1 # jonly if (j,4) € E. We insist on the fact that the presence of the
edge (j,) does not require A;; to be positive, but only allows it. We
say that A has a positive diagonal if A;; > 0 for every 4. Finally,
we use v’ to denote the transpose of a vector v in order to avoid
ambiguities with the finite time 7. The first problem that we consider
is finite-time consensus.

Definition 1: The sequence of stochastic matrices (A, As, ...,
Ar) with positive diagonals achieves finite-time consensus on
a graph G, if A, is consistent with G for t=1,...,7 and
ArAr_q1... A3 A € S, where S denotes the set of rank-one stochas-
tic matrices in R™*", i.e., matrices of the form 1v’, for some nonneg-
ative vector v whose entries sum to one.

So, if a sequence of stochastic matrices (Aq, As,..., Ar) with
positive diagonals achieves finite-time consensus, the iteration z(t) =
Apx(t —1) reaches z(T) =ax*1 for every z(0)= (z1(0),...,
z,(0))" € R™, for some z* € R that depends on z(0). If z* is always
the average value of 21 (0), . . ., 2, (0), i.e., equal to (1/n)1'z(0), then
we say that the matrix sequence achieves finite-time average consensus.

Definition 2: The sequence of matrices (Aj, Aa,..., Ar) with
positive diagonals achieves finite-time average consensus on a graph G,
if A, is consistent with G fort =1,...,T and ArAr_1... Ay A; =
(1/n)11’.
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The outline for the rest of the paper is as follows. In Section II,
we show that finite-time average consensus can always be achieved
on connected bidirectional graphs. Then Section III discusses directed
graphs, for which finite-time consensus is far more challenging. We
present three necessary conditions for finite-time consensus on di-
rected graphs, and an example of a directed graph for which finite-time
consensus can be achieved. Finally some concluding remarks are given
in Section IV.

II. UNDIRECTED GRAPHS

We show that finite-time average consensus can always be achieved
on undirected graphs. This result could actually also be obtained
by an application of an algorithm of Ko and Gao [21], developed
independently of this work and with a different approach. In [21],
average consensus in finite time is reached by having first one node
obtaining the average of all nodes’ values, while preserving the global
average constant. Then, this node is excluded from further interactions,
and the procedure is successively repeated on all other nodes in an
appropriate order. Our proof, on the other hand, relies on recursively
building a set of agents at (average) consensus, and growing this
“island of consensus” by successively adding all the nodes.

Theorem 1: If G contains a bidirectional spanning tree, then there
exists a sequence of at most n(n — 1)/2 stochastic matrices with
positive diagonals that achieves average consensus on G. In particular,
finite-time average consensus can be achieved on every undirected
graph.

Proof: We show by recurrence that finite-time average consensus
can be reached on a bidirectional tree G in n(n — 1)/2 steps, which
will complete the proof since every edge that does not belong to the
bidirectional spanning tree of G can just be ignored.

The result trivially holds if the tree G contains only one node. Let
us suppose now that it contains n + 1 > 2 nodes, and select a leaf node
(i.e., a node with degree one) which we call vy. By our recurrence
assumption, average consensus can be reached for nodes V \ {vg} in
T < n(n — 1)/2 steps since the graph obtained by removing node vg
from Gr is a connected tree of size n. Let us suppose that suitable
matrices have been chosen so that for every ¢ € V \ {vg} there holds
IZ(T) = jV\{vo}(o) = (l/n) ngv\{vo} L (0).

We assume now that x,, (1) = x,,(0) =1 and @\ (4,3(0) =
—(1/n), so that their average is 1 +n x (—1/n) = 0. We are going
to find a sequence of n (or less) stochastic matrices with positive
diagonals consistent with G that drive all states to zero in finite time.

We denote by diam(Gr) the diameter of Gr, i.e., the largest
distance between any two nodes of Gr. In particular, every node is at a
distance at most diam(Gr) fromvg. Fork = 0,1,...,diam(Gr) — 1,
let V), be the set of nodes at distance k from vg on the tree G that
are not leaves, i.e., Vo = {vo}, V1 is the set non-leaf neighbors of v,
V5 the set of non-leaf neighbors of nodes in V; that do not belong to
V1 nor Vg, etc. Let Ly be the set of leaves at distance k from v for
k=1,...,diam(Gr). See Fig. 1 for an illustration.

