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Randomized Consensus with Attractive and Repulsive Links

Guodong Shi, Alexandre Proutiere, Mikael Johansson, and Karl H. Johansson

Abstract— We study convergence properties of a randomized
consensus algorithm over a graph with both attractive and
repulsive links. At each time instant, a node is randomly selected
to interact with a random neighbor. Depending on if the link
between the two nodes belongs to a given subgraph of attractive
or repulsive links, the node update follows a standard attractive
weighted average or a repulsive weighted average, respectively.
The repulsive update has the opposite sign of the standard
consensus update. In this way, it counteracts the consensus
formation and can be seen as a model of link faults or malicious
attacks in a communication network, or the impact of trust and
antagonism in a social network. Various probabilistic conver-
gence and divergence conditions are established. A threshold
condition for the strength of the repulsive action is given for
convergence in expectation: when the repulsive weight crosses
this threshold value, the algorithm transits from convergence
to divergence. An explicit value of the threshold is derived for
classes of attractive and repulsive graphs. The results show
that a single repulsive link can sometimes drastically change
the behavior of the consensus algorithm. They also explicitly
show how the robustness of the consensus algorithm depends
on the size and other properties of the graphs.

Keywords: random networks, consensus algorithms, gos-

siping, sensor networks, opinion dynamics, social networks

I. INTRODUCTION

Distributed consensus algorithms have been serving as
basic models of information dissemination and aggregation
over complex networks throughout a wide area of sciences
including social sciences, engineering, and biology, e.g.,
opinion dynamics over social networks [7]-[11], parallel
computation and data fusion for sensor networks [12]-[15],
formation control in robotic networks [16]-[19], and flocking
of animal groups [20], [21].

In a typical consensus algorithm, a node collects informa-
tion from a subset of nodes in the network called neighbors
and updates its state following an “attractive” rule, a convex
combination of its own and the neighbors’ previous states.
The neighbor relations and communication are often random,
which lead to random consensus algorithms. The conver-
gence of random consensus algorithms have been extensively
studied in the literature [22]- [38]. A great advantage for
distributed consensus seeking lies in the fact that it is robust
with respect to link failures and communication noise [30],
[32]-[36]. Moreover, due to the attractive update, different
probabilistic convergence concepts often coincide for random
consensus algorithms [28].
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Few works have discussed the influence of misbehaved
links in the network on the consensus formation despite the
many motivations for doing so. In social networks, signed
graphs were introduced for formulating the tensions and con-
flicts between individuals. Links representing interpersonal
connection were associated with a sign which indicates if
the mutual relationship is friendship or hostility [44]-[46].
In sensor networks, the communication links can be taken by
attackers so that data can be injected to oppose consensus
[42]. In collaborative networks, malicious users may exist
whose objective is to damage the network and increase the
cost incurred by the legitimate users [43]. Some recent efforts
regarding the robustness of consensus under certain structural
uncertainty include [47], [48]. In [47], a class of antagonistic
interactions modeled as negative weights in the update law
were studied in a continuous-time setting, and necessary and
sufficient conditions were derived for bipartite consensus. In
[48], a randomized model was formulated where each node
executes an attraction, repulsion or neglect update at random
when meeting other nodes.

In this paper, we study a random consensus model with
both attractive and repulsive links in the underlying com-
munication network. Contrary to the model in [48], where
attractive and repulsive updates are selected at random, the
model in this paper allows the update type to be selected
based on predetermined inter-node relations. We use a gos-
siping model to define how nodes are selected for updating
[36], [39]-[41]. In each time slot, a random node is selected
to interact with a random neighbor. The node updates its
state following standard attractive weighted average or re-
pulsive weighted average, determined by whether the link is
attractive or repulsive.

We establish various conditions for convergence or diver-
gence in expectation, in mean square, and almost surely. In
contrast to the standard consensus model without repulsive
updates, some fundamental differences show up in these
probabilistic modes. We show that under mild assumptions
there is a threshold value for the strength of the repulsive
action for which the convergence in expectation changes:
when the repulsive weight crosses this threshold, the ran-
domized consensus algorithm transits from convergence to
divergence. The explicit value of the threshold is derived for
classes of attractive and repulsive graphs. We also establish
a no-survivor theorem for almost sure divergence, which
indicates that a single repulsive link can drastically change
the behavior of the overall network.

