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Abstract— In this paper, we give necessary conditions
for achieving global consensus in homogeneous networks of
discrete-time linear time-invariant agents with input saturation
constraints under fixed undirected topologies. For two special
cases, where the agent model is either neutrally stable or a
double integrator, these necessary conditions together with a
gain condition are also sufficient. We show this by designing a
linear protocol based on the combination of state differences
between the agent and its neighbors. In particular, for the
neutrally stable case, we show that any linear protocol of
a particular form which solves the consensus problem for
the case without input saturation constraints also solves the
global consensus problem for the case with input saturation
constraints. For the double integrator case, we show that a
subset of linear protocols which solve the consensus problem
for the case without saturation constraints also solve the global
consensus problem in the presence of input saturation. The
results are illustrated by numerical simulations.

I. INTRODUCTION

In recent years, the consensus problem for multi-agent
systems (MAS) has received substantial attention, e.g., [1]–
[6]. To design a consensus protocol, each agent has to
implement a distributed protocol based on the limited in-
formation about itself and its neighboring agents. The de-
sign on consensus protocols can be generally divided into
two categories depending on whether the agent models are
continuous-time or discrete-time. Much attention has been
directed to the continuous-time case. The existing works here
can be categorized into two directions depending whether the
agent models are identical or not. The consensus problem
for homogeneous networks (i.e., networks where the agent
models are identical) has been considered in [4], [7]–[13],
while the consensus problem for heterogenous networks (i.e.,
networks where the agent models are non-identical) has been
considered in [14]–[17]. The studies on the discrete-time case
is rather limited, but can be found in [3], [7], [18]–[23].

Most aforementioned papers do not consider the case
where the agents are subject to actuator saturation. However,
in every physical application, the actuator has bounds on
its input, and thus actuator saturation is important to study.
The protocol design for achieving consensus for the case
with input saturation constraints is a challenging problem,
and only few results are available for the continuous-time
agent models, e.g., [24]–[27]. In [25], for the single integrator
case, the authors showed that any linear protocol based on
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the relative state information which solves the consensus
problem for the case without input saturation constraints
under fixed directed network topologies also solves the
global consensus problem in the presence of input saturation
constraints. Meng et al [26] proposed a linear protocol based
on the relative state information to solve the global con-
sensus problem for a MAS with input saturation constraints
under fixed undirected network topologies and time varying
topologies. Yang et al [27] solved the semi-global regulation
of output synchronization for heterogeneous networks under
fixed directed network topologies.

To the best of the authors’ knowledge, all the existing
works on the consensus problem for a MAS with input
saturation constraints are restricted to the case where the
agents models are continuous-time. This motivates us to
consider the consensus problem for the case where the agents
models are discrete-time. As a first step, in this paper, we
assume the network topology is fixed and undirected.

The remainder of the paper is organized as follows. In
Section II, some preliminaries and notations are introduced.
In Section III, we first formulate the global consensus
problem with input saturation constraints, and then give
necessary conditions for achieving global consensus under
fixed undirected topologies. In Section IV and Section V, we
consider the case where the agent model is neutrally stable
and a double integrator respectively. Simulation examples are
presented in Section VI followed by conclusions.

II. PRELIMINARIES AND NOTATIONS

In this paper, we assume that the communication topology
among the agents is described by a fixed undirected weighted
graph G = (V ,E ,A ), with the set of agents V = {1, . . . ,N},
the set of undirected edges E ⊆ V × V , and a weighted
adjacency matrix A = [ai j] ∈ RN×N , where ai j > 0 if and
only if the edge (i, j) ∈ E and ai j = 0 otherwise. We
also assume that there is no self-loop, i.e., aii = 0 for
i ∈ {1, . . . ,N}. The set of neighboring agents of agent i is
defined as Ni = { j ∈ V |ai j > 0}. A path from node i1 to
ik is a sequence of nodes {i1, . . . , ik} such that (i j, i j+1) ∈ E
for j = 1, . . . ,k− 1 in the undirected graph. An undirected
graph is connected if there exists a path between any pair of
distinct nodes.

For an undirected weighted graph G , a matrix L = [!]i j ∈
RN×N with !ii = ∑N

j=1 ai j and !i j = −ai j for j %= i, is called
Laplacian matrix associated with graph G . It is well-known
that the Laplacian matrix has the property that all the
row sums are zero. If the undirected weighted graph G
is connected, then L has a simple eigenvalue at zero with
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corresponding right eigenvector 1 and all other eigenvalues
are strictly positive. All the eigenvalues can be ordered as
0 = λ1 < λ2 ≤ . . .≤ λN ≤ 2∆, where ∆ = maxi∈{1,...,N} !ii.