Observe that for every k > 0, every node in V) and Ly, if non-
empty, is connected to exactly one node of Vj._1, as follows from the
following argument: The existence of at least one neighbor in Vj,_,
follows from the definition of distance. On the other hand, no node
of Vi, or L can be connected to two nodes of Vj_q, as that would
form a cycle in G, which is impossible since Gr is a tree. Nodes in
V. are also connected to at least one node in Vi1 or Lj;. Indeed,
they are by definition not leaves, so they must be connected to at least
one other node than the one in V), _1, but they cannot be connected to
any other node in Vj or Vj,_q, for that would create a cycle. Besides,
connections between nodes whose distance to vy differ by more than
one are by definition impossible. Finally, for every k all nodes in Vj,
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Fig. 1. Illustration for the proof of Theorem 1. Suppose vg =1 is se-
lected. Then for the tree given in the figure we have Vi = {2}, Vo = {4},
V3 = {5}, ‘/2; = {6,8}, Ll = {0}, L2 = {3}, L3 = L4 = {@}, and L5 =
{7,9}. Clearly every node in V} and Ly, if any, is connected to only one node
of Vk,_ 1-

and Lj, share a common value at time 7" (1 for V5 and —1/n for the
others).

We now show that the following evolution of z;(t),t > T can be
achieved by multiplying = by diam(Gr) stochastic matrices with
positive diagonals consistent with Gr:

o Ifi € Vi, then (i) z;(¢t) = —1/nfor T <t < T+ k; (ii) z;(T +

k) = 1/2%; (iii); z;(t) = 0 for t > T + k.
o Ifiisaleaf in Ly, then (i) x;(t) = —1/nfor T <t <T + k;
(ii) z;(t) = 0fort > T + k.

We show this by recurrence on k. For k = 0, the situation corre-
sponds to that of our initial recurrence assumption. Suppose now that
it holds for k — 1 and let us consider step k (k > 0). Only nodes in
Ly, Vi and Vj,_; change their values, so other nodes need not be
considered.

Nodes in Lj, and V}, have value —1/n at time 7"+ k — 1. As argued
above, each of them is connected to a node in V},_1, who has a value
1/2%=1 at time T + k — 1 by the recurrence hypothesis. Therefore,
the new value zero of the nodes in L at time T + k lies strictly
between their former value —1/n and the former value 1/2%~% of
their neighbors in Vj,_1. The value is thus equal to a weighted average
of these two values with positive coefficients. The same argument
applies also for the nodes in V. In other words, the desired z(T" + k)
can be reached by multiplying (7" + k — 1) with a stochastic matrix
consistent with G with positive diagonal.

Consider now the nodes of Vj_;. Their value at 7'+ k — 1 is
1/2%~1, and their new value at ¢ + k is zero. As argued above, each
of these nodes has at least one neighbor in V}; or Lj, whose value at
time 7'+ k — 1 is thus —1/n. The new value zero at time 7" + k of
nodes in Vj_; lies thus strictly between their former value 1/2%~1
and that of the neighbors in Vj, or L. It can therefore be reached by
multiplication by a stochastic matrix consistent with G with positive
diagonals, which completes the proof of the recurrence.

We have thus shown the existence of Apii, Aria,...,
A7 4 diam(g,) With positive diagonals and consistent with G such that
AT+diam(QT) e AT+2AT+1$(T) =0 if Tug (T) =1 and 1’1(T) =
—1/n for every ¢ € V \ {vo}. Using linearity and the fact that
A1 = 1 for stochastic matrices, it follows that under the recurrence
assumption z;(T) = Zv\ v} (0) = (1/7) 37 1\ 4y ©5(0) for all
eV \ {’Uo}, that AT+diam(QT) e AT+2AT+1LE(T) = jv(o)l
Average consensus is thus achieved on Gr in T + diam(Gr) steps.
Using the recurrence assumption 7" < n(n —1)/2 and the bound
diam(Gr) < n for a graph of n + 1 nodes, it follows that average
consensus is achieved in at most (1/2)n(n — 1) +n = (1/2)n(n +
1) steps on any tree of n 4 1 nodes, which completes our proof. [

By a small modification of the proof, one can actually show that it
is possible to reach any weighted average of the initial conditions with
positive weights in the same number of steps.
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III. DIRECTED GRAPHS

Theorem 1 shows that finite-time (average) consensus can always
be achieved on a directed graph if it contains a bidirectional spanning
tree. We will now see that the situation is much more complex when
the graph is “essentially” directed and does not contain a bidirectional
spanning tree. We begin by providing certain necessary conditions.

As is well known in the literature [4], [5], the existence of a directed
spanning tree for a directed graph G is a necessary and sufficient con-
dition for finding an asymptotically convergent consensus algorithm
on G. In our next result, we show that strong connectivity is necessary
for finite-time consensus.