The paper is organized as follows. Section II introduces
the network model and defines the problem of interest. Sec-
tion III discusses convergence and divergence in expectation
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and shows that there is a threshold value for phase transition.
Example graphs are studied and explicit threshold values are
derived. Sections IV and V present mean-square and almost
sure convergence and divergence conditions, respectively.
Finally concluding remarks are given in Section VI

II. PROBLEM DEFINITION

In this section, we present the considered network model
and define the problem of interest. We first recall some basic
definitions from graph theory [3] and stochastic matrices [1].
A directed graph (digraph) G = (V, &) consists of a finite
set V ={1,...,n} of nodes and an arc set £ CV x V. An
element e = (4,j) € £ is an arc from node i € V to j € V.
A digraph G is bidirectional if for every two nodes 4 and 7,
(i,7) € € if and only if (j,4) € £. A finite square matrix
M = [m;;] € R"*™ is called stochastic if m;; > 0 for all ¢, j
and }_,m;; = 1 for all i. A stochastic matrix M is doubly
stochastic if also M7 is stochastic. Let P = [p;;] € R™*"
be a matrix with nonnegative entries. We can associate a
unique digraph Gp = (V,Ep) with P on node set V such
that (j,4) € Ep if and only if p;; > 0. We call Gp the
induced graph of P.

A. Node Pair Selection

Consider a network with node set V = {1,...,n}, n >
3. Let the digraph Gy = (V,&)) denote the underlying
graph of the considered network. The underlying graph
indicates potential interactions between nodes. We use the
asynchronous time model introduced in [41] to describe node
interactions. Each node meets other nodes at independent
time instances defined by a rate-one Poisson process. This
is to say, the inter-meeting times at each node follows a
rate-one exponential distribution. Without loss of generality,
we can assume that at most one node is active at any given
instance. Let x;(k) € R denote the state (value) of node i at
the k£’th meeting slot among all the nodes.

Node interactions are characterized by an n X n matrix
P = [p;;], where p;; > 0 forall 4,5 =1,...,n and p;; >0
if and only if (j,7) € &. We assume P to be a stochastic
matrix. Without loss of generality we suppose p;; = 0 for all
i. In other words, the underlying graph G the induced graph
of the matrix P. The meeting process is defined as follows.

Definition 1 (Node Pair Selection): Independent of time
and node state, at time k > 0,

(i) A node i € V is drawn with probability 1/n;
(ii) Node ¢ picks node j with probability p;;.
In this way, we say arc (j,4) is selected.

B. Attractive and Repulsive Graphs

We assign a partition of the underlying graph G, into
two disjoint subgraphs, G, and Gi.p,, namely, the attractive
graph and the repulsive graph. To be precise, Gaty = (V, Eatt)
and Grep = (V,&ep) are two graphs over node set V
satisfying Eape N Erep = 0 and Eupy U Erep = &p. Under
this graph partition the node pair selection matrix P can be
naturally written as P = Py, + Prep, for which G,y is the
induced graph of P,, and G, is the induced graph of Piep.

Suppose arc (j,14) is selected at time k. Node j keeps its
previous state, and node ¢ updates its state following the rule:

(1) (Attraction) If (j,1) € Eatt, node 7 updates as a weighted
average with j:
where 0 < ap < 1.

(i) (Repulsion) If (j,i) € &pep, node ¢ updates as a
weighted average with j, but with a negative coefficient:

zi(k+1) = (L+ B)xi(k) — Brz;(k), ()

where 5, > 0.

C. Problem of Interest

We introduce the following definition.
Definition 2: (i) Consensus convergence for initial value
29 € R™ is achieved

o in expectation if limy_o |E[2;(k) — 2;(k)]| = 0 for
all 7 and j;

o in mean square if limy_,oc E[z;(k) — xj(k)]z = 0 for
all ¢ and j;

o almost surely if P (limj_,o |z;(k) — z;(k)] = 0) =1
for all 7 and j.

