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Abstract— In this paper, we consider the consensus prob-
lem for a network of nodes with random interactions and
sampled-data control actions. Each node independently samples
its neighbors in a random manner over a directed graph
underlying the information exchange of different nodes. The
relationship between the sampling rate and the achievement of
consensus is studied. We first establish a sufficient condition,
in terms of the inter-sampling interval, such that consensus
in expectation, in mean square, and in almost sure sense
are simultaneously achieved provided a mild connectivity as-
sumption for the underlying graph. Necessary and sufficient
conditions for mean-square consensus are derived in terms of
the spectral radius of the corresponding state transition matrix.
These conditions are then interpreted as the existence of a
critical value on the inter-sampling interval, below which global
mean-square consensus is achieved and above which the system
diverges in mean-square sense for some initial states. Finally, we
establish an upper bound of the inter-sampling interval, below
which almost sure consensus is reached, and a lower bound,
above which almost sure divergence is reached. An numerical
example is given to validate the theoretical results.

I. INTRODUCTION

In the traditional consensus algorithm, each node ex-
changes information with a few neighbors, typically given by
their relative states, and then updates its own state accord-
ing to a weighted average. In the sampled-data consensus
algorithms [1]–[4], the agent dynamics are continuous and
the control input is piecewise continuous. The closed-loop
system is transformed into discrete-time dynamics. In this
paper, we study the sampled-data consensus over random
networks. We consider a network of N nodes indexed in the
set V = {1, 2, . . . ,N}. Each node i holds a value xi(t) ∈ R
for t ∈ [0,∞). The evolution of xi(t) is described by

ẋi(t) = ui(t), (1)

where ui ∈ R is the control input. Each node samples
data from a few neighbors at each sample instant, and then
construct the control input according to a weighted average
of its own state and those of its neighbors. We analyze the
convergence of the consensus algorithm with a sampled-data
controller over independent random networks.

Consensus over random networks has drawn much atten-
tion since communication networks are naturally random.
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The mean-square convergence of consensus algorithm with
independent, identically distributed (i.i.d.) random graphs
was studied in [5], [6]. Probabilistic consensus has also been
investigated in the literature. Almost sure convergence of
consensus algorithms was considered in [7]–[10]. Divergence
in random consensus networks has also been considered.
Almost sure divergence of consensus algorithms was studied
in [11], [12]. Compared to the literature, the main contribu-
tions of this paper are summarized as follows. Necessary and
sufficient conditions for mean-square consensus are derived
in terms of the spectral radius of the corresponding state
transition matrix. These conditions are then interpreted as
critical thresholds on the inter-sampling interval and we
show that they can be computed by a generalized eigenvalue
problem, which can be stated as a quasi-convex optimization
problem. We obtain an upper bound on the inter-sampling
interval below which almost sure convergence is reached, and
a lower bound on the inter-sampling interval above which
almost sure divergence is reached. An extended version of
the results of this paper is available as [13].

The remainder of the paper is organized as follows.
Section II provides the system model and introduces various
consensus notions. Their relations are also discussed. In Sec-
tion III, we present necessary and/or sufficient conditions for
expectation consensus, mean-square consensus, almost sure
consensus/divergence. In Section IV, we give a numerical
example. Some conclusions are drawn in Section V.

Notations: N, C, R and R+ are the sets of nonnegative
integers, complex numbers, real numbers and positive real
numbers, respectively. For x, y ∈ R, x∨y and x∧y stand for
the maximum and minimum of x and y respectively. The set
of n by n positive semi-definite (positive definite) matrices
over the field C is denoted as Sn+ (Sn++). For a matrix X =
[x1 x2 · · · xn] ∈ Rm×n, ‖X‖ represents the spectral norm
of X . vec(X) is the vectorization of X , i.e., vec(X) :=
[x′1, x

′
2, . . . , x

′
n]
′ ∈ Rmn. ⊗ denotes a Kronecker product of

two matrices. If m = n, ρ(X) denotes the spectral radius of
X . For vectorization and Kronecker product, the following
properties are frequently used in this work: i) vec(ABC) =
(C ′⊗A)vec(B); ii) (A⊗B)(C⊗D) = (AC)⊗(BD), where
A, B, C and D are matrices of compatible dimensions. The
notation σ(·) represents the σ-algebra generated by random
variables.