Proposition 1: There exists a sequence of stochastic matrices with
positive diagonals that ensures finite-time consensus on a graph G only
if G is strongly connected.

Proof: Suppose G is not strongly connected. Then there exist two
subsets V7, V5 of nodes such that no edge leaving V5 arrives in V.
Let us take as initial condition z;(0) = 0 for all i € V; and z;(0) = 1
for all ¢ € V5, and consider an arbitrary sequence (Ay,..., Ar) of
stochastic matrices with positive diagonals consistent with G. Since
there is no edge from V5 to Vi, [A¢];; = 0 for any i € V4, j € V5 so
that the values of the nodes V; are never influenced by those of the
nodes in V5. Therefore, we have x,(t) = 0,¢ > 1,47 € V;.

We introduce  h(t) = min{z;(t): i € Vo}. Denote a; =
min{[A],, : i € Va}. Then it is easy to see that
ma(t+1) =D [Adw(t)
j=1
> (A, xi(t) + (1 — [At]“) min {z,,(t) : m € V}
> [At}iih’(t)
>aih(t)

for all ¢ € V5 and ¢. Thus, we have h(t + 1) > ajh(t) for all ¢t > 0,
which implies
T T

W(T) = h(0) [ [ ai =[] ai

t=1
Therefore, consensus cannot be achieved by any finite sequence of
stochastic matrices with positive diagonals consistent with G for the
initial condition that we have considered. a

We now show that achieving finite-time consensus requires the
presence of a cycle of even length. This does not contradict the tree-
based result of Theorem 1, as every pair of opposite edges of a
bidirectional graph constitute a directed cycle of length 2.

Proposition 2: There exists a sequence of stochastic matrices with
positive diagonals that ensures finite-time consensus on a graph G only
if G contains a simple directed cycle with even length.

Proof: Suppose that finite-time consensus can be reached on
graph G in T steps. Consider particular initial conditions x(0), and
let z* be the consensus value, i.e., x;(7) = z* for all j. Let iy be a
node reaching the final value only at the last step, i.e., z;, (T — 1) #
x*. We suppose without loss of generality that z;, (7" — 1) > z*. By
definition, x;,(7") is a convex combination of the values z; (T — 1)
of the neighbors j of 4 and of z;, (7" — 1), with a positive weight for
the latter value. Since x;, (7" — 1) > «* and z;,(T") = «*, there must
exist a neighbor ¢; of io for which x;, (T'— 1) < z*.

By a similar argument, there exists a neighbor i of i; such that
x;, (T — 1) > z*. Doing this iteratively, we can build an arbitrary long
sequence of indexes i, such that z;, (7' — 1) > z* if k is even, and
x;, (T — 1) < z* if k is odd, and where the node i is a neighbor
of ik, as shown in Fig. 2. Since there are only finitely many nodes
in the graph, some indices are repeated in this sequence. Let j* be the
first node who is repeated twice in the sequence. By construction of the
sequence and of j*, there is a path from j* to itself passing no more

>0=x,(T), meV.
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Fig. 2. Illustration of the proof of Proposition 2. The node values are sorted
at time 7" — 1. A simple directed cycle with even length can be constructed if
consensus is reached at time 7.

than once any other node. Moreover, this path must be of even length.
Otherwise, one of the two first indices k& corresponding to j* would
be even, and the other odd, so that we would have simultaneously
(T —1) > z* and x;~(T — 1) < x*, which is impossible. This
completes the proof. |

Note that all nodes in the cycle of even length in Proposition 2 reach
the final value at the last time step.

The presence of a cycle of even length is a necessary condition for
finite-time consensus, but is certainly not sufficient. Actually, the next
result states that finite-time consensus cannot be achieved if the graph
only consists of a cycle of even length.

Proposition 3: Suppose G is a simple directed cycle. Then no
finite sequence of stochastic matrices with positive diagonals achieves
consensus on G.

Without loss of generality, we will restrict our attention to a cycle
C,, of n nodes, where there is a directed edge (i,7 — 1) for i =
2,...,n and an edge (1,n). Moreover, we identify x,,1 with z;: if
1 =n, then x;y; denotes x;. Similarly, if ¢ =1, x;,_; denotes x,,.
To prove Proposition 3, we need the following intermediate result,
showing that the presence of two consecutive nodes with the same
sign is preserved by multiplication by a stochastic matrix consistent
with C,, and with positive diagonal when n is even.

Lemma 1: Let C,, be a cycle of even length n and A a stochastic
matrix with positive diagonal consistent with C,,. Let x € "™ and y =
Az Ifthereisi € V suchthatz;, x;11 > Oorz;, x;41 < 0, then there
is j € V such that y;, 9,41 > 0ory;,y;+1 < 0.