Given a matrix A, AT denotes its transpose and ‖A‖ denotes
its induced norm. A symmetric matrix A is positive (negative)
definite if and only if all its eigenvalues are positive (nega-
tive), and is positive (negative) semi-definite if and only if
all its eigenvalues are non-negative (non-positive). We denote
by A⊗B the Kronecker product between matrices A and B.
For two column vectors a and b of the same dimensions,
a < (≤)b means that each entry of a− b is negative (non-
positive), while a > (≥)b means that each entry of a− b
is positive (non-negative). IN denotes an identity matrix of
dimension N ×N. 1N denotes the column vector with each
entry being 1. For column vectors x1, . . . ,xN , the stacking
column vector of x1, . . . ,xN is denoted by [x1; . . . ;xN ].

III. PROBLEM FORMULATION

We consider a MAS of N identical discrete-time agents

xi(k+1) = Axi(k)+Bσ(ui(k)), i ∈ V , (1)

where xi(k) ∈ Rn, ui(k) ∈ Rm,

σ(ui(k)) = [σ1(ui,1(k));σ1(ui,2(k)); . . . ;σ1(ui,m(k))],

and each σ1(u) is the standard saturation function

σ1(u) =






1 if u > 1,
u if |u|≤ 1,
−1 if u <−1.

The only information available for agent i comes from the
network. In particular, agent i receives a linear combination
of its own state relative to that of neighboring agents, i.e.,
agent i has access to the quantity

ζi(k) = ∑
j∈Ni

ai j(xi(k)− x j(k)).

Our goal is to design distributed protocols ui(k) by using
ζi(k) to solve the global consensus problem, that is, for any
initial conditions xi(0), i ∈ V , limk→∞(xi(k)−x j(k)) = 0 for
all i, j ∈ V .

Each agent is subject to the input saturation constraints.
These nonlinearities make the protocol design for achieving
global consensus difficult since we have to guarantee that
consensus is achieved for all initial conditions.

Assumption 1: The agent model (1) is asymptotically null
controllable with bounded controls (ANCBC), i.e., the pair
(A,B) is stabilizable and all the eigenvalues of the matrix A
are within or on the unit circle.
Based on the result in [28], we have the following result.

Proposition 1: Global consensus for a MAS of N agents
(1) via distributed protocols ui(k) = fi(ζi(k),k) is possible
only if Assumption 1 is satisfied.

From the saturation literature [28], [29], in general we
need to design nonlinear protocols to solve the global consen-
sus problem. In this paper, we shall concentrate on a linear

protocol

ui = Kζ = K ∑
j∈Ni

ai j(xi − x j), i ∈ V , (2)

as such a protocol may suffice in some cases. 1

Given a fixed undirected graph and Assumption 1, it fol-
lows from [23][Theorem 3.1] that a MAS achieves consensus
under the protocol (2) if and only if the following assumption
is satisfied.

Assumption 2: The graph G is connected.
This together with Proposition 1 yields the following result:

Proposition 2: Assumptions 1 and 2 are necessary for a
MAS of N agents (1) to achieve global consensus under the
protocol (2).

There is limited knowledge regarding which linear systems
with input saturation allow for global stabilization via linear
state feedback control laws. It is known that for some
special discrete-time cases, that is, open-loop neutrally stable
system2 [30], and double integrator [31], there exist linear
state feedback control laws which globally asymptotically
stabilize the linear system in the presence of input saturation.
Hence, in the following sections, we consider the global
consensus problem under a distributed linear protocol (2) for
such special cases. We show that Assumptions 1 and 2 are
also sufficient for achieving global consensus for such special
cases by designing the matrix K for the linear protocol (2)
to solve the global consensus problem.

IV. NEUTRALLY STABLE CASE

In this section, we consider the case where the agent model
(1) is open-loop neutrally stable. Under Assumption 1, there
exists a non-singular state transformation T−1, such that

A = T−1
[

Ac 0
0 As

]
T, B = T−1

[
Bc
Bs

]
,

where AT
cAc = I, As is Schur stable (i.e., all its eigenvalues are

within the unit circle), and the pair (Ac,Bc) is controllable.
As shown in [23], the asymptotically stable modes can be

ignored since we can set the corresponding gain matrix to
zero. Thus, without loss of generality, we make the following
assumption in this section.