II. SYSTEM MODEL AND PRELIMINARIES

A. Random Networks and Sampling

The directed interaction graph G = (V,E) describes
underlying information exchange. Here E ⊆ V × V is an
arc set and (j, i) ∈ E means there is a (possibly unreliable)
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communication link from node j to node i. The set of
neighbors of node i in the underlying graph G is denoted
as Ni := {j : (j, i) ∈ E}. The Laplacian matrix L := [lij ] ∈
RN×N associated with G is defined as

lij =

{
−1, if i 6= j and (j, i) ∈ E∑
m 6=i 1{(m,i)∈E}, if i = j.

A directed path from node i1 to node il is a sequence of
nodes {i1, . . . , il} such that (ij , ij+1) ∈ E for j = 1, . . . , l−
1. A directed tree is a directed subgraph of G = (V,E) such
that every node has exactly one parent, except a single root
node with no parents. Therefore, there must exist a directed
path from the root to every other node. A directed spanning
tree is a directed tree that contains all the nodes of G.

Let G be the set containing all subgraphs of G and {Gk =
(V,Ek)}k∈N be a sequence of random graphs, in which by
definition each Gk is a random variable taking values in G .
The Laplacian matrix L(k) := [lij(k)] ∈ RN×N associated
with Gk is defined as

lij(k) =

{
−1, if i 6= j and (j, i) ∈ Ek∑
m 6=i 1{(m,i)∈Ek}, if i = j.

The set of neighbors of node i in Gk is denoted as
Ni(k) := {j : (j, i) ∈ Ek}. Let the triple (G N,F ,P) denote
the probability space capturing the randomness contained in
the random graph sequence, where F is the set of all subsets
of G N. Define a filtration Fk = σ(G0, . . . ,Gk) for k ∈ N.

We define a sequence of node sampling instants as 0 =
t0 < · · · < tk < tk+1 < . . . with τk = tk+1 − tk represent-
ing the inter-sampling interval. The sampled-data consensus
scheme associated with the random graph sequence {Gk}k∈N
is given by

ui(t) =
∑

j∈Ni(k)

[
xj(tk)− xi(tk)

]
, t ∈ [tk, tk+1). (2)

The closed-loop system can then be written in the compact
form

x(tk+1) =
[
I − τkL(k)

]
x(tk) := W (k)x(tk) (3)

with W (k) := [wij(k)].

B. Consensus Metrics
Define xmax(tk) := maxi∈V xi(tk) and xmin(tk) :=

mini∈V xi(tk) and the agreement measure X(k) :=
xmax(tk) − xmin(tk). We have the following consensus
metrics.

Definition 1: (i) Algorithm (3) achieves (global) con-
sensus in expectation if for any initial state x(t0) ∈ RN

there holds limk→∞ E[X(k)] = 0.
(ii) Algorithm (3) achieves (global) consensus in mean

square if for any initial state x(t0) ∈ RN there holds
limk→∞ E[X2(k)] = 0.

(iii) Algorithm (3) achieves (global) consensus almost surely
if for any initial state x(t0) ∈ RN there holds
P (limk→∞ X(k) = 0) = 1.

(iv) Algorithm (3) diverges almost surely if there holds
P
(

lim supk→∞ X(k) = ∞
)

= 1 for any initial state
x(t0) ∈ RN except for x(t0) ⊥ 1.

Define the difference between the state x(tk) and its average
as d(k) := x(tk)− 1

N11
′x(tk). Since

X(k) = xmax(k)− 1

N
1′x(tk)−

[
xmin(tk)− 1

N
1′x(tk)

]
≤
∣∣∣∣xmax(tk)− 1

N
1′x(tk)

∣∣∣∣+

∣∣∣∣xmin(tk)− 1

N
1′x(tk)

∣∣∣∣
≤

√√√√2

N∑
i=1

[
xi(tk)− 1

N
1′x(tk)

]2
=
√

2 ‖d(k)‖ (4)

and

X(k) = N−1/2
√

N(xmax(tk)− xmin(tk))2

≥ N−1/2

√√√√ N∑
i=1

[
xi(tk)− 1

N
1′x(tk)

]2
= N−1/2 ‖d(k)‖, (5)

limk→∞ E[X2(k)] = 0 is equivalent to limk→∞ E‖d(k)‖2 =
0.

