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Abstract: In this paper we propose a novel methodology for the analysis of autonomous vehicles
seeking the extremum of an arbitrary smooth nonlinear map in the plane. By interpreting the
extremum seeking schemes as input-affine systems with periodic excitations and by using the
methodology of Lie brackets, we calculate a simplified system which approximates the qualitative
behavior of the original one better than existing methods. By examining this approximate Lie
bracket system, we are able to directly derive properties of the original one. Thus, by showing
that the Lie bracket direction is directly related to the unknown gradient of the objective
function we prove global uniform practical asymptotic stability of the extremum point for
vehicles modeled as single integrators and non-holonomic unicycles. We illustrate the proposed
method through simulations.
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1. INTRODUCTION

We consider optimization problems, where the task is to
steer a vehicle to an extremum of a physically measurable
source such as an electromagnetic field or an acoustic
noise emitted by a sender. In a stochastic setting, this
problem can be translated to the task of finding the
position of a noise source or the position with the highest
signal to noise ratio. In many applications the analytic
representation of the objective function is unknown and,
in some cases, its measurements are disturbed by noise, so
that it is not possible to calculate the gradient explicitly.
Therefore, one is interested in a method suitable for control
of autonomous vehicles without position measurements
that will drive a system to an extremum point by using
only online measurements of the objective function.

The extremum seeking feedback with periodic perturba-
tions has been widely used for dealing with these prob-
lems. The authors of Zhang et al. (2007a) and Zhang
et al. (2007b) analyzed local practical stability of two
dimensional extremum seeking schemes for quadratic maps
with decoupled coordinates, using averaging techniques.
In Tan et al. (2006) semi-global practical stability was
considered for certain scalar extremum seeking systems.
In Stanković and Stipanović (2009) and Stanković and
Stipanović (2010) the schemes were modified by intro-
ducing vanishing gains, such that almost sure convergence
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was achieved even in the presence of measurement noise.
We propose, in this paper, a methodology that allows to
deduce properties of the extremum seeking schemes in a
novel and intuitive way, using the Lie bracket methodology
instead of a pure averaging analysis. This methodology
has been widely used for the analysis of input-affine, non-
holonomic systems which allows to construct inputs in
order to steer the system from an initial point to an end
point. The main idea is to apply a specific switching input
signal which will drive a system in directions that are not
directly accessible but turn out to be the directions of the
Lie brackets of the existing vector fields. By calculating
inputs for an extended system consisting of virtual inputs
assigned to the Lie bracket directions, it is possible to
construct inputs for the original system such that the
trajectories are always in a region close to the extended
one. This procedure was extensively analyzed in e.g. Li
and Canny (1992), Isidori (1989) and Sastry (1999) from
different viewpoints. It has been shown that the switching
input signals, which steer the system in the Lie bracket
directions, can be chosen to be periodic such as sinusoidal
functions with high frequency.

In this paper, we show that the extremum seeking can be
interpreted as the Lie bracket motion, where the external
perturbing sinusoids are considered as inputs which drive
the system in the Lie bracket direction. We prove that
this Lie bracket direction is the direction of the gradient
of the unknown objective function together with some
additional terms which do not appear when using the pure
averaging method, even with decoupled quadratic maps.
These terms contribute to a better approximation of the
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qualitative behavior of the original system compared to ex-
isting methods. We analyze convergence properties of the
here proposed dynamical systems consisting of a vehicle
having some specific motion dynamics in connection with
the extremum seeking feedback, with arbitrary smooth
nonlinear objective function. We prove global practical
uniform asymptotic stability (see, e.g., Teel et al. (1998)
and Chaillet and Loria (2006)) using the proposed Lie
bracket system approximation and the results presented in
Moreau and Aeyels (2000), where global practical stability
of classes of systems depending on a small parameter was
analyzed. This small parameter, which, in our case, is
inversely proportional to the frequency of the perturb-
ing sinusoids, determines the size of a region around the
extremum to which the system converges. By letting the
frequency go to infinity, the region contracts to a single
point. We demonstrate wide applicability of the proposed
methodology by applying it to the analysis of two di-
mensional extremum seeking schemes involving velocity
actuated vehicles and non-holonomic unicycles.