Assumption 3: ATA= In and the pair (A,B) is controllable.
Under Assumption 3, controllability of the pair (A,B) is
equivalent to stabilizability of the pair (A,B).

Consider the following protocol

ui =−εBTA ∑
j∈Ni

ai j(xi − x j), i ∈ V . (3)

Note that the above protocol (3) is of the form (2) with K =
−εBTA, where ε is a designed parameter to be specified. The
following lemma shows that the protocol (3) with properly
chosen ε solves the consensus problem for a MAS without
input saturation.

1To simplify the notation, sometimes x or u without explicitly indicating
the time instant will refer to x(k) or u(k) respectively.

2A discrete-time system is said to be open-loop neutrally stable if, all its
open-loop poles are within or on the unit circle with those on the unit circle
being simple.
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Lemma 1: Consider a MAS of N identical agents (1) in
the absence of actuator saturation. Assume that Assumptions
2 and 3 are satisfied. Then any linear protocol (3) with ε ∈
(0, 2

λN‖BTB‖ ) solves the consensus problem.
Proof: It is well known [9], [22] that the consensus

problem for a network of N identical agents is equivalent
to the simultaneous stabilization problem of N −1 systems.
Hence, it can be verified that consensus is achieved via (3)
if all the matrices A−ελiBBTA, where λi, i ∈ {2, . . . ,N} are
the nonzero eigenvalues of the Laplacian matrix, are Schur
stable. It then follows from [32] that all these matrices are
Schur stable if ε ∈ (0, 2

λN‖BTB‖ ).
The following theorem shows that any protocol of the form

(3) with ε ∈ (0, 2
λN‖BTB‖ ) also solves the global consensus

problem for a MAS with input saturation constraints.
Theorem 1: Consider a MAS of N identical agents (1).

Assume that Assumptions 1, 2 and 3 are satisfied. Then any
protocol (3) with ε ∈ (0, 2

λN‖BTB‖ ) solves the global consensus
problem.

Proof: Define x(k) = [x1(k); . . . ;xN(k)] and u(k) =
[u1(k); . . . ,uN(k)]. With these quantities, we obtain the fol-
lowing dynamics

x(k+1) = (IN ⊗A)x(k)+(IN ⊗B)σ(u(k)), (4a)
u(k) =−ε(L⊗BTA)x(k). (4b)

Motivated by the Lyapunov candidate in [24], we consider
the following Lyapunov candidate

V (k) =
1
2

xT(k)(L⊗ In)x(k).

Define a manifold where all the agents’ states are identical
as M := {x ∈ RNn|x1 = x2 = . . . = xN}. Note that V (k) ≥ 0
and V (k) = 0 if and only if x ∈ M.

From the dynamics of (4), we obtain

∆V =
1
2

σ T(u)(L⊗BTA)x+
1
2

xT(L⊗ATB)σ(u)

+
1
2

σ T(u)(L⊗BTB)σ(u)

=−1
ε σ T(u)u+

1
2

σ T(u)(L⊗BTB)σ(u)

≤−σ T(u)(
1
ε INm − 1

2
L⊗BTB)σ(u),

where we have used that L = LT for undirected graph and
that zTσ(z)≥ σ T(z)σ(z) for any column vector z.

Since ε ∈ (0, 2
λN‖BTB‖ ), ∆V ≤ 0 and ∆V = 0 if and only if

(L⊗BTA)x = 0. We shall show that (L⊗BTA)x = 0 if and
only if x ∈ M, which in turn implies that ∆V = 0 if and only
if x ∈ M. We first note that if x ∈ M, then (L⊗BTA)x = 0
since the graph is connected. We then need to show that
(L⊗BTA)x = 0 implies that x ∈ M. Note that (L⊗BTA)x = 0
implies that (L̃ ⊗ BTA)q = 0, where the relative state q =
[q2; . . . ;qN ], qi = xi − x1 for i ∈ {2, . . . ,N}, and

L̃ =




!2,2 − !1,2 . . . !2,N − !1,N

...
. . .

...
!N,2 − !1,2 . . . !N,N − !1,N



 ∈ R(N−1)×(N−1). (5)

Since the graph is connected, from [22, Lemma 1], we know
that the eigenvalues of L̃ are nonzero eigenvalues of the
matrix L, which are positive. Thus, the matrix L̃ is non-
singular, i.e., rank(L̃) = N −1.