The following lemma suggests that if the inter-sampling
interval is small enough, the consensus notations in Defini-
tion 1 are equivalent. The proof can be found in [13].

Lemma 1: Suppose τk ∈
(
0, (N− 1)−1

]
for all k ∈ N.

Then expectation consensus, mean-square consensus, and
almost sure consensus are all equivalent under Algorithm
(3).

Remark 1: In [14], the equivalence of Lp consensus,
consensus in probability, and almost sure consensus was
obtained over a random network generated by i.i.d. stochastic
matrices. In Lemma 1, we show that this equivalence holds
regardless of the type of random process, by which the row
stochastic matrices are generated.

III. SAMPLING RATE AND CONSENSUS METRICS OVER
INDEPENDENT RANDOM NETWORKS

In this section, we investigate sampled-data consensus
when the random graph Gk is obtained by each node
independently sampling its neighbors in a random manner
over G. Regarding the connectivity of the underlying graph
G, we adopt the following assumption:
(A1) The underlying graph G has a directed spanning tree.
We also impose the following assumption.
(A2) The random variables 1{(j,i)∈Ek}, (j, i) ∈ E, k ∈ N,

are i.i.d. Bernoulli with mean q > 0.
In order to simplify the analysis, we also make the following
assumption.
(A3) Let τk = τ∗ for all k ∈ N with τ∗ > 0.

When each node samples its neighbors as Assump-
tion (A2) describes, {L(k)}k∈N are i.i.d. random variables,
whose randomness originates from the primitive random
variables 1{(j,i)∈Ek}’s. We denote the sample space of L(k)
by L := {L(1), L(2), . . . , L(M)} where M = |G | and
L(l) :=

[
l
(l)
ij

]
∈ RN×N is the Laplacian matrix associated

with a subgraph G(l) ∈ G . By counting how many edges are
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present in Gk and how many are absent from Gk respectively,
the distribution of L(k) is computed by

P(L(k) = L(i)) = qTr(L
(i))(1− q)Tr(L−L

(i)) := πi (6)

for i = 1, . . . ,M. When τk = τ∗, W (k) inherits the same
distribution as L(k) from Gk. Then, we denote W (l) =:
I − τ∗L(l).

A. Conjunction of Various Consensus Metrics

When the inter-sampling interval is small enough (to be
precise τ∗ < (N − 1)−1), each node recursively updates
its state as a convex combination of the previous states of
its own and its neighbors. Under Assumptions (A1), (A2),
and (A3), we show in the following theorem that, as long
as G has a directed spanning tree, Algorithm (3) achieves
consensus, simultaneously in expectation, in mean square,
and in almost sure sense.

Theorem 1: Let Assumptions (A1), (A2), and (A3) hold.
Then expectation consensus, mean-square consensus, and
almost sure consensus are achieved under Algorithm (3) if
τ∗ ∈

(
0, (N− 1)−1

)
.

Proof: By Lemma 1, it suffices to show that Algo-
rithm (3) achieves consensus in expectation.

Fix a directed spanning tree GT of graph G and a sampling
time tk. Let the root of GT be i1 ∈ V, and define a set of
nodes M1 := {i1}. Denote η := (τ∗)∧(1−(N−1)τ∗). Then,
there holds η > 0 when τ∗ ∈

(
0, (N − 1)−1

)
. We assume

xi1(tk) ≤ 1/2(xmax(tk)+xmin(tk)) while the other case for
xi1(tk) > 1/2(xmax(tk) + xmin(tk)) will be discussed later.