Proof: Observe first that since A is a stochastic matrix consistent
with C,, with positive diagonal, it holds that y; = ;z; + (1 — ;) @41
for some «; € (0,1] for every i. As a consequence, the following
implications and there symmetric versions for opposite signs hold:

a) If Liy Tit1 Z 0, then Yi Z 0.
b) If z; > 0and Yi < 0, then i1 < 0.

Let us now assume without loss of generality that x1,zo > 0. It
follows from implication (a) that y; > 0. If y5 > 0 then the result
holds with 7 = 1. Otherwise, y2 < 0, and it follows from implication
(b) above that x5 < 0. Now if y3 < 0, then the result holds with j = 2
since yo < 0. Otherwise, ys > 0, which by (b) implies that x4 > 0.
By repeating this argument and using the fact that n is even, we see
that either the result holds for some j, or x,, > 0 and y,, 41 = y1 <0,
in contradiction with our initial assumptions. (]

We now prove Proposition 3.

Proof: If the number of nodes n is odd, the result follows directly
from Proposition 2. Let us thus assume that n is even, and suppose that
there exists a sequence of 7" stochastic matrices with positive diagonals
consistent with (', guaranteeing finite-time consensus. We consider
the following initial condition: x; (0) = x2(0) = 1, and z;(0) = 0 for
every other ¢; and we denote by x* the consensus value that the system
reaches for this initial condition. Clearly z* < 1, so that ;(0) > z*
and x2(0) > z*. By applying Lemma 1 recursively to z(t) — z*1, we
see that for any time ¢ < 7', and in particular for ¢ = 7" — 1, there
exists j such that either z;(t) —2* >0 and z;1(t) —2* >0 or
X (t) —x* S 0 and $j+1(t) —x* S 0.
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Fig.3. Example of directed graph on which finite-time average consensus can
be achieved, despite the fact that it does not have a bidirectional spanning tree.

3

On the other hand, the proof of Proposition 2 shows that if consensus
is reached at iteration 7" on a value =™, the graph must contain a cycle
whose nodes have values at time 7" — 1 that are all different from xz*,
and for which the sign of x;(T"— 1) — * are opposite for any two
consecutive nodes on the cycle. Since the only cycle of C), is the whole
graph itself, this means that for every i, x; (7" — 1) — * and x; 4.1 (T —
1) — z* are nonzero and have opposite signs.

We thus obtain a contradiction, which implies that consensus in
finite time cannot be achieved for cycles of even length. O

We have thus proved so far that finite-time consensus can be
achieved on a directed graph G only if it is strongly connected and
contains a simple cycle of even length, and that it cannot be achieved
if it only consists of a cycle of even length. The combination of these
impossibility results might suggest that finite-time consensus can never
be achieved unless the graph contains a bidirectional spanning tree or
is “equivalent” in some sense to such a graph. This is however not true.
Consider the example in Fig. 3, consisting of a directed cycle of length
4 to which is added one bidirectional edge between nodes 1 and 3. One
can verify that the following matrices are consistent with the graph

1100

1

1
A1:A3:§

A2:A4:§

= O
o O = O
O ==
= o O O

0
0
1

o O

10
11
01

and that Ay A3 As A; = (1/4)11’, so that finite-time average consen-
sus can be achieved.

IV. CONCLUSIONS AND OPEN QUESTIONS

This paper discussed the existence of finite-time convergent (aver-
age) consensus algorithms.

We have provided a new proof that (average) consensus can always
be achieved by a finite sequence of matrices on every connected
undirected graph. For directed graphs, we have proven that finite-time
consensus is reachable only if the graph is strongly connected and
contains a simple directed cycle with even length, but that it cannot
be reached if the graph only consists of such a directed cycle. This
shows that requiring all diagonal elements to be positive reduces the set
of graphs on which finite-time consensus or average consensus can be
reached. An adaptation of the “gather and distribute” method described
in [16, Sec 4.2] shows indeed that without this requirement, finite-time
average consensus can be reached for any strongly connected graph.

Note that our impossibility proofs never use the fact that the same
sequence of matrices must drive the system to consensus for every
initial condition. So our impossibility results also hold in the more gen-
eral case where the matrix A; can be chosen as a function of (¢ — 1).

Finally, we have also provided an example of a directed graph where
finite-time average consensus can be achieved. The necessary condi-
tion combined with the example suggest that the precise conditions
under which finite-time consensus can be achieved over a general
directed graph could be intricate.
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