Since AT = A−1 which can obtained by ATA = In, we
see that (L̃ ⊗ BTA)q = 0 implies that qT(L̃ ⊗ A−1B) = 0.
We then note that q(k + 1) = (IN−1 ⊗A)q(k) since u(k) =
−ε(L⊗BTA)x = 0. Therefore

(L̃⊗BTA)q(k+1) = (L̃⊗BTA)(IN−1 ⊗A)q = (L̃⊗BTA2)q,

which is equivalent to qT(L̃⊗A−2B) = 0. By iteration, we
obtain qT(L̃⊗A−rB) = 0 for r = 3,4, . . . ,n+1. Hence,

qT
(

L̃⊗A−(n+1) [AnB ... AB B ]
)
= 0. (6)

Since the pair (A,B) is controllable, we know that

rank
([

AnB . . . AB B
])

= n.

Since the matrix A is non-singular, it is easy to see that

rank
(

A−(n+1) [AnB . . . AB B
])

= n.

Finally, using the property of Kronecker product, we obtain

rank
(

L̃⊗A−(n+1) [AnB . . . AB B
])

= rank(L̃) rank(A−(n+1) [AnB . . . AB B
]
) = (N −1)n.

Therefore, the only solution of (6) is q = 0, which is
equivalent to x1 = . . . = xN , i.e., x ∈ M. Hence, we have
shown that ∆V ≤ 0 and ∆V = 0 if and only if x ∈ M.

Since ∆V ≤ 0, we conclude that V (k) is non-increasing.
Thus, limk→∞ V (k) = V∗ for some V∗ ≥ 0. This implies that
∆V (k)→ 0 as k →∞ and hence x(k)→M as k →∞ as shown
above. Hence, global consensus is achieved.

V. DOUBLE INTEGRATOR

In this section, we consider the case where the agent model
(1) is a double integrator, that is, we make the following
assumption in this section.

Assumption 4: In (1), A =

[
1 1
0 1

]
and B =

[
0
1

]
.

Let us first recall the following result which gives conditions
on the feedback gain parameters for achieving the consensus
without saturation constraints.

Lemma 2: [33] Consider a MAS of N identical agents
described by

[
xi(k+1)
vi(k+1)

]
= A

[
xi(k)
vi(k)

]
+Bui, i ∈ {1, . . . ,N}. (7)

Assume that Assumptions 2 and 4 is satisfied. Then the
protocol of the form (2) with K =−[α,β ], that is,

ui(k) =−α ∑
j∈Ni

ai j(xi(k)− x j(k))−β ∑
j∈Ni

ai j(vi(k)− v j(k)),

(8)
solves the consensus problem if and only if

0 < α < β <
α
2
+

2
λN

. (9)
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The following theorem shows that a subset of the protocols
(8) which solve the consensus problem for a MAS without
input saturation constraints, that is (9) is satisfied, also
solves the global consensus problem for a MAS with input
saturation constraints.

Theorem 2: Consider a MAS of N identical agents (1).
Assume that Assumptions 2 and 4 are satisfied. Then the
linear protocol (8) with

0 <
√

3α < β <
3

2λN
, (10)

solves the global consensus problem.
Proof: Define x(k) = [x1(k); . . . ;xN(k)],

v(k) = [v1(k); . . . ;vN(k)], u(k) = [u1(k); . . . ;uN(k)],
yi(k) = [xi(k);vi(k)], and y = [y1(k); . . . ;yN(k)]. With
these quantities, we obtain the following dynamics:

y(k+1) = (IN ⊗A)y(k)+(IN ⊗B)σ(u(k)), (11a)
u(k) =

(
L⊗

[
−α −β

])
y(k). (11b)

We also obtain the following dynamics

x(k+1) = x(k)+ v(k), (12a)
v(k+1) = v(k)+σ(u(k)). (12b)

Note that u(k) can be written in terms of x(k) and v(k) as

u(k) =−αLx(k)−βLv(k). (13)

Hence, we get that

u(k+1) = u(k)−αLv(k)−βLσ(u(k)). (14)

Motivated by the Lyapunov candidate for a discrete-time
double integrator with saturated linear state feedback control
laws in [31], we consider the following Lyapunov candidate

V =−σ T(u)σ(u)+2σ T(u)u+2ασ T(u)Lv+αvTLv.

Similar as the proof of Theorem 1, we define a manifold
where all the agents’ states are identical as

M := {y ∈ R2N |x1 = x2 = . . .= xN , v1 = v2 = . . .vN}.