(ii) Consensus divergence for initial value z° € R™ is
achieved

e in expectation if limsupy_, maxi)j’E[xi(k‘) -

zj(k)]| = oo:
o in mean square if limsup,_,. max;;E[z;(k) —
2
zj(k)]" = oo
o almost  surely if for all M > 0,

P (limsupy,_, o max; j |z;(k) — z;(k)| > M) = 1.
Global consensus convergence in expectation, in mean
square, and almost surely are defined when the convergence
holds for all z° in each of the three cases.

III. CONVERGENCE VS. DIVERGENCE IN EXPECTATION

The considered randomized algorithm can be expressed as
z(k+1) = W(k)x(k), (3)
where W (k) is the random matrix satisfying
P(Wk) =TI — arei(e; — ej)T) = DU (i) € Eane

P(W(k) = I+ Breile: — )T ) = 22, (4,i) € &
“

with e,,, = (0...010...0)T denoting the n x 1 unit vector
whose m’th component is 1.

Denote Datt = dlag(d1 .. dn) YVlth Cé = Z;’L:l[]?att]’ij'
Denote also Dye, = diag(di...d,) with d; =
Z?;l[Prep}i]W Define Latt = Dagt — Pagty and Lrep =
Dy ep — Prep- Then L, and Ly, represent the (weighted)
Laplacian matrices of the attractive graph G,y and repulsive
graph G,p, respective. After some simple algebra it can be
shown that

Qg Br

EW(]’C) == I - 7Latt + 7Lrep = Wk. (5)
n n
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A. General Conditions

Introduce y;(k) = z;(k) — L > | @;(k). Then y(k) =
(1 (k) ... yn (k)T = @(k) — Loa(k) with 1 = (1...1)7
denoting the n x 1 vector each component of which is 1.
Then it is straightforward to see that consensus convergence
in expectation is achieved if and only if limy_, o, Ey(k) = 0,
and consensus divergence in expectation is achieved if and
only if lim sup,,_, ’Ey(k)| = 0.

Let A\nax(A) denote the largest eigenvalue for a symmetric
matrix A. We have the following result.

Proposition 1: Global consensus convergence in expecta-
tion is achieved if [T Amax (Wi (I — L)) = 0,
Proof. Since EW (k) is a stochastic matrix and the node pair
selection is independent of the node states, we obtain

Ey(k+1) = (I — 117 /n)WEx(k)

= (I - 117 /n)W,Ey(k) + (I — 117 /n)W, 117 /nEx(k)
= (I — 11" /n)WiEy(k) + (I — 117 /n)117 /nEx (k)

= (I =117 /n)WiEy(k). (6)

Thus, noticing that (I — %)2 =(I—- 15 ), we have

|Ey(k + 1)| = [(I — 117 /n)WEy(k)|
< (7 =117 /n)Wi||2| Ey(k) |

= P 0= D o), )

where ||-||2 denotes the spectral norm. The desired conclusion
follows. ]
When P,y and P, are symmetric, an upper bound for

\/ Amax (WkT (I- %)Wk) can be easily computed with the
help of Weyl’s inequality. We propose the following result.

Proposition 2: Suppose both P, and P, are symmetric.
Global consensus convergence in expectation is achieved if

oo

H (1 — %/\Q(Latt) + %)\max(lfrep)) =0

k=0

where Ao(Latt) is the second largest eigenvalue of L,yy.
Proof. We have

¢ M (W (1= 2253772

- 117

= )\max (Wk - T)

117 oy
- ;Latt) + )\max(Lrep)

%Amax(Lrep), ®)

where the inequality holds from Weyl’s inequality. The
desired conclusion follows directly from Proposition 1. [

When «j and B are time invariant, i.e., there are two
constants 0 < o < 1, B > O such that ap = « and
B = f for all k, based on (6), the consensus convergence in
expectation is equivalent with the stability of the following
LTI system:

Ey(k +1) = (I — 117 /n)WEy(k)

S )\max(I - n

o
=1- i/\2(Latt) +
n

where W =T — S Loty + gLGC. Consequently, letting p(A)
represent the spectral radius for a matrix A, i.e., the largest
eigenvalue in magnitude, we have the following result.

