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Abstract— We study the deployment of a first-order multi-
agent system over a desired smooth curve in 3D space. We
assume that the agents have access to the local information
of the desired curve and their displacements with respect to
their closest neighbors, whereas in addition a leader is able to
measure his absolute displacement with respect to the desired
curve. In this paper we consider the case that the desired
curve is a closed C2 curve and we assume that the leader
transmit his measurement to other agents through a commu-
nication network. We start the algorithm with displacement-
based formation control protocol. Connections from this ODE
model to a PDE model (heat equation), which can be seen as
a reduced model, are then established. The resulting closed-
loop system is modeled as a heat equation with delay (due to
the communication). The boundary condition is periodic since
the desired curve is closed. By choosing appropriate controller
gains (the diffusion coefficient and the gain multiplying the
leader state), we can achieve any desired decay rate provided
the delay is small enough. The advantage of our approach is in
the simplicity of the control law and the conditions. Numerical
example illustrates the efficiency of the method.

Index Terms— Distributed parameters systems; Lyapunov
method; Time delays; Multi-agent systems; Deployment.

I. INTRODUCTION

Most of the existing work on multi-agent systems (MAS)
consider interconnected agents modeled using ordinary dif-
ferential equations (ODEs) or difference equations, and de-
sign the control for each agent depending either on global or
local information. Besides these studies, there has been some
work using partial differential equations (PDEs) to describe
the spatial dynamics of multi-agent systems, e.g., [3], [4],
[7], [17], [19]. This approach is especially powerful when
the number of the agents is large. One of the advantages of
using PDE models for MAS is to reduce a high-dimensional
ODE system to a single PDE. Reversely, given a desired
PDE model, the corresponding performance and the control
protocol for the individual agents (in ODE form) can be
designed by proper discretization. In principle, this procedure
is independent with respect to the number of agents, provided
this number is large enough.
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In this paper, we consider a formation control problem
which is referred to as deployment. This can be seen as
a combination of a displacement-based and position-based
formation control method. Each agent measures the relative
positions (displacements) of its neighboring agents with
respect to a global coordinate system. The desired formation
is specified by the desired displacements between pair of
agents. Then the agents, without knowing their absolute
positions, achieve the desired formation by controlling the
displacements of their neighboring agents. This will lead the
agents to the desired formation up to a constant distance.
As pointed out in [15], in order to move the agents to the
prescribed absolute positions, a small number of agents able
to measure their absolute positions are needed. For existing
ODE methods we refer to [1], [20] and the references within.

Here we review some related work on the multi-agent
deployment using PDE models. In [7] and [17], the agents
dynamics are modeled by reaction-advection-diffusion PDEs.
By using the backstepping approach to boundary control,
the agents are deployed onto families of planar curves and
2D manifolds, respectively. In [14], the authors consider
finite-time deployment of MAS into a planar formation, via
predefined spatial-temporal paths, using a leader-follower
architecture, i.e., boundary control. The same problem of
deployment into planar curves using boundary control is
considered in [19] and [3] by using non-analytic solutions
and a modified viscous Burger’s equation, respectively. In
[16], the authors proposed a boundary control law for a
MAS, which is modeled as the heat equation, to achieve
state consensus.

The main contributions of the paper is that we propose a
framework which connects a ODE formation control protocol
and a PDE model for the deployment of mobile agents onto
arbitrary closed C2 curves. Furthermore, in this framework
we assume only leader measures its absolute position and
use simple static output-feedback control. More precisely, the
leader calculates its displacement with respect to the desired
curve. Then the leader sends the value of its displacement
to all the agents by using a communication network which
results in time-varying delay due to sampling and communi-
cation [4]. The other agents, which are referred as followers,
have access only to the local information of the desired curve
and displacements with respect to their neighbors. Since the
desired formation is a closed curve, the MAS is modeled
as a diffusion equation with periodic boundary condition.
The method used in this paper is based on [6] and [18]

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-00-8 ©2019 EUCA 2424



which deal with Dirichlet and mixed boundary conditions.
We derive linear matrix inequality (LMI) conditions with
arbitrary delay for desired convergence rate. Compared to
the ODE MAS with communication delay, e.g., [13], the
LMI conditions derived in this paper are simpler with lower
dimension, and they are always feasible.

The paper is organized as follows. In Section II, some
useful inequalities are recalled. The MAS deployment prob-
lem using sampled control is formulated in Section III. The
main results are included in Section IV and V. In Section
IV, we derive LMI conditions to guarantee the deployment
on the closed C2 curve for the desired decay rate without
communication delay. In Section V, the similar type of the
result is obtained for the case with delay. Simulations are
presented in Section VI. The paper is concluded in Section
VII.