Note that V = 0 if y ∈ M. We will show that V = 0 only if
y ∈ M. Since σ T(z)z ≥ σ T(z)σ(z) for any column vector z,
where the equality holds if and only if −1≤ z≤ 1, we obtain

V ≥ σ T(u)σ(u)+2ασ T(u)Lv+αvTLv (15)

=
[

σ(u)
Lv

]T [ 1 α
α 2

3 αβ

][
σ(u)
Lv

]
+ vT(αL− 2

3
αβLTL)v, (16)

where the equality of (15) holds if and only if −1 ≤ u ≤ 1.
Since β >

√
3α > 3

2 α > 0, the first term of (16) is non-
negative, and equal to zero if and only if σ(u)= 0 and Lv= 0.
Note that from (13), we see that u =−αLx−βLv =−αLx,
therefore, Lx = 0 since α %= 0. Thus, the first term equal to
zero if and only if y ∈ M. We then show that the second
term is also non-negative. Since L = LT, we see that the
eigenvalues of the matrix αL− 2

3 αβLTL are αλi(1− 2
3 βλi),

where λi, i ∈ {1, . . . ,N} are the eigenvalues of the Laplacian
matrix L. Since βλN < 3

2 , the second term is non-negative

and equal to zero if and only if Lv = 0. Therefore, V ≥ 0
and V = 0 if and only if y ∈ M.

Next, we show that ∆V (k) =V (k+1)−V (k)≤ 0. Let t =
σ(u(k+ 1)). Note that −1 ≤ t ≤ 1 by the definition of the
saturation function. With some algebra, we get

V (k+1) =−tTt +2tTu+2(α −β )tTLσ(u)+αvTLv
+2αvTLσ(u)+ασ T(u)Lσ(u).

Thus,

∆V =−tTt +2tTu+2(α −β )tTLσ(u)
+σ T(u)(αL+ I)σ(u)−2σ T(u)u.

Without loss of generality, we assume that ui > 1 for i ∈
{1, . . . ,N1} := Sp, |ui|≤ 1 for i ∈ {N1+1, . . . ,N2} := Sm, and
ui <−1 for i ∈ {N2 +1, . . . ,N} := Sq, since if this is not the
case, we can always relabel the nodes to achieve this. Note
that the sets Sp, Sm, and Sq may be empty. We then partition
t = [tp; tm; tq], u = [up;um;uq], where tp,up ∈ RN1 , tm,um ∈
RN2−N1 , and tq,uq ∈RN−N2 are defined accordingly. Finally,

we partition the Laplacian matrix L as L =

[
Lpp Lpm Lpq
LT

pm Lmm Lmq

LT
pq LT

mq Lqq

]
,

where Lpp, Lpm, Lpq, Lmm, Lmq and Lqq are real matrices of
appropriate dimensions.

With some algebra, we obtain

∆V =−tT
ptp − tT

mtm − tT
qtq +2tT

pup +2tT
mum +2tT

quq

+2(α −β ) [ tT
p tT

m tT
q ]

[
Lpp Lpm Lpq
LT

pm Lmm Lmq

LT
pq LT

mq Lqq

][
1p
um
−1q

]

+α [ 1T
p uT

m −1T
q ]L

[
1p
um
−1q

]
+1T

p1p +uT
mum +1T

q1q

−2 [1T
p uT

m −1T
q ]
[ up

um
uq

]

= 2(tp −1p)
T(up −1p)+2tT

p1p −21T
p1p

+2(tq +1q)
T(uq +1q)−2tT

q1q −21T
q1q

− tT
ptp +2tT

p

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]
−2tT

p1p

− tT
mtm +2tT

m

[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]

− tT
qtq +2tT

q

[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]
+2tT

q1q

+α [ 1T
p um −1T

q ]L
[

1p
um
−1q

]
+1T

p1p +1T
q1q −uT

mum.