Proposition 3: Assume that there are two constants 0 <
a <1, >0 such that o, = @ and Sy, = S for all k.

(i). Global consensus convergence in expectation is
achieved if and only if p((I — )W) < 1,

(ii). Consensus divergence in expectation is achieved for
almost all initial values if and only if p(([ - %)W) > 1.

B. Phase Transition

Define f(a,3) =
following result.

Proposition 4: Suppose G, has a spanning tree and Gep,
contains at least one link. Also assume that either of the
following two conditions holds:

(@) LattLrep = LrepLatt;

(i1) Pay and Pep are symmetric.

Then for any fixed a € (0, 1], there exists a threshold
value S, (a) > 0 such that

o Global consensus convergence in expectation, i.e.,
f(a, B) < 1, is achieved if 0 < 8 < Sy;

o Consensus divergence in expectation for almost all
initial values, i.e., f(a, 8) > 1, is achieved if 5 > f,.

When both P, and P, are symmetric, it turns out that
some monotonicity can be established for f.

Proposition 5: Suppose both P, and P, are symmetric.
Then f(a,-) is non-increasing in « for « € [0,1]; f(-, ) is
non-decreasing in 3 for 5 € [0, 00).

The proofs of Propositions 4 and 5 can be found in [49].

We next consider some particular graphs when the thresh-
old value can be explicitly given. First consider the case
when the underlying graph G is the complete graph K.

Proposition 6: Suppose P = nll (117 —1). Let
(Gatt, Grep) be a given bidirectional attraction-repulsion par-
tition. Then we have

n

By = max{((n s (Tren) 1)a,0}.

Proposition 6 follows directly from the following lemma,
which can be obtained by some simple algebra.

Lemma 1: Let K, be the complete graph and G be any
bidirectional graph. Then there always holds Lk, Lg =
LcLk, , where Lk, and Lg are the Laplacian matrices of
K, and G, respectively.

When the repulsive graph G, is formed by the undirected
Erdos-Rényi random graph G(n, p) in the sense that for every
unordered pair {4, j}, (4,7) and (4, %) are repulsive links with
probability p. This gives us a sequence of random variables

p((I — %)W) We present the

117
&n :p((I— T)VV)7 n=1,23,....
Note that induced by {¢,,}5°, the consensus convergence or
divergence forms a well-defined random sequence indexed
by n. We propose the following result.
Proposition 7: Suppose P = —-(117 —I). Fix o), =
a € (0,1] and B = B € (0,00). Let Gyep be formed by the
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undirected Erdds-Rényi random graph G(n,p). Then
o«
Ca+p

is a threshold value regarding the consensus convergence or
divergence. To be precise, we have,

Px

a) When p < p,, global consensus convergence in expec-
tation is achieved in probability, i.e., lim,, ., P(&, <
=1

b) When p > p,, consensus divergence in expectation for
almost all initial values is achieved in probability, i.e.,
lim, oo P(&, > 1) = 1.

The result follows directly from the following lemma.

Lemma 2: [6] Let A,, be the Laplacian of the Erdds-
Rényi random graph G(n,p). Then A“‘%ﬁf") — 1 in proba-
bility.

Next, we discuss the other extreme case when the un-
derlying communication graph is the ring graph, R,,, which
is nearly the most sparse connected graph. We present the
following result.

Proposition 8: Denote Ap, as the adjacency matrix of
R,. Suppose P = Apg, /2. Let (Gast,Grep) be a given
bidirectional attraction-repulsion partition with Gep, # 0.
Then 3, < « for all n.

Proof. It is well known that Lgr  has eigenvalues 2 —
2cos(2mk/n),0 < k < n/2. On the other hand, we have
Amax(Lrep) = 1. Based on Weyl’s inequality, we obtain

117
P((I - T)W)
a 117 a+
> . - —
= )\mm (I 2’[7,LR" n ) + n )\max(Lrep)
i a(l —cos(2m| % ]/n) Lo + 7
n n
1P ©)
n

This means that p((I — %)V_V) > 1 whenever 3 > a,
which proves the desired conclusion. |

IV. CONVERGENCE VS. DIVERGENCE IN MEAN SQUARE

This subsection discusses the mean square convergence
and divergence for the considered algorithm. With Cauchy-
Schwarz inequality, it holds that

) 1 n 2 1 n 5
il =E’Z(a:i—asj) S;Z’xi—m . (10)
=1 i=1
Moreover, we also have
2 2
|xi_$j‘ :|yi_yj’ §2(|yz‘|2+|yj|2)- (11)
Therefore, consensus convergence in mean square is
achieved if and only if limy_,., E|y(k)|> = 0, and con-

sensus divergence in mean square is achieved if and only if
lim supy,_, ., E|y(k)|? = cc.