Notations. With R>0 we denote the set of non-negative
real numbers, respectively. L2(a, b) is the Hilbert space of
square integrable functions φ(ξ), ξ ∈ [a, b] with the corre-

sponding norm given as ‖φ‖L2 =
√∫ b

a
z2dξ. H1(a, b) is

the Sobolev space of absolutely continuous scalar functions
φ : [a, b]→ R with dφ

dξ ∈ L2(a, b) . H2(a, b) is the Sobolev
space of scalar functions φ : [a, b] → R with absolutely
continuous dφ

dξ and with d2φ
dξ2 ∈ L2(a, b).

II. PRELIMINARIES

Lemma 1 (Wirtinger’s inequality [11]). For f ∈ H1(a, b),

‖f‖ ≤ 2(b− a)

π
‖f ′‖ if f(a) = 0 or f(b) = 0.

Lemma 2 (Halanay’s inequality, [10], [4]). Let 0 < δ1 <
2δ0 and let V : [t0 − τM ,∞) → [0,∞) be an absolutely
continuous function that satisfies

V̇ (t) 6 −2δ0V (t) + δ1 sup
−τM6θ60

V (t+ θ), t > t0. (1)

Then

V (t) 6 e−2δ(t−t0) sup
−τM6θ60

V (t0 + θ), t > t0, (2)

where δ > 0 is the unique positive solution of

δ = δ0 −
δ1e

2δτM

2
. (3)

III. PROBLEM FORMULATION

We consider N agents in R3 governed by

żi = ui, i ∈ {1, . . . , N}, (4)

where zi ∈ R3 are the states and ui ∈ R3 are the control
inputs. The goal is to deploy the agents on a given closed
C2 curve γ : [0, 2π]→ R3.

Let us denote the ring graph with N vertices as G` =
{V, E}, where V = {v1, . . . , vN} is the vertex set and
E = {(vi, vi+1), i = 1, . . . , N − 1} ∪ {(vN , v1)} is the
edge set. As a typical formation control procedure, one
assigns N points on the curve, denoted as γ(h), . . . , γ(Nh),

where h = 2π/N . Consider the following displacement-
based formation control protocol

żi(t) =a
(zi−1(t)− zi(t)) + (zi+1(t)− zi(t))

h2

− a (γ((i− 1)h)− γ(ih)) + (γ((i+ 1)h)− γ(ih))

h2

i = 1, . . . , N.
(5)

where z0 = zN , zN+1 = z1, zi ∈ R3 is the position of the
agent vi, and a > 0, guarantees that all agents converge to
the formation

E := {(z1, . . . , zN ) | zi − zj = γ(ih)− γ(jh)}, (6)

which is the desired curve up to constant translations [15].

Remark 1. The implementation of the system (5) includes
firstly the agents align the local coordination system, then
the agent compare the displacement (to its neighbors) with
respect to the desired displacement continuously. It can be
proved that the formation of the agents converges to the
formation given by desired displacements asymptotically up
to a constant translation [15].

As suggested in [2], when N is large, the model (5) is an
approximation of

zt(x, t) = a(zxx(x, t)− γxx(x)). (7)

By denoting the error e(x, t) = z(x, t) − γ(x), the error
dynamic of (7) is given as the following heat equation

et(x, t) = aexx(x, t), x ∈ [0, 2π]. (8)

Notice that the components of e(x, t) ∈ R3 are decoupled.
It can be seen that system (7) cannot drive the agents onto

the desired curve γ, but up to a constant translation. In fact,
z∗ = γ + c is an equilibrium of system (7) for any constant
c. This is consistent with the displacement-based formation
control in [15]. In order to solve this problem, we shall
employ additional control input to guarantee the convergence
to the desired curve. More precisely, we assign leader agents
who can measure the absolute positions of themselves and
of their targets.

