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a b s t r a c t

In this paper, we propose a distributed max–min consensus algorithm for a discrete-time n-node system.
Each node iteratively updates its state to a weighted average of its own state together with the minimum
and maximum states of its neighbors. In order for carrying out this update, each node needs to know
the positive direction of the state axis, as some additional information besides the relative states from
the neighbors. Various necessary and/or sufficient conditions are established for the proposed max–min
consensus algorithm under time-varying interaction graphs. These convergence conditions do not rely on
the assumption on the positive lower bound of the arc weights.
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1. Introduction

In the past decade, distributed consensus algorithms have been
extensively studied in the literature, due to its wide applicability in
engineering, computer science, and social science (DeGroot, 1974;
Diekmann, Frommer, & Monien, 1999; Golub & Jackson, 2007;
Jadbabaie, Lin, &Morse, 2003; Tsitsiklis, Bertsekas, &Athans, 1986).
In many cases consensus algorithms seek to compute the average
of the nodes’ initials over the network (Jadbabaie et al., 2003;
Tsitsiklis et al., 1986), and various efforts have been devoted to
analyzing how the underlying communication graphs influence
the convergence or the convergence rate for both continuous-
time and discrete-time agent dynamics (Cao, Morse, & Anderson,
2008a,b; Morse, 2005; Nedic, Olshevsky, Ozdaglar, & Tsitsiklis,
2009; Olfati-Saber & Murray, 2004; Ren & Beard, 2005). Weighted
average consensus algorithms, also draw attentions in which all
nodes eventually reach an agreement as a weighted average of the
initial values (Ren & Beard, 2005). Weighted average consensus is
resulted from the missing of balance in the communication graph
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(Ren & Beard, 2005), and it has been shown that even a weighted
agreement still leads to certain wisdom for the networks under
quite general conditions (Golub & Jackson, 2007).

A great advantage in distributed consensus algorithms is that
they do not rely on a centralized coordinate system. Each node
can carry on the computation using only relative state information
from its neighbors. A convenient way of modeling the switching
node interactions is to assume that the communication graphs are
defined by a sequence of time-dependent graphs over the node set.
The connectivity of this sequence of graphs plays an important role
for the network to reach consensus. Joint connectivity, i.e., connec-
tivity of the union graph over time intervals, has been considered,
and various convergence conditions have been established (Blon-
del, Hendrickx, Olshevsky, & Tsitsiklis, 2005; Cao et al., 2008a,b;
Jadbabaie et al., 2003; Morse, 2005; Olfati-Saber & Murray, 2004;
Ren & Beard, 2005; Tsitsiklis et al., 1986).

On the other hand, it is however true that in most existing
works, the convergence of consensus algorithms highly depends
on some critical conditions on network information flow. Most
asymptotic convergence results are based on the assumption that
the arc weights always have a positive lower bound over time,
and particularly it is commonly assumed that the underlying com-
munication graphs always keep self-loops reflected as node self-
confidence in the node state updates (Blondel et al., 2005; Cao et al.,
2008a,b; Jadbabaie et al., 2003; Ren & Beard, 2005; Tsitsiklis et al.,
1986).

In this paper, we propose a distributed max–min consensus
algorithm for an n-node system. In the proposed algorithm, each
node iteratively updates its state to a weighted average of its
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own state together with the minimum and maximum states
of its neighbors. This dynamics provides a natural model for
extreme-biased opinion evolution over social networks. In classical
DeGroot’s model (DeGroot, 1974), weights of exchanged opinions
are put on different nodes during interactions, without identifying
specific opinions. Variants to DeGroot’s belief evolution taking into
account biases in different opinions have been considered. Krause’s
model (Krause, 1997) introduced state-dependent interactions
where nodes interact with neighbors within certain range of
opinions and therefore put a zero weight to opinions outside
this interaction range. Recent work (Dandekar, Goel, & Lee,
2013) proposes a biased social interaction model with greater
interactions between like-minded individuals and shows that this
biased model often leads to polarization of opinions. The proposed
max–min consensus algorithm actually defines extreme-biased
belief evolution in which nodes put weights only on the extreme
(max and min) opinions in the neighborhood, right opposite to
the homophily effects studied in Dandekar et al. (2013) and
Krause (1997). We show that this extreme-biased dynamics leads
to convergence to an agreement under more general conditions,
compared to DeGroot type updates.

Compared to standard consensus algorithms, in the proposed
algorithm each node needs to know the positive direction of the
state axis, as some additional information besides the relative
states from the neighbors. This piece of additional information
is indeed centralized, but obviously it is not expensive in many
practical applications. Various necessary and/or sufficient condi-
tions are established for the proposed max–min consensus algo-
rithm under time-dependent interaction graphs. These conditions
are consistent with the infinite flow property and persistent con-
nectivity conditions in the literature which are utilized to study
consensus algorithms (Hendrickx & Tsitsiklis, 2013; Martin & Gi-
rard, 2013; Touri & Nedic, 2011, 2012). The derived convergence
conditions for directed graphs do not rely on the condition on the
positive lower bound of the arc weights, which usually show up
for the study of standard consensus algorithms. In otherwords, this
small amount of centralized information has brought nontrivial re-
laxation to the convergence requirements,which is consistentwith
the recent study on the role of centralized information in queueing
systems (Tsitsiklis & Xu, 2011).