We present the following result.

Proposition 9: (i) Global consensus convergence in mean
square is achieved if [;~ o Amax (E[W/( —%)Wk]) =0.

(ii) Consensus divergence in mean square is achieved for
almost all initial values if [p- o Ao (E[W/I(I— %)Wk]) =
00, where \s is the second largest eigenvalue.

Proof. Noticing that W}, is a stochastic matrix for all possible
samples, we obtain

B(Jy(k +1)[*y(k)

T
= By WL (1~ ) Wey(h)|(k)
T
= E(y(k)TE(WkT(I —~ %)Wk)y(k)‘y(/ﬂ)
117 2
I = —=)Wi])ly(k)*,

where the second equality holds from the fact that Wy is
independent of time and the node states, and the inequality
holds from the Rayleigh-Ritz theorem. Similarly we have

< Amax (E[W( (12)

2 117
E(lytk + ) Ju(k)) 2 A (BWE (1 = == )Wi])ly(R)I2
T 1’ 2
= A2 (E[Wk (- T)Wk})|y(k)| )
where C = {y : y1 = -+ = yn}, and the equality holds from
the fact that 17y(k) = 0 for all k. The desired conclusion
follows immediately. ]

V. ALMOST SURE CONVERGENCE VS. DIVERGENCE

We move to the discussion on almost sure consensus
convergence and divergence in this subsection. First we study
a special case when oy = 1. The following result holds.

Proposition 10: Suppose a = 1 and G,¢¢ has a spanning
tree. Then for any sequence of {f3x}5°, global consensus is
achieved almost surely in finite time, i.e.,

P(HK,s.t.,ati(k:) =2;(k),i,j € V,k > K) —1.

Denoting Ty = infy, {z;(k) = w;(k),i,j € V} as the

initial time when consensus is reached, we have ETy <
n\n—1 .

(n—1)(35)" ", where p. = min{p;; : pj; > 0}.

Proof. Introduce

m(k) = minz;(k); M(k)=maxx;(k).

i€V i€V
We define M (k) = M (k) —m(k). Following the considered

algorithm M (k) is a Markov chain with nonnegative states.
The structure of the randomized algorithm gives

P(M(s) —0,s> k‘M(k) - o) ~1.

Thus, zero is an absorbing state for M (k).
Since G.i+ has a spanning tree, we can select a node g
which is a root node in G,i;. With o, = 1, we have

P(a:i(k:—&-n— 1) = 2, (k), i € v) > (%)H, (13)

which implies

%

P(M(k+n71):0’/\/l(k:)>0> (%)"_1. (14)
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The Borel-Cantelli Lemma ensures that
P(Elk;,/\/l(k:(n —1) = O‘M(O) > 0) _ 1,

which proves the almost sure finite-time consensus.

With (14), the upper bound (n — 1) (- )n of ETy can
be obtained by direct calculation of the expected value of the
initial success time for a sequence of i.i.d. Bernoulli trials
with success probability (%‘)nil. The proof is finished. [J

Clearly if {fx}5° is sufficiently large, both consensus
divergence in expectation and in the mean square are possible
when o = 1. Hence with repulsive links, the various notions
of convergence are not equivalent, which contrasts with the
case where all links are attractive.