Choose a node i2 ∈ V such that i2 6∈ M1 and (i1, i2) ∈
GT . Define M2 := M1 ∪ {i2}. Consider the event E2 :=
{(i1, i2) ∈ Ek+1}. When E2 happens, xi2(tk+1) evolves as
follows:

xi2(tk+1) = wi2i1(k)xi1(tk) +
∑
j 6=i1

wi2j(k)xj(tk)

≤ 1

2
wi2i1(k)(xmin(tk) + xmax(tk))

+ (1− wi2i1(k))xmax(tk)

≤ 1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk),

where the last inequality holds because η ≤ wi2i1(k). Since
η ≤ wi1i1(k), we show that xi1(tk+1) is bounded by

xi1(tk+1) ≤ 1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk).

At time tk+2,

xi2(tk+2) = wi2i2(k + 1)xi2(tk+1) +
∑
j 6=i1

wi2j(k + 1)xj(tk+1)

≤ wi2i2(k + 1)

[
1

2
ηxmin(tk) + (1− 1

2
η)xmax(tk)

]
+
(
1− wi2i2(k + 1)

)
xmax(tk+1)

≤ 1

2
η2xmin(tk) + (1− 1

2
η2)xmax(tk),

where the last inequality is due to xmax(tk+1) ≤ xmax(tk)
and η ≤ wi2i2(k + 1). The same is true of node i1, i.e.,

xi1(tk+2) ≤ 1
2η

2xmin(tk) + (1 − η2)xmax(tk). Recursively,
we see that xi1(tk+n) ≤ 1

2η
nxmin(tk) + (1− 1

2η
n)xmax(tk)

and xi2(tk+n) ≤ 1
2η
nxmin(tk) + (1− 1

2η
n)xmax(tk).

We choose nodes i1, . . . , iN in sequel and accordingly
define M1, . . . ,MN and E2, . . . ,EN. Consider E2, . . . ,EN

sequentially happen, then xim(tk+n) ≤ 1
2η
nxmin(tk) + (1−

1
2η
n)xmax(tk) holds for all 1 ≤ m ≤ N and n ≥ N − 1,

which entails

xmax(tk+N−1) = max
i
xi(tk+N−1)

≤ 1

2
ηN−1xmin(tk) + (1− 1

2
ηN−1)xmax(tk).

In this case, the relationship between X(tk+N−1) and X(k)
is given by

X(k + N− 1)

= xmax(tk+N−1)− xmin(tk+N−1)

≤ 1

2
ηN−1xmin(tk) + (1− 1

2
ηN−1)xmax(tk)− xmin(tk)

=

(
1− 1

2
ηN−1

)
X(k). (7)

If xi1(tk) > 1/2 (xmax(tk) + xmin(tk)) is assumed, a
symmetric analysis leads to that, when E2, . . . ,EN sequen-
tially occur, xmin(tk+N−1) ≥ 1

2η
N−1xmax(tk) + (1 −

1
2η

N−1)xmin(tk). Then we obtain exactly the same result
as (7). Therefore, the inequality (7) holds irrespective of the
state of xi1(tk).

In addition, we know that probability that the events
E2, . . . ,EN sequentially occur is

P
(

1∩N
i=2Ei

= 1
)

=

N∏
i=2

P(1Ei
= 1) ≥ qN−1.

Combining all the above analysis,

E[X(k + N− 1)]

≤ qN−1
(

1− 1

2
ηN−1

)
E[X(k)] + (1− qN−1)E[X(k)]

=

(
1− 1

2
(qη)N−1

)
E[X(k)]. (8)

Since 0 < qη < 1, then limk→∞ E[X(k)] = 0, which
completes the proof.

B. The Mean-square Consensus Threshold

In this part, we focus on the relationship between sampling
rate and mean-square consensus. The key step to our main
result is the following proposition. Due to limited space,
readers can refer to [13] for the proof.

Proposition 1: Let Assumptions (A1), (A2), and (A3)
hold. Then the following statements are equivalent:

(i) Algorithm (3) achieves mean-square consensus;
(ii) There holds ρ

(
E[W (0)⊗W (0)](J ⊗ J)

)
< 1, where

J := I − 1

N
11′; (9)
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(iii) There exists a matrix S > 0 such that

φ(S) :=

M∑
i=1

πiJW
(i)JSJ(W (i))′J < S, (10)

where πi is defined in (6).
Theorem 2: Let Assumptions (A1), (A2), and (A3) hold.