The rest of the paper is organized as follows. In Section 2
we introduce the considered network model and the proposed
max–min consensus algorithm. Some impossibilities of finite-
time or asymptotic consensus are established in Section 3. Then
sufficient convergence conditions for asymptotic consensus are
established for time-dependent graphs in Section 4.2 Finally some
concluding remarks are given in Section 5.

2. Problem definition

In this section, we introduce the networkmodel, the considered
algorithm, and define the problem of interest.

2.1. Network

We first recall some concepts and notation in graph theory
(Godsil & Royle, 2001). A directed graph (digraph) G = (V, E)
consists of a finite set V of nodes and an arc set E ⊆ V × V .
An element e = (i, j) ∈ E is called an arc from node i ∈ V to
j ∈ V . If the arcs are pairwise distinct in an alternating sequence
v0e1v1e2v2 . . . ekvk of nodes vi ∈ V and arcs ei = (vi−1, vi) ∈ E for

2 The proposed max–min consensus algorithms can also be studied for a type of
state-dependent graphs as shown in Shi and Johansson (2013b).
i = 1, 2, . . . , k, the sequence is called a (directed) path of length k.
If there exists a path from node i to node j, then node j is said to
be reachable from node i. Each node is thought to be reachable by
itself. A node v from which any other node is reachable is called a
center (or a root) of G. A digraph G is said to be strongly connected if
node i is reachable from j for any two nodes i, j ∈ V; quasi-strongly
connected if G has a center (Berge & Ghouila-Houri, 1965). The
distance from i to j in a digraph G, d(i, j), is the length of a shortest
simple path from i to j if j is reachable from i, and the diameter of
G is diam(G) = max{d(i, j)|i, j ∈ V, j is reachable from i}. The
union of two digraphs with the same node set G1 = (V, E1) and
G2 = (V, E2) is defined as G1 ∪ G2 = (V, E1 ∪ E2). A digraph G is
said to be bidirectional if for every twonodes i and j, (i, j) ∈ E if and
only if (j, i) ∈ E . A bidirectional graph G is said to be connected if
there is a path between any two nodes. A bidirectional underlying
graph of a directed graph G is obtained by replacing all directed
edges of G with bidirectional edges.

Consider a network with node set V = {1, 2, . . . , n}, n ≥ 3.
Time is slotted. Denote the state of node i at time k ≥ 0 as
xi(k) ∈ R. Then x(k) =


x1(k) . . . xn(k)

T represents the network
state. The interactions among the nodes are determined by a given
sequence of digraphs with node set V , denoted as Gk = (V, Ek),
k = 0, 1, . . . .

Throughout this paper,we call node j aneighbor of node i if there
is an arc from j to i in the graph. Each node is supposed to always
be a neighbor of itself. Let Ni(k) represent the neighbor set of node
i at time k.

2.2. Algorithm

In this paper, we propose the following max–min consensus
algorithm for node i’s update:

xi(k + 1) = ηkxi(k) + αk min
j∈Ni(k)

xj(k)

+

1 − ηk − αk


max
j∈Ni(k)

xj(k), (1)

where αk, ηk ≥ 0 and αk + ηk ≤ 1. We denote the set of all
algorithms of the form (1) byA, when the parameters (αk, ηk) take
values as ηk ∈ [0, 1], αk ∈ [0, 1−ηk]. We use A1 to denote the set
of algorithms in the form of (1) with parameters ηk ∈ (0, 1], αk ∈

[0, 1 − ηk] and use A2 to denote the set of algorithms in the form
of (1) with parameters ηk = 0 for k ≥ 0 and αk ∈ [0, 1].

Algorithm (1) provides a natural model for extreme-biased
opinion dynamics in social networks, where the biased node only
assigns weights to extreme opinions in its neighborhood.

2.3. Problem

Let

x(k; x0) =


x1(k; x0) . . . xn(k; x0)

T∞

k0
be the sequence

generated by (1) for initial time k0 and initial value x0 = x(k0) =
x1(k0) . . . xn(k0)

T
∈ Rn. We will identify x(k; x0) as x(k) in the

followingdiscussions.We introduce the following definition on the
convergence of the considered algorithm.

Definition 1. (i) Asymptotic consensus is achieved for Algorithm
(1) for initial condition x(k0) = x0 ∈ Rn if there exists
z∗(x0) ∈ R such that limk→∞ xi(k) = z∗, i = 1, . . . , n. Global
asymptotic consensus is achieved if asymptotic consensus is
achieved for all k0 ≥ 0 and x0 ∈ Rn.

(ii) Finite-time consensus is achieved for Algorithm (1) for initial
condition x(k0) = x0 ∈ Rn if there exist z∗(x0) ∈ R and an
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integer T∗(x0) > 0 such that xi(T∗) = z∗, i = 1, . . . , n. Global
finite-time consensus is achieved if finite-time consensus is
achieved for all k0 ≥ 0 and x0 ∈ Rn.