Since the desired curve γ is closed and is C2, it is natural
to consider the multi-agent system with periodic boundary
condition

z(0, t) = z(2π, t)

zx(0, t) = zx(2π, t).
(9)

Furthermore, we assume, without loss of generality, that the
leader is located at x = π and it can measure z(π, t) −
γ(π) and send this information to the other agents through
a communication network which results in a bounded time-
varying delay. The closed-loop system is given as

zt = a(zxx − γxx)−K(z(π, tk − ηk)− γ(π)), (10)

where t ∈ [tk, tk+1), a > 0, K > 0, tk is the updating
time of the controller, and ηk is the network-induced delay.
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Parameters a and K are the control gains. By using the time-
delay approach to networked control systems [4, Chapter 7],
we denote τ(t) = t− tk + ηk. Then the system (10) can be
presented as

zt = a(zxx − γxx)−K(z(π, t− τ(t))− γ(π)). (11)

Here τ(t) 6 τM , where τM is the sum of the maximum
transmission interval and maximum network-induced delay.
We shall refer to (11) with boundary condition (9) as the
system with periodic boundary condition. In this paper, we
set t0 = 0. In this case, the error dynamics are given as

et = aexx −Ke(π, t− τ(t)) (12)

= aexx −K[e(x, t− τ(t))−
∫ x

π

eζ(ζ, t− τ(t))dζ].

with boundary condition

e(0, t) = e(2π, t)

ex(0, t) = ex(2π, t).
(13)

Consider the initial condition for (12), (13) as

e(x, t) = e(x, 0), t < 0. (14)

The stability of this system will be analyzed in Section V.
By defining

X ={w ∈ H1(0, 2π) | w(0, t) = w(2π, t)},

the existence and uniqueness of the strong solution of system
(12) with periodic boundary condition (13) is guaranteed by
the arguments in [18], for the initial conditions e(·, 0) ∈ X .

In this paper, we design sufficient conditions for the
system (11), with delay bound τM , to achieve exponential
stabilization (with any desirable decay rate for small enough
τM > 0).

In the following two sections, we consider the cases
without (i.e., τ(t) = 0) and with delay in the communication
channel, respectively. For both cases, we derive LMI condi-
tions for desired decay rate with given system parameters
a,K, and τM (the case with delay).

IV. PDE-BASED DEPLOYMENT

Firstly, we shall consider the sampled-data controller with-
out delay in this subsection, i.e.,

zt = a(zxx(x, t)− γxx)−K(z(π, t)− γ(π)) (15)

with periodic boundary condition (9). In this case the dy-
namic of the error e = z(x, t)− γ(x) is given as

et = aexx −Ke(π, t). (16)

Similarly to the previous section, we assume e ∈ R.

Theorem 3. For any δ > 0, let K > δ and a > K2

K−δ . Then
the system (16), (13) is exponentially stable with the decay
rate δ in the H1-norm:

∃C > 0: ‖e(·, t)‖H1 ≤ Ce−2δt‖e(·, 0)‖H1 . (17)

Proof. Since the components of e are decoupled, here we
prove the case that e : [0, 2π] × R>0 → R. Consider the
Lyapunov functional

V (t) =

∫ 2π

0

e2(x, t)dx+ q

∫ 2π

0

e2x(x, t)dx. (18)

Let σ := e(x, t) − e(π, t). Then the system (16) can be
written as

et = aexx −Ke+Kσ. (19)

Then the time derivative of V is given as

V̇ =2

∫ 2π

0

e(aexx −Ke+Kσ)dx

− 2q

∫ 2π

0

exx(aexx −Ke+Kσ)dx

=− 2a‖ex‖2 − 2K‖e‖2 + 2K

∫ 2π

0

eσdx

− 2qa‖exx‖2 − 2Kq‖ex‖2 − 2qK

∫ 2π

0

exxσdx,

where we used the integral by parts. By Lemma 1, we have
‖σ‖2 6 4‖ex‖2 which implies

0 6 −λ‖σ‖2 + 4λ‖ex‖2, ∀λ > 0. (20)

Hence,

V̇ + 2δV

6− 2a‖ex‖2 − 2K‖e‖2 + 2K

∫ 2π

0

eσdx

− 2qa‖exx‖2 − 2Kq‖ex‖2 − 2qK

∫ 2π

0

exxσdx

− λ‖σ‖2 + 4λ‖ex‖2 + 2δ‖e‖2 + 2δq‖ex‖2

=

∫ 2π

0

η>Φηdx+ (4λ+ 2δq − 2a− 2Kq)‖ex‖2

where η = [e, exx, σ]> and

Φ =

−2K + 2δ 0 K
∗ −2qa −qK
∗ ∗ −λ

 . (21)

We have V̇ +2δV 6 0 if Φ 6 0. By using Schur complement,
Φ 6 0 if K > δ and

−λ+
[
K −qK

] [ 1
2K−2δ 0

0 1
2qa

] [
K
−qK

]
6 0.

Taking λ = a+Kq−δq
2 , the last inequality is equivalent to(

K2

a
− (K − δ)

)
q 6 a− K2

K − δ
.