Then Algorithm (3) achieves mean-square consensus if and
only if τ∗ ≤ τ†, where τ† is given by the following quasi-
convex optimization problem:

arg minτ − τ
subject to Y,Z,Ψ > 0 (11a)

Y − τZ ≥ 0, (11b)

where Ψ is defined in (12).
Proof: Necessity: Without loss of generality, choose

for (v1, . . . , vN) an orthonormal basis of RN with v1 =
1
N1. Then, any vector 0 6= x ∈ Rn can be expressed
as x =

∑N
i=1 aivi with coefficients a1, . . . , aN not all 0.

We have x′φ(S)x =
(∑N

i=2 aivi

)′
φ(S)

(∑N
i=2 aivi

)
and

x′(JSJ + 11′)x =
(∑N

i=2 aivi

)′
S
(∑N

i=2 aivi

)
+ a21.

Since a1, . . . , aN are not all 0 and φ(S) < S, there holds∑M
i=1 πiJW

(i)JSJ(W (i))′J < JSJ + 11′. Finally, let
Z = S and Y = τ∗S. By Schur complement lemma, we
see that (12) and (11b) hold. In addition, the optimization is
a generalized eigenvalue problem, which is quasiconvex [15].

Sufficiency: For any given τ∗ ≤ τ†, there always exist Y
and Z such that (12) and (11b) hold. According to Schur
complement lemma, (12) is equivalent to

JZJ+11′−
M∑
i=1

πi(JZ−JL(i)JY )Z−1(JZ−JL(i)JY )∗ > 0,

which gives

JZJ + 11′

>
M∑
i=1

πi(JZ − JL(i)JY )Z−1(JZ − JL(i)JY )∗

≥
M∑
i=1

πi

[
τ∗JL

(i)JY J(L(i))′J−JY J(L(i))′J−JL(i)JY J
]

+ JZJ

≥ JZJ − τ∗−1JY J + τ∗
−1φ(Y ), (13)

where the second inequality holds by substituting Z−1 with
τ∗Y

−1 in accordance with (11b). Therefore, it leads to
JY J + τ∗11

′ > φ(Y ). Letting S = JY J + τ∗11
′, we have

φ(Y ) =

M∑
i=1

πiJW
(i)J(JY J + τ∗11

′)J(W (i))′J = φ(S)

and S > φ(S). In addition, the positive definiteness of S can
be seen from the following lemma.

Lemma 2: There holds JMJ + ε11′ > 0 for all M > 0
and ε > 0, where J is defined in (9).

Proof: Choose for (v1, . . . , vN) an orthonormal basis
with v1 = 1

N1. For any nonzero vector x =
∑N
i=1 aivi,

x′(JMJ + ε11′)x =
(∑N

i=2 aivi

)′
M
(∑N

i=2 aivi

)
+ εa21.

Since a1, . . . , aN are not all 0 and M > 0, we have
x′(JMJ + ε11′)x > 0.
By Proposition 1, Algorithm (3) achieves mean-square con-
sensus, which completes the proof.

C. Almost Sure Consensus/Divergence

In this part, we focus on the impact of sampling intervals
on almost sure consensus and almost sure divergence of
Algorithm (3).

Theorem 3: Let Assumptions (A1), (A2), and (A3) hold.

(i) If τ∗ ≤ τ† with τ† given in Theorem 2, Algorithm (3)
achieves almost sure consensus.

(ii) If τ∗ > τ\, where τ\ ∈ R+ is given by

τ\ :=

inf

{
τ : log

2N(τ − 1)

N− 1
>

(1− q) log(2N)

q∗q
, s(τ) ≥ 0

}
with q∗ := min{(1 − q)|Ni|+|Nj | : (j, i) ∈ E} and
s(τ) := min

{
λmin

(
τ(L(i))′JL(i)−JL(i)− (L(i))′J

)
:

L(i) ∈ L
}

, Algorithm (3) diverges almost surely for
any initial state x(t0) ∈ RN except x(t0) ⊥ 1.
Proof: We start by presenting a supporting lemma.