This paper is structured as follows. In Section 2 we recall
the mathematical preliminaries that we are using through-
out the paper. In Section 3 we show how the extremum
seeking systems with single integrator and unicycle motion
dynamics can be approximated by their corresponding Lie
bracket systems and we prove their global practical stabil-
ity. In Section 4 we present simulation results. Conclusions
and future work are mentioned in Section 5.

2. PRELIMINARIES

We make use of the following notation.

A function f is said to belong to the class C∞ if it is
smooth, or infinitely continuously differentiable (see also
Khalil (2002)).

A continuous function α : [0,∞) → [0,∞) is said to
belong to class K∞ if it is strictly increasing, α(0) = 0
and α(r)→∞ as r →∞.

The Jacobian of a continuously differentiable function f :

Rn → Rm with components f(x) = (f1(x), . . . , fm(x))
>

and each fi : Rn → R, is denoted by

∂f(x)

∂x
:=


∂f1(x)

∂x1
. . .

∂f1(x)

∂xn
...

. . .
...

∂fm(x)

∂x1
. . .

∂fm(x)

∂xn

 .

The gradient of a continuously differentiable function
J : Rn → R with respect to x is denoted by

∇xJ(x) :=
(
∂J(x)
∂x1

, . . . , ∂J(x)
∂xn

)>
and (∇xJ)2 stands for

∇xJ(x)>∇xJ(x).

The norm || · ||C[0,T ] denotes ||y||C[0,T ] = maxt∈[0,T ] |y(t)|.

The Lie bracket (cf. Sastry (1999)) of two vector fields f

and g is defined as [f, g] = ∂g
∂xf −

∂f
∂xg.

Before we state our main results, some mathematical
preliminaries are introduced. One of the main ideas used
in the upcoming proofs is to introduce the Lie bracket
approximation of a system excited with periodic inputs.

We will show that stability of this approximative system
implies practical stability of the original one. The following
theorem gives conditions on how an input-affine system
can be approximated by an extended system consisting of
vector-fields calculated from Lie brackets.

Consider the following system

ẋ =

m∑
i=1

bi(x)uεi , x ∈ Rn, bi(x) ∈ C∞ : Rn → Rn (1)

with inputs uεi = ūi(t) + 1√
ε
ũi(t, θ), ε > 0, where ũi

is 2π-periodic in θ = t/ε, and has zero average, i.e.,∫ 2π

0
ũi(t, θ)dθ = 0.

Consider also the system

ż =

m∑
i=1

bi(z)ūi +
1

2π

∑
i<j

[bi, bj ]νi,j , z(0) = x(0), (2)

where

νi,j =

∫ 2π

0

∫ θ

0

ũi(t, τ)ũj(t, θ)dτdθ. (3)

The following lemma states the connection between these
two systems in terms of the difference in their trajectories,
by giving a bound that tends to zero as ε tends to zero.

Lemma 1. (Thm. 2.1 in Li and Canny (1992) p. 68). For
sufficiently small ε > 0, the trajectory of the system (1),
is bounded by the solution of the system (2) in the sense
that

||x− z||C[0,2π] ≤ ∆ε (4)

where ∆ε is a parameter that tend to zero as ε→ 0.

From Lemma 1 we can prove that the trajectories of
system (1) converge uniformly on compact time intervals
to the trajectories of (2) as ε → 0. We omit the proof at
this point, because a similar result for a system with two
inputs can be found in the original paper of Moreau and
Aeyels (2000). Under these conditions the following holds:

Lemma 2. (cf. Moreau and Aeyels (2000)). If the origin is
a globally uniformly asymptotically stable equilibrium
point of system (2), then for sufficiently small ε > 0
the origin of system (1) is practically globally uniformly
asymptotically stable.

By performing a change of variables the result can be
extended to any point in the state space.