Note that

− tT
ptp +2tT

p

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]

=−
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}T

×
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}

+

[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]T

×
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]
.
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Similar completion of squares for

−tT
mtm +2tT

m

[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]
,

and

−tT
qtq +2tT

q

[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]
,

yields

∆V = 2(tp −1p)
T(up −1p)+2(tq +1p)

T(uq +1p) (17)

−
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}T

×
{

tp −
[
(α −β ) [Lpp Lpm Lpq ]

[
1p
um
−1q

]
+1p

]}
(18)

−
{

tm −
[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]}T

×
{

tm −
[
(α −β ) [LT

pm Lmm Lmq ]

[
1p
um
−1q

]
+um

]}
(19)

−
{

tq −
[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]}T

×
{

tq −
[
(α −β ) [LT

pq LT
mq Lqq ]

[
1p
um
−1q

]
−1q

]}
(20)

+ sTM̃s, (21)

where s = [1p;um;−1q] and M̃ = (α −β )2L2 +(3α − 2β )L
since L = LT. Note that the two terms in (17) are negative
since tp −1p < 0, up −1p > 0, tq +1q > 0, uq +1q < 0, and
that the terms in (18), (19), (20) are all non-positive. There-
fore, in order to show that ∆V ≤ 0, it is sufficient to show that
the term (21) is also non-positive, i.e., to show that the matrix
M̃ is negative semidefinite. It is also easy to see that the
eigenvalues of the matrix M̃ are (α −β )2λ 2

i +(3α −2β )λi,
i ∈ {1, . . . ,N}. Hence, M̃ has one simple eigenvalue at zero
with the corresponding right eigenvector 1, while all other
eigenvalues are (α − β )2λ 2

i + (3α − 2β )λi, i ∈ {2, . . . ,N}.
We shall show that all these eigenvalues are negative. Since
λi > 0 and λi ≤ λN , it is sufficient to show that λN < 2β−3α

(α−β )2 .
We note that λN < 3

2β from (10). Thus, it is sufficient to
show that 3

2β < 2β−3α
(α−β )2 . With some algebra, we see that this

is equivalent to show that β >
√

3α , which is true given (10).
Hence, we have shown that ∆V ≤ 0. We then show that

∆V = 0 if and only if y ∈ M. To show this, we first note that
∆V < 0 if the first two terms (17) are not empty since they are
negative. Therefore, ∆V = 0 only if these terms are empty.
This is the case when |ui|≤ 1 for all the agents i∈ {1, . . . ,N},
i.e., when the sets Sp and Sq are empty. In this case, we have

∆V =−tTt +2tTu+2(α −β )tTLu+uT(αL− I)u
=−{t − [(α −β )L+ IN ]u}T {t − [(α −β )L+ IN ]u}+uTM̃u.

Note that the first term is non-positive and it is equal to zero
if and only if t = [(α −β )L+ IN ]u.

Recall that M̃ has exactly one zero eigenvalue with the
corresponding right eigenvector 1, while all other eigenvalues

1
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Fig. 1. Network with seven agents

are negative, thus the second term uTM̃u is also non-positive
and it is equal to zero if and only if Lu = 0.

Hence, we conclude that ∆V = 0 if and only if t =
[(α −β )L+ I]u and Lu = 0. Since Lu = 0, we obtain that
t = u. On the other hand, from (14), we get that

t = σ(u(k+1)) = u(k+1) = u−αLv−βLσ(u) = u−αLv.

Thus, we see that Lv = 0 since α %= 0. Thus v1 = . . . = vN
since the graph is connected. From (13), we then get that u=
−αLx−βLv=−αLx. This together with the fact that Lu= 0
implies that L̃q = 0, where the relative state q = [q2; . . . ;qN ],
qi = xi − x1 for i ∈ {2, . . . ,N}, and L̃ is given by (5). Recall
that the matrix L̃ is non-singular from the proof of Theorem
1. We then see that q = 0, that is, x1 = . . . = xN . Therefore
∆V = 0 if and only if y ∈ M.

Hence, we have shown that ∆V ≤ 0 and ∆V = 0 if and
only if y ∈ M. It then follows from a similar analysis as in
the end of the proof of Theorem 1, that y(k)→ M as k → ∞.
Hence, global consensus is achieved.

VI. ILLUSTRATIVE EXAMPLE

In this section, we illustrate our results on global con-
sensus with input saturation constraints for a network with
N = 7 double integrators, whose topology is given in Fig. 1.
Choose α = 0.07 and β = 0.15 such that the condition (10)
is satisfied. The simulation results shown in Fig. 2 confirm
the results of Theorem 2.

VII. CONCLUSIONS AND FUTURE WORK

This paper considered the global consensus problem for a
MAS of discrete-time identical linear agents, where the agent
dynamics are either neutrally stable or a double integrator,
with input saturation constraints under fixed undirected net-
work topologies. Extensions to directed topologies and time-
varying topologies are currently under investigation. Another
interesting topic is to consider the heterogeneous network.
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