Lemma 3 ( [16, Lemma (5.6.10)]): Let A ∈ Cn×n and
ε > 0 be given. There is a matrix norm ‖ · ‖† such that
ρ(A) ≤ ‖A‖† ≤ ρ(A) + ε.

Proof of (i): Note that

E[‖d(k)‖2]=Tr (E[d(k)d(k)∗])≤N1/2
∥∥vec (E[d(k)d(k)∗])

∥∥.
The inequality results from the fact that, for any X :=
[xij ] ∈ Sn+, ‖vec(X)‖2 =

∑n
i=1

∑n
j=1 x

2
ij ≥

∑n
i=1 x

2
ii ≥

1
n (
∑n
i=1 xii)

2 = 1
n (Tr(X))2. Moreover,

vec
(
E[d(k)d(k)∗]

)
(14)

= (J ⊗ J)E[W (0)⊗W (0)] vec (E[d(k − 1)d(k − 1)∗])

=
(

(J ⊗ J)E[W (0)⊗W (0)]
)k

vec (d(0)d(0)∗)

=
(

(J ⊗ J)E[W (0)⊗W (0)]
)k

(J ⊗ J) vec (x(t0)x(t0)∗)

= (J ⊗ J)
(
E[W (0)⊗W (0)](J ⊗ J)

)k
vec (x(t0)x(t0)∗) ,

If τ∗ < τ† or equivalently ρ
(
E[W (0)⊗W (0)](J ⊗ J)

)
< 1

by Theorem 2, there exists a matrix norm ‖ · ‖† such that∥∥E[W (0)⊗W (0)](J⊗J)
∥∥
†< λ < 1 by Lemma 3. Moreover,

by the equivalence of norms on a finite-dimensional vector
space, for the two norms ‖ · ‖ and ‖ · ‖†, there exists a
real number c ∈ R+ implying ‖X‖ ≤ c‖X‖† for all
X ∈ Rn×n. From the forgoing observations, (14) and the
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Ψ :=


JZJ + 11′

√
π1

(
JZ − JL(1)JY

)
. . .

√
πM(JZ − JL(M)JY )

∗ Z . . . 0
...

...
. . .

...
∗ ∗ . . . Z

 (12)

with ∗’s standing for entries that are the Hermitian conjugates of entries in the upper triangular part.

submultiplicativity of a matrix norm,

E[‖d(k)‖2]

≤N1/2

∥∥∥∥(J⊗J)
(
E[W (0)⊗W (0)](J⊗J)

)k
vec (x(t0)x(t0)∗)

∥∥∥∥
≤N1/2c

∥∥∥∥(E[W (0)⊗W (0)](J ⊗ J)
)k∥∥∥∥

†

∥∥vec (x(t0)x(t0)∗)
∥∥

<cλkN1/2
∥∥vec (x(t0)x(t0)∗)

∥∥.
Therefore,

∑∞
k=0 E[‖d(k)‖2] < c(1 −

λ)−1N1/2
∥∥vec (x(t0)x(t0)∗)

∥∥ < ∞, together with
Markov’s inequality resulting in that

∑∞
k=0 P

(
‖d(k)‖ >

δ
)
≤ (1/δ2)

∑∞
k=0 E[‖d(k)‖2] < ∞ holds for any δ > 0.