3. MAIN RESULTS

We divide our results in two subsections. The first one
is devoted to the single integrator model of the vehicle,
while the second one treats the case of unicycle dynamics.
The presented results can be extended to other dynami-
cal systems such as double-integrator dynamics (see Dürr
(2010)). By adding low-pass compensators and some ad-
ditional assumptions, the practical stability can be proved
in a similar way.

Consider a nonlinear map J(x) satisfying the following
assumptions for the rest of the document:

A.1 J ∈ C∞
A.2 there exists a unique x∗ such that ∂J(x)

∂x |x∗ = 0
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Fig. 1. Single-Integrator Extremum Seeking

A.3 J(x)→ −∞ if ||x|| → ∞.

These assumptions imply that upper and lower bounds on
J(x) exist such that γ1(|x−x∗|) ≤ −J(x)+J(x∗) ≤ γ2(|x−
x∗|) for some functions γ1(|x|), γ2(|x|) ∈ K∞.

3.1 Single-Integrator Dynamics

We will analyze the feedback in Figure 1 involving a
vehicle with single-integrator dynamics. The function J(x)
is evaluated at the position of the vehicle denoted by
x(t) = (x1(t), x2(t))>. We replace the filter s

s+h with an
equivalent state-space representation

ė =− eh+ u

y =− eh+ u,

and denote the trajectory of the filter state by e(t). The
state-space representation of the overall system is given by

ẋ1 = c(J(x)− eh)
√
ω sin(ωt− φ) + α

√
ω cos(ωt)

ẋ2 = −c(J(x)− eh)
√
ω cos(ωt− φ) + α

√
ω sin(ωt)

ė = −he+ J(x).

(5)

We can now state our first result.

Lemma 3. Consider the extremum seeking feedback in
Equation (5) and the system

˙̄x1 =
1

2
(cα∇x̄1J(x̄) cos(φ) + cα∇x̄2J(x̄) sin(φ)

− c2∇x̄2
J(x̄)(J(x̄)− ēh)))

˙̄x2 =
1

2
(cα∇x̄2

J(x̄) cos(φ)− cα∇x̄1
J(x̄) sin(φ)

+ c2∇x̄1
J(x̄)(J(x̄)− ēh)))

˙̄e =− ēh+ J(x̄)

(x̄, ē)>|0 =(x, e)>|0.

(6)

For sufficiently large ω the trajectory of the original system
(5) is bounded by solution of the system (6), such that

||(x, e)> − (x̄, ē)>||C[0,2π] ≤ ∆ε

where ε = 1/ω and ∆ε is a parameter such that
limε→0 ∆ε = 0.

Proof. By using the identities sin(x−y) = sin(x) cos(y)−
cos(x) sin(y) and cos(x−y) = cos(x) cos(y)+sin(x) sin(y),
(5) yields to

ẋ1 =c(J − eh)
√
ω sin(ωt) cos(φ)

− c(J − eh)
√
ω cos(ωt) sin(φ) + α

√
ω cos(ωt)

ẋ2 =− c(J − eh)
√
ω cos(ωt) cos(φ)

− c(J − eh)
√
ω sin(ωt) sin(φ) + α

√
ω sin(ωt)

ė =− eh+ J

where we omitted the argument of J(x). Writing the above
equation as an input-affine system with inputs u1 and u2,
yields(

ẋ1

ẋ2

ė

)
=

(
c(J − eh) cos(φ)

α− c(J − eh) sin(φ)
0

)
︸ ︷︷ ︸

f

√
ω sin(ωt)︸ ︷︷ ︸

u1

+

(
α− c(J − eh) sin(φ)
−c(J − eh) cos(φ)

0

)
︸ ︷︷ ︸

g

√
ω cos(ωt)︸ ︷︷ ︸

u2

+

(
0
0

−eh+ J

)
1︸︷︷︸
u0

.