Such q exists if and only if a > K2

K−δ . Then V̇ 6 −2δV ,
which implies the exponential stability in the H1-norm.

Remark 2. If there are several leaders (e.g. at π/2 and
3/2π), then in (15), we can use −K(z(π/2, t)−γ(π/2)) for
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z ∈ [0, π), and −K(z(1.5π, t) − γ(1.5π)) for z ∈ [π, 2π],
that allows to reduce the gain a [6].

V. NETWORK-BASED DEPLOYMENT

In this subsection, we consider the stability of system (11)
with bounded delay and periodic boundary condition (9).

The main result is given as follows.

Theorem 4. Consider the boundary-value problem (12),
(13). Given positive scalars δ0, τM ,K and δ1 satisfying
δ1 < 2δ0, let there exist positive scalars p1, p2, p3, r, g and
s satisfying the following LMIs

δ0p3 6 p2, Φ 6 0,

[
r s
s r

]
> 0, (22)

where Φ = {Φij} with

Φ11 = g + 2δ0p1 − e−2δ0τM r, Φ12 = p1 − p2,
Φ14 = −p2K + e−2δ0τM (r − s), Φ13 = e−2δ0τM s,

Φ15 = p2K, Φ22 = τ2Mr − 2p3,

Φ24 = −p3K, Φ25 = p3K,

Φ33 = −ge−2δ0τM − e−2δ0τM r, Φ34 = e−2δ0τM (r − s),

Φ44 = −2e−2δ0τM (r − s)− δ1p1, Φ55 = −δ1p3a
4

.

Then the system (12), initialized with e(x, t) = e(x, 0) ∈
X,∀t < 0, is exponentially stable with a decay rate δ, where
δ is the unique solution to (3), in the H1-norm:

∃C > 0: ‖e(·, t)‖H1 6 Ce−2δt‖e(·, 0)‖H1 . (23)

Moreover, given any δ > 0 and K > δ0, LMIs (22) are
always feasible for large enough a.

Proof. Consider the Lyapunov-Krasovskii functional

V (t) =p1

∫ 2π

0

e2(x, t)dx+ p3

∫ 2π

0

ae2x(x, t)dx

+

∫ 2π

0

[
τMr

∫ 0

−τM

∫ t

t+θ

e−2δ0(t−s)e2s(x, s)dsdθ

+ g

∫ t

t−τM
e−2δ0(t−s)e2(x, s)ds

]
dx. (24)

Notice that for the strong solution of (12), the functional V
is well-defined and continuous. The time derivative of V is
given as

V̇ + 2δ0V =2δ0p1

∫ 2π

0

e2(x, t) + 2δ0p3a

∫ 2π

0

e2x(x, t)dx

+ 2p1

∫ 2π

0

etedx+ 2p3a

∫ 2π

0

exetxdx

+ g

∫ 2π

0

[e2(x, t)− e−2δ0τM e2(x, t− τM )]dx

− τMr
∫ 2π

0

∫ t

t−τM
e2δ0(s−t)e2s(x, s)dsdx

+ τ2Mr

∫ 2π

0

e2t (x, t)dx. (25)

By applying Jensen’s inequality [9, Proposition B.8] and
further Park inequality (Lemma 1 in [5]), we have

− τMr
∫ 2π

0

∫ t

t−τM
e2δ0(s−t)e2s(x, s)dsdx

6− τM
τM − τ(t)

re−2δ0τM
∫ 2π

0

[

∫ t−τ(t)

t−τM
es(x, s)ds]

2dx

− τM
τ(t)

re−2δ0τM
∫ 2π

0

[

∫ t

t−τ(t)
es(x, s)ds]

2dx

6− e−2δ0τM
∫ 2π

0

ξ>
[
r s
s r

]
ξdx (26)

where ξ> := [e(x, t)−e(x, t−τ), e(x, t−τ)−e(x, t−τM )]
and the parameter s satisfies the last inequality of (22).