According to the Borel-Cantelli lemma, limk→∞ ‖d(k)‖ = 0
almost surely for any initial state x(t0) ∈ RN. Then, the
result follows from (4) and (5).
Proof of (ii): The rest of the proof consists of three steps.
Step 1. First of all, observe that for all k ∈ N and ω ∈ G N

‖d(k + 1, ω)‖2 =d(k, ω)∗W (k, ω)′JJW (k, ω)d(k, ω)

≥ min
‖v‖=1,
v⊥1

∥∥∥v∗W (k, ω)′JW (k, ω)v
∥∥∥ ‖d(k, ω)‖2,

where the inequality holds because d(k, ω) ⊥ 1. If
λmin

(
W (k, ω)′JW (k, ω) + 1

N11
′
)
≥ 1 for any k ∈ N and

ω ∈ G N, then min ‖v‖=1,
v⊥1

∥∥∥v∗W (k, ω)′JW (k, ω)v
∥∥∥ ≥ 1,

which together with (4) and (5) implies that
P
(
X2(k) ≥ X2(k−1)

2N

)
= 1 holds for all k ∈ N. Therefore,

X(k) > 0 for all k ∈ N provided that X(0) > 0. The random
variables ξ(k) := X2(k+1)

X2(k) , k ∈ N. are well defined.

One condition guaranteeing λmin

(
W (k, ω)′JW (k, ω) +

1
N11

′
)
≥ 1 is established as follows. For any L(i) ∈ L ,

λmin

(
W (k, ω)′JW (k, ω) +

1

N
11′
)

=τλmin

(
τ(L(i))′JL(i) − JL(i) − (L(i))′J

)
+ 1.

Introduce

τ] = inf
{
τ : λmin

(
τ(L(i))′JL(i) − JL(i) − (L(i))′J

)
≥ 0,

∀L(i) ∈ L
}
. (15)

A basic but vital observation is that τ] < ∞, which makes
τ] well defined. According to Weyl Theorem (Theorem 4.3.1
in [16]), λmin

(
τ(L(i))′JL(i)−JL(i)−(L(i))′J

)
≥ 0 when-

ever τ > τ] for each L(i) ∈ L . Recalling that L(k, ω) ∈ L ,

we see that τ > τ] guarantees λmin

(
W (k, ω)′JW (k, ω) +

1
N11

′
)
≥ 1 for all k ∈ N and ω ∈ G N .

Step 2. First, we propose the following claim, which can be
proved by contradiction.

Claim. There always exist two (random) nodes i, j ∈ V
at each time k such that (j, i) ∈ E and |xi(tk) − xj(tk)| ≥
1

N−1X(k).
In view of this claim, for each ω ∈ G N, we choose two

nodes ik(ω), jk(ω) ∈ V at time k such that (jk(ω), ik(ω)) ∈
E and |xik(ω)(tk) − xjk(ω)(tk)| ≥ 1

N−1X(k, ω). The de-
pendence of the node selections on a specific sample path
gives rise to a challenge in the subsequent analysis. To get
rid of this, we introduce auxiliary random variables. Let
{zk}k∈N be a sequence of i.i.d. random variables defined
on
(
(0, 1)N, (B(0, 1))N, l

)
, where B(0, 1) denotes the Borel

algebra on (0, 1), with zk(ζ) = ζk for all ζ ∈ (0, 1)N

and each zk uniformly distributed in (0, 1). Let z0, z1, . . .
and G0,G1, . . . be independent. Formally, we are allowed
to define a product probability space (S ,S, µ) where S =
G N × (0, 1)N, S is the σ-algebra generated by

{
A × B :

A ∈ F ,B ∈ (B(0, 1))N
}

, and µ is the probability mea-
sure satisfying µ(A × B) = P(A )l (B). Define Sk =
σ ((G0, z0), . . . , (Gk, zk)). Introduce a sequence of events
associated with ik(ω), jk(ω) and zk:

D(k) =
{
∪ω∈G N (ω ×Bk(ω)) :

Nik(ω)(k, ω) = {jk(ω)},Njk(ω)(k, ω) = ∅
}

with

Bk(ω)=
{
ζ ∈ (0, 1)N : zk(ζ) < q∗/(1−q)|Nik(ω)|+|Njk(ω)|

}
.

Since ik(ω), jk(ω) ∈ Fk−1, one can verify D(k) ∈ Sk. If
τ∗ > 1, for all (ω, ζ) ∈ D(k) and k ∈ N,

X(k + 1, ω) ≥|xik(ω)(tk+1)− xjk(ω)(tk+1)|
=(τ∗ − 1)|xik(ω)(tk)− xjk(ω)(tk)|

≥τ∗ − 1

N− 1
X(k, ω). (16)

Direct calculation yields µ((ω, ζ) ∈ D(k)) = q∗q
1−q .