The Lie bracket of the vector fields f and g can be
calculated as follows

[f, g] =
∂g

∂x
f −

∂f

∂x
g

=

(
−c∇x̄1J sin(φ) −c∇x̄2J sin(φ) ch sin(φ)
−c∇x̄1J cos(φ) −c∇x̄2J cos(φ) ch cos(φ)

0 0 0

)

·

(
c(J − eh) cos(φ)

α− c(J − eh) sin(φ)
0

)

−

(
c∇x̄1J cos(φ) c∇x̄2J cos(φ) −ch cos(φ)
−c∇x̄1J sin(φ) −c∇x̄2J sin(φ) ch sin(φ)

0 0 0

)

·

(
α− c(J − eh) sin(φ)
−c(J − eh) cos(φ)

0

)

=

(
−cα∇x̄1J cos(φ)− cα∇x̄2J sin(φ) + c2∇x̄2J(J − eh))

−cα∇x̄2J cos(φ) + cα∇x̄1J sin(φ)− c2∇x̄1J(J − eh))
0

)
.

By using Lemma 1 and θ := t
ε = ωt, we obtain for the

approximative system ˙̄x1
˙̄x2
˙̄e

 =

(
0
0

−ēh+ J

)
+

1

2π
ν1,2[f, g]

where ν1,2 is defined as

ν1,2 =

∫ 2π

0

∫ θ

0

sin(τ) cos(θ)dτdθ = −π,

which is the same as (6). Therefore, according to
Lemma 1, the result follows.

We deduced the approximate system given by Equation
(6) that is easier to analyze than the original system (5) as
the following theorem will show. Let us make the following
assumptions on the parameters of the system

B.1 h > 0
B.2 α > 0
B.3 c > 0
B.4 −π2 < φ < π

2 .
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Theorem 4. Under the Assumptions A.1–A.3, B.1–B.4
and sufficiently large ω, the point x∗ is practically globally
uniformly asymptotically stable for the system in Eq. (5).

Proof. Consider the extended system in Equation (6)
and divide the system into two interconnected subsystems
˙̄x = ( ˙̄x1, ˙̄x2)> = f1(x̄, ē) and ˙̄e = f2(x̄, ē).

Taking the Lyapunov function candidate V (x̄) = −J(x̄) +
J(x∗), that is under the Assumptions A.1-A.3 a valid
Lyapunov function, we obtain for the first subsystem

V̇ =−∇x̄1
J ˙̄x1 −∇x̄2

J ˙̄x2

=− cα(∇x̄1
J)2 cos(φ)− cα(∇x̄2

J)2 cos(φ)

− c2J(x̄− eh)∇x̄1J∇x̄2J

+ c2J(x̄− eh)∇x̄1
J∇x̄2

J

− cα∇x̄1
J∇x̄2

J sin(φ) + cα∇x̄2
J∇x1

J sin(φ)

=− cα(∇x̄1J)2 cos(φ)− cα(∇x̄2J)2 cos(φ)

<0 ∀x̄ 6= x∗.

We can conclude that the first part of the approximate
system is globally uniformly asymptotically stable, inde-
pendently of ē.

The subsystem ˙̄e = f2(x̄, ē) is input-to-state stable with
respect to J(x̄) as input.

The feedback connection of globally uniformly asymp-
totically stable system and an input-to-state stable sys-
tem is globally uniformly asymptotically stable. Using
Lemma 2 we conclude that the original system (5) is
practically globally uniformly asymptotically stable, where
x̄(t)→ x∗ and ē→ J(x∗)/hi for t→∞.

3.2 Unicycle Dynamics

+ x

J x 

c

cos  t  sin  t−

Unicycle

v

u x1

x2



s
sh

Fig. 2. Extremum Seeking for the Unicycle Model

Further investigations showed that even more complicated,
nonholonomic systems such as the unicycle model can be
analyzed using Lie brackets. One possibility to do the
feedback is shown in Figure 2. The unicycle model is given
by the equations ẋ1

ẋ2

θ̇

 =

(
u cos θ
u sin θ
v

)
(7)

as usual in the literature.

Lemma 5. Consider the Unicycle Model in Equation (7)
with extremum seeking feedback

u = (J(x)− eh)c
√
ω sin(ωt− φ) + α

√
ω cos(ωt),

where e denotes the state of the filter s
s+h , h > 0, and

v = Ω = const. a constant input.