Proposition 11: Suppose G, has a spanning tree. Global
consensus convergence is achieved almost surely if

(i) there exists $* > 0 such that 5, < * for all k,

i) 0 < Py < 1 Wthrh 12:,10 Dpn_1) = 00,
where &, = 1 — k=

(1 - Do eyt - -
%)n_l) c;+n 1 (1+Bk)

Proof. The proof is based on a similar martingale argument
as [31]. Let ig be a root node in G.. Take kg > 0. Assume
that z;, (ko) < 2m(ko) + 2 M (ko). Since iy is a root node,
there is node 47 different from ¢ such that (ig,i1) € Eagt. If
arc (ig,41) is selected at time kg, we have

Ty (ko + 1) < (1 — ag,) M (ko) + ako( m(ko) + M(kO))
_ a;‘)m(k;o) T (- 0‘50) (ko). (15)

Since G, has a spanning tree, we can recursively show that
with a proper choice of arcs in &ty for kg+2, ..., kg+n—2,
we have m(kg +n — 1) = m(ko) and

ko+n— 1
Hk Llk=ky —F

ZEZ(ko +n— 1) 9 (k?o)
Hko+n 1
+(1- = ’“; B\M(ko), i €V, (16)
which yield
Hko+n 1
P(M(k0+n— 1)< (1- 2% ’“5 )/\/l(ko))
D
> (n) (17)

For the other case with z;, (ko) > im(ko) + 1M (ko), we
can apply the same analysis on z;(k) with z;(k) = —z; (k)
and (19) still holds.
On the other hand, the structure of the algorithm ensures
that
ko+n—1
P(M(ko +n-1< J] (+ Bk)/\/l(ko)> 1. (18)

k=ko
In light of (17) and (18), we obtain

E(M(ko tn— 1)‘M(k0)) < [1 = Dg, | M(ko).  (19)

We invoke the supermartingale convergence theorem to
complete the final piece of the proof.

Lemma 3: [4] Let Vi, k > 0 be a sequence of nonnega-
tive random variables with EV < oco. If

E(VkH‘VO, . .,Vk) <(1—cp)Vi

with ¢, € [0,1] and Y 77 (¢x = oo, then limp_,oc Vi = 0
almost surely.

With Lemma 3 and (19), we have limy_, o, M ((nfl)k) =
0 almost surely if 0 < ®y(,—1) < 1 and Y 70 ) Ppin_1) =
oo. Noticing the boundedness of [, the desired conclusion
follows immediately. (|

For almost sure divergence, we first present the following
result which indicates that as long as almost sure divergence
is achieved, then no node can “survive” if the attractive graph
is strongly connected.

Proposition 12: Suppose Gt is strongly connected and
consensus divergence is achieved almost surely. Suppose also
there exists ., > 0 such that o > «, for all k. Then

P(limsup |zi(k) —z;(k)| > M*) =1

k—o0

(20)

for all ¢, j, and M, > 0.

Proposition 12 shows that divergence is also propagated
among the network between any two nodes. The proof of the
conclusion is based on a sample-path argument in light of
the strong Markovian property. We refer [49] for a detailed
proof.

Denoting p* = max{p;; : p;; > 0} and Ey = |Eape]- We
end the discussion of this section by presenting the following
almost sure divergence result.

Proposition 13: Suppose G, is weakly connected.
Global consensus convergence is achieved almost surely if

(i) there exists a* < 1 such that ay, < o* for all k;

(ii) there exists B, > 0 such that 5, < S, for all k;

(i) there exists an integer Z > 1 such that

an:gQ() = O(t), where for m = 0,1,..., Q(m) =
(2) [tog 25 + Smny” M og(1 + 6] + (1- (1 -

zyEaZ ) [ g (1 - )]

The analysis of Proposition 13 is based on a strong law
of large numbers. Again due to limitation of space we refer
to [49] for a complete proof.

VI. CONCLUSIONS

A randomized consensus algorithm with both attractive
and repulsive links has been studied under an asymmetric
gossiping model. The repulsive update was defined in the
sense that a negative instead of a positive weight is imposed
in the update. This model can represent the influence of
certain link faults or malicious attacks in a communication
network, or the spreading of trust and antagonism in a social
network. We established various conditions for probabilistic
convergence or divergence, and proved the existence of a
phase-transition threshold for convergence in expectation.
An explicit value of the threshold was derived for classes
of attractive and repulsive graphs. Future work includes the
analysis for the symmetric update model and the structure
optimization of the repulsive graph so that the maximum
damage can be created for the network.
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