Due to (12), we have

0 =2

∫ 2π

0

[p2e+ p3et][−et + aexx

−Ke(π, t− τ(t))]dx. (27)

Using (26) in (25) and adding (27), we find

V̇ + 2δ0V − δ1 sup
θ∈[−τM ,0]

V (t+ θ)

6V̇ + 2δ0V − δ1V (t− τ(t))

6
∫ 2π

0

ϕ>Φϕdx− (2p2a− 2δ0p3a)

∫ 2π

0

e2x(x, t)dx

with Φ given below (22) and ϕ> = [e(x, t), et(x, t), e(x, t−
τM ), e(x, t− τ), e(x, t− τ)− e(π, t− τ)]. This implies that,
if p2 > δ0p3 and Φ 6 0, then (1) holds and Halanay’s
inequality implies that

V (t) 6 e−2δt sup
θ∈[−τM ,0]

V (θ). (28)

Finally, since the initial condition is set to be e(x, t) =
e(x, 0),∀t < 0, we have

sup
θ∈[−τM ,0]

V (θ) (29)

=p1

∫ 2π

0

e2(x, 0)dx+ p3

∫ 2π

0

ae2x(x, 0)dx

+ g

∫ 2π

0

∫ 0

−τM
e2δ0se2(x, 0)dsdx (30)

6C‖e(·, 0)‖2H1 (31)

where constant C depends on the initial condition, which
implies the inequality (23).

Now we show that the LMIs are feasible. Denote by Ψ the
matrix Φ with the deleted last column and row and δ1 = 0.
Then Ψ < 0 guarantees via the descriptor method that the
system

ż(t) = −Kz(t− τ)

is exponentially stable with a decay rate δ0 (cf. (4.23) in
[4]). Moreover, given any δ0 > 0 and K > δ0 by arguments
of [4] it can be shown that Ψ < 0 is always feasible for
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Fig. 1: Deployment of the agent according to the system (15)
with periodic boundary condition (9).

small enough τM . Given any δ > 0 and choosing δ1 = 0.1δ
and δ0 = δ + 2δ1 and K > δ0, we find further p1, p2, p3, r
and s that solve Ψ < 0 for small τM . Then, applying Schur
complements to the last column and row of Φ, we conclude
that Φ < 0 for large enough a. The latter implies that the
system is exponentially stable with a decay rate δ.

Remark 3. For φ ∈ H1(0, l), we have [12]

max
x∈[0,l]

φ2(x) 6 2

∫ l

0

φ2(ξ)dξ +

∫ l

0

φ2ξ(ξ)dξ.

Therefore, (24) implies

∃C ′ > 0: max
x∈[0,2π]

e2(x, t) 6 C ′e−2δt‖e(0, t)‖2H1 .

VI. SIMULATIONS

In this section, we present a simulative result of the
proposed control laws in Section IV and V. In the simulation,
we consider a multi-agent system with N = 45 agents. For
the system parameters, we set a = 10,K = 1. In the figure
of the deployment, the blue dashed lines are the desired
formation, and the red dashed lines are the initial positions
of the agents which are set to be (0.5 ∗ sin(i 2πN ), 0.5 ∗
cos(i 2πN ), 0), i = 1, . . . , N . The black solid lines are the
trajectories of the agents.

We start with the case without delay. Suppose the desired
decay rate is δ = 0.6. Notice that K > δ and a > K2

K−δ .
Hence the decay rate is guaranteed. The performance of the
system (15) is presented in Fig. 1. The first dimension of the
error, i.e., e1(x, t), is depicted in Fig. 2. It can be seen that
the error converges to zero.

Next, we present an example for the case with delay. We
choose δ0 = 2.5. Furthermore, the parameter δ1 in Halanay’s

Fig. 2: The H1 norm of error of the first dimension of the
simulation given in Fig. 1.

Fig. 3: Deployment of the agent according to the system (11)
with periodic boundary condition (9).

inequality is set to be equal to 1.5δ0 which is less than 2δ0.
The LMI conditions (22) is satisfied by p1 = 0.19, p2 =
0.32, p3 = 0.12, r = 10, g = 0.04, s = 0.41 and τM =
0.01 which is verified by CVX [8]. This guarantees the same
decay rate as without delay, i.e., δ = 0.60. The performance
of (11) is given in Fig. 3 and the error of the first dimension
is plotted in Fig. 4.

VII. CONCLUSION

In this paper, we considered the deployment of the first-
order multi-agents onto a desired closed smooth curve. The
model is motivated by the displacement-based multi-agent
formation control algorithm. We assumed that the agents
have access to the local information of the desired curve and
their displacements with respect to their closest neighbors,
whereas a leader is able to measure its absolute displacement
with respect to the desired curve and transmit it to other
agents through communication network. It was proved that,
based on LMI conditions, by choosing appropriate controller
gains, any desired decay rate can be achieved provided the
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Fig. 4: The H1 norm of error of the first dimension of the
simulation given in Fig. 3.

delay is small enough. More precisely, exponential conver-
gence to any closed C2 curve is guaranteed.
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