Consider furthermore the system

˙̄x1 =
1

2
(cα∇x̄1J cos(φ) cos2(Ωt)

+ cα∇x̄2
J cos(φ) cos(Ωt) sin(Ωt)))

˙̄x2 =
1

2
(cα∇x̄2

J cos(φ) sin2(Ωt)

+ cα∇x̄1
J cos(φ) cos(Ωt) sin(Ωt)))

˙̄e =− ēh+ J

(x̄, ē)>|0 =(x, e)>|0.

(8)

For sufficiently large ω, the trajectory of the original
system (7) is bounded by solutions of the reduced Lie
bracket system (8), such that

||(x, e)> − (x̄, ē)>||C[0,2π] ≤ ∆ε,

where ε = 1/ω and ∆ε is a parameter such that
limε→0 ∆ε = 0.

Proof. The proof follows the same procedure as before.
The system (7) with given input is written as an input-
affine system. By calculating the Lie bracket and applying
Lemma 1 the result follows.

Let us make the following assumptions on the parameters

D.1 h > 0,
D.2 α > 0,
D.3 c > 0,
D.4 Ω 6= 0,
D.5 −π2 < φ < π

2 .

Theorem 6. Under the Assumptions A.1–A.3, D.1–D.5,
with inputs u = (J(x)−eh)c

√
ω sinωt+α

√
ω cosωt, v = Ω

and sufficiently large ω, the point x∗ is practically globally
uniformly asymptotically stable for the system in Eq. (7).

Proof. We take the Lyapunov function candidate V (x̄) =
−J(x̄) + J(x∗) that is under the assumptions on J(x̄), a
valid Lyapunov function. The derivative of V along the
trajectories of the first subsystem x̄ yields

V̇ =−∇x̄1
J ˙̄x1 −∇x̄2

J ˙̄x2

=− 1

2
cos(φ)αC(∇x̄1J)2 cos2 Ωt

− 1

2
cos(φ)αC2∇x̄1J∇x̄2J sin Ωt cos Ωt

− 1

2
cos(φ)αC(∇x̄2

J)2 sin2 Ωt

=− 1

2
cos(φ)αC (∇x̄1

J cos Ωt+∇x̄2
J sin Ωt)

2

≤ 0.

This calculation shows that V̇ is only negative semi-
definite. This is due to the fact that the system is time-
varying, and there are singular points in the state-space,
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where ˙̄x = 0, but which are not steady-states for the
system.

Injecting ∇x̄1J cos Ωt +∇x̄2J sin Ωt = 0 into the differen-
tial equation of ˙̄x = f(x̄, t) yields

˙̄x1 =α∇x̄1
JC cos2 Ωt+ α∇x̄1

JC cos Ωt cos Ωt = 0

˙̄x2 =α∇x̄2JC sin2 Ωt+ α∇x̄2JC sin Ωt sin Ωt = 0.

One can deduce that if x̄1 = const. and x̄2 = const. then
∇x̄1

J and ∇x̄1
J are also constant. But as there are no

constant values such that ∇x̄1
J cos Ωt + ∇x̄2

J sin Ωt =
0, ∀t ∈ R+ except ∇x̄1

J = ∇x̄2
J = 0, as one can see

by injecting t = 0 that implies ∇x̄1
J = 0, and t = π

Ω
that leads to ∇x̄2

J = 0. As V (x̄(t)) is monotonically
decreasing and bounded from below, it must go to zero for
t → ∞. Therefore the system approaches the maximum
with t→∞ for all initial conditions.

As before, the same argument for the filter state ē can be
used to prove global uniform asymptotic stability of the
whole system (8) and conclude using Lemma 2 the result
of the theorem.

In the theorem formulation we claim that ω needs to be
sufficiently large, which implies that ω � Ω, as this assures
that there are two different time-scales in the system.
Therefore, it is not necessary to mention this explicitly
as a condition for Theorem 6.