Step 3. Now we define random variable M(k) = τ∗−1
N−1

if (ω, ζ) ∈ D(k) and 1
2N otherwise, which together

with (16) leads to µ
(
ξk = X2(k+1)

X2(k) ≥M2(k)
)

= 1. There-

fore, µ
(∏t

k=0 ξk = X2(t+1)
X2(0) ≥

∏t
k=0 M

2(k)
)

= 1, which
gives

µ

(
logX(t+ 1)− logX(0) ≥

t∑
k=0

logM(k)

)
= 1. (17)
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Since each node samples the neighbors independently, where
the “independence” is in both spatial and temporal sense
(Assumption (A2)), therefore, for any k ∈ N,

µ ((ω, ζ) ∈ D(k) | Sk−1) =
p∗p

1− p
= µ ((ω, ζ) ∈ D(k)) ,

indicating that M(k)’s are independent random variables for
D(0), . . . ,D(k − 1) ∈ Sk−1. By induction, we eventually
have {M(k)}k∈N are i.i.d. with the mean computed as

E[logM(k)] =
q∗q

1− q
log

τ∗ − 1

N− 1
+(1− q∗q

1− q
) log

1

2N
:= m(τ∗).

Additionally, as M(k)’s have uniformly bounded covari-
ances, Kolmogorov’s strong law of large numbers [17] shows
that µ

(
limt→∞

1
t

∑t
k=0 logM(k) = m(τ∗)

)
= 1,which

together with (17) implies that, when m(τ∗) > 0,
P (lim infk→∞ X(k) =∞) = 1. Notice that m(τ∗) is in-
creasing in τ∗. Defining τ[ = inf {τ : m(τ∗) > 0} and
choosing τ∗ > τ] ∨ τ[ := τ\, the conclusion follows.

𝑣1 𝑣2 

𝑣3 𝑣4 

Fig. 1: The underlying graph G consisting of four nodes.

IV. SIMULATION RESULTS

In this section, we use a numerical example to illus-
trate the existence of the threshold on τ∗, which de-
cides the mean-square convergence or divergence (see The-
orem 2). We consider a network consisting of N =
4 nodes indexed by V = {v1, v2, v3, v4}. Let E ={

(v1, v2), (v2, v3), (v3, v2), (v3, v4)
}

. The underlying graph
G = (V,E) is illustrated in Figure 1. It has a directed
spanning tree. The random variables 1{(j,i)∈Ek}, (j, i) ∈ E
and k ∈ N, are i.i.d. Bernoulli ones with P

(
(j, i) ∈ Ek

)
=

0.5. We choose a uniform inter-sampling interval, i.e., τk =
τ∗ for all k ∈ N. According to Theorem 2, we compute
that Algorithm (3) achieves consensus in mean square if and
only if τ∗ ≤ 1.07. We next illustrate this conclusion using
simulations. Choose x(t0) = [5 2 1 1]′, run 106 Monte Carlo
simulations, and then use the average as an approximation
of E[X2(k)]. Figure 2 illustrates the convergence/divergence
behaviors of E[X2(k)] for different τ∗’s, validating the result
of Theorem 2.

V. CONCLUSIONS

In this paper, we have investigated the relationship be-
tween sampling rate and sampled-data consensus over in-
dependent random networks. Three types of consensus were
shown to be simultaneously achieved if the underlying graph
contains a directed spanning tree and the inter-sampling in-
terval is small enough. Then, necessary and sufficient condi-
tions for mean-square consensus were derived in terms of the
inter-sampling interval. Sufficient conditions for almost sure
convergence/divergence were also provided, respectively.
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Fig. 2: The evolutions of E[X2(k)] under different sampling rates
over an independent random network with q = 0.5. In the upper
figure, limk→∞ E[X2(k)] = 0 when τ∗ = 1. In the bottom figure,
limk→∞ E[X2(k)] =∞ when τ∗ = 1.14.
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