4. SIMULATION RESULTS

To get a better understanding of the proposed method,
we will illustrate our results with the help of simulations.
We also show that the proposed schemes can be used
locally when Assumption A.3 is violated by choosing
appropriate initial conditions such that the extremum
seeking is initialized in the region of attraction of the
extremum point. In this case all the results can be directly
extended for showing local uniform practical asymptotic
stability.

For the objective function, we choose J(x) = e−x
2
1−5x2

2 − 1
that is a function not fulfilling Assumption A.3, since it
approaches −1 as ||x|| → ∞. We compare through simu-
lations the trajectories of the original extremum seeking
system for the single integrator and unicycle models and
the trajectories of their approximative Lie bracket systems,
for ω = 10 and ω = 50.

For the single integrator case, we use the parameters
α = 0.25, c = 1, φ = 0 and h = 1. The trajectories of
the original system given by Eq. (5) and the Lie bracket
system given by Eq. (6) are compared in Fig. 3.

For the unicycle model, we use the parameters α = 0.25,
c = 1, φ = 0, h = 1 and Ω = 1. To obtain a good
approximation of the trajectories, it is necessary to choose
Ω much smaller than ω. But even for larger values of
Ω the stability is assured, as long as ω � Ω. In Fig. 4
the trajectories of the systems (7) and (8) are compared.
Note that the derivative of the Lyapunov function along
the trajectories of the Lie bracket system for the unicycle
model, was only negative semi-definite. This is due to the
fact that the state equations are zero at certain points.
These points are visible as spikes in the trajectories (cf.
Fig. 4) of both, the original and the Lie bracket system,
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0.4

0.6
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x
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Original System

Lie Bracket System

(a) ω = 10

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
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0.2

0.4

0.6

0.8

x1

x
2

Original System

Lie Bracket System

(b) ω = 50

Fig. 3. Single Integrator Extremum Seeking compared to
Lie Bracket Approximation

which demonstrates that the Lie bracket system can be
used to understand the qualitative behavior of the original
one.

Furthermore, higher order terms and couplings in the non-
linear map as well as the dynamics of the vehicle, influence
not only the trajectory of the original system, but also
the trajectory of the corresponding Lie bracket system.
Regarding the equations for the Lie bracket systems, where
one can see very well that the extremum seeking does
not follow only the gradient of the map, but also admits
bias terms that do not vanish even for higher values of
ω. This is the crucial result in the presented analysis
and extends the understanding of the extremum seeking
feedbacks compared to the results of the authors Zhang
et al. (2007a) and Zhang et al. (2007b) who neglected
higher order terms in their approximating system using
pure averaging techniques.

5. CONCLUSIONS AND FUTURE WORK

The presented results showed that the extremum seeking
can be interpreted as the Lie bracket motion because of the
periodic excitation that leads to an unaccessible direction
of the system. The trajectories of the approximated system
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Fig. 4. Unicycle Extremum Seeking compared to Lie
Bracket Approximation

are the limit of the trajectories of the original one, for
ω → ∞. By examining the properties of the approximate
system, one can analyze and understand the extremum
seeking from a completely new viewpoint. We used this
method to prove global practical stability of different two-
dimensional schemes.

We claim that this methodology can be used to ana-
lyze the behavior of more complex systems involving ex-
tremum seeking loops. For example, it is possible to extend
the schemes to multi-dimensional or multi-agent systems,
where, by choosing different frequencies for each agent, it
is possible to decouple the dynamics and treat the stability
in a similar way. Furthermore, we would like to extend the
proposed algorithms in such a way that asymptotic stabil-
ity in the sense of Lyapunov, instead of practical stability,
is achieved. The Lie bracket analysis, especially Lemma 1
allows to introduce time-varying, vanishing gains. For this
purpose it is necessary to find suitable conditions in order
to be able to prove asymptotic stability. The approxima-
tion of the extremum seeking by a Lie bracket system can
be extended to analyze other properties such as obstacle
avoidance or the construction of piecewise constant inputs
instead of sinusoids, which might be more convenient for
certain applications.
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tremum seeking for moderately unstable systems and
for autonomous vehicle target tracking without position
measurements. Automatica, 43, 1832 – 1839.

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

11398