Algorithm (1) reaching consensus is equivalent to that x(k)
converging to a point on the manifold

C =


x = (x1 . . . xn)T : x1 = · · · = xn


.

We call C the consensus manifold. Its dimension is one.
In the following, we focus on the impossibilities and possibili-

ties of asymptotic or finite-time consensus.

3. Convergence impossibilities

In this section, we discuss the impossibilities of asymptotic or
finite-time convergence for the consensus algorithms in A1. First
we present the following conclusion.

Proposition 1. For every consensus algorithm in A1, finite-time
consensus fails for all initial values in Rn except for initial values on
the consensus manifold.

Proof. We define

h(k) = min
i∈V

xi(k); H(k) = max
i∈V

xi(k).

Introduce Φ(k) = H(k)− h(k). Then clearly asymptotic consensus
is achieved if and only if limk→∞ Φ(k) = 0.

Take a node i satisfying xi(k) = h(k). We have

xi(k + 1) = ηkxi(k) + αk min
j∈Ni(k)

xj(k)

+

1 − ηk − αk


max
j∈Ni(k)

xj(k)

≤ (αk + ηk)h(k) + (1 − ηk − αk)H(k). (2)

Similarly, taking another node m satisfying xm(k) = H(k), we
obtain

xm(k + 1) = ηkxm(k) + αk min
j∈Nm(k)

xj(k)

+

1 − ηk − αk


max

j∈Nm(k)
xj(k)

≥ αkh(k) + (1 − αk)H(k). (3)

With (2) and (3), we conclude that

Φ(k + 1) = max
i∈V

xi(k + 1) − min
i∈V

xi(k + 1)

≥ xm(k + 1) − xi(k + 1) ≥ ηkΦ(k). (4)

Therefore, since (4) holds for all k, we immediately obtain that for
every algorithm in the set A1,

Φ(K) ≥ Φ(k0)
K−1
k=k0

ηk > 0 (5)

for all K ≥ k0 as long as Φ(k0) > 0. Noticing that the initial values
satisfying Φ(k0) = 0 are on the consensus manifold, the desired
conclusion follows. �

Since the consensus manifold is a one-dimensional manifold
in Rn, Proposition 1 indicates that finite-time convergence is
impossible for almost all initial values for algorithms in A1.

Next, we discuss the impossibility of asymptotic consensus. The
following lemma is well-known.
Lemma 1 (Knopp, 1990). Let {bk}∞0 be a sequence of real numbers
with bk ∈ [0, 1) for all k. Then


∞

k=0 bk = ∞ if and only if
∞

k=0(1 − bk) = 0.

The following result on asymptotic convergence holds.

Proposition 2. For every consensus algorithm in A1, asymptotic
consensus fails for all initial values in Rn except for initial values on
the consensus manifold, if


∞

k=0


1 − ηk


< ∞.

Proof. In light of Lemma 1 and (5), we see that for every algorithm
in the set A1,

lim
K→∞

Φ(K) ≥ Φ(k0)
∞

k=k0

ηk > 0

if


∞

k=0


1 − ηk


< ∞ for all initial values satisfying Φ(k0) > 0.

The desired conclusion thus follows. �

Proposition 2 indicates that


∞

k=0


1 − ηk


= ∞ is a necessary

condition for algorithms in A1 to reach asymptotic consensus.
Note that ηk measures node self-confidence. Thus, the condition

∞

k=0


1 − ηk


= ∞ characterizes the maximal self-confidence

that nodes can hold and still reach consensus.
It is worth pointing out that Propositions 1 and 2 hold for any

communication graph. In the following discussions, we turn to
the possibilities for consensus. Then, however, the communication
graph plays an important role.

4. Convergence to consensus

In this section, we establish a series of conditions on asymptotic
convergence of the considered algorithm under switching directed
communication graphs.

Denote the union graph of Gk over time interval [k1, k2] as
G

[k1, k2]


= (V, ∪k∈[k1,k2] E(k)), where 0 ≤ k1 ≤ k2 ≤ +∞.

We introduce the following definitions on the joint connectivity of
time-varying graphs.

Definition 2. (i) Gk is uniformly jointly quasi-strongly connected
(strongly connected) if there exists an integer B ≥ 1 such
that G


[k, k + B − 1]


is quasi-strongly connected (strongly

connected) for all k ≥ 0.
(ii) Gk is infinitely jointly strongly connected ifG


[k, ∞)


is strongly

connected for all k ≥ 0.
(iii) Suppose Gk is bidirectional for all k. Then Gk is infinitely jointly

connected if G

[k, ∞)


is connected for all k ≥ 0.

The following conclusion holds for uniformly jointly quasi-
strongly connected graphs.

Theorem 1. Suppose Gk is uniformly jointly quasi-strongly con-
nected. Algorithms in the set A1 achieve global asymptotic consensus
if either

∞
s=0

(s+1)(n−1)2B−1
k=s(n−1)2B

αk


= ∞ (6)

or

∞
s=0

(s+1)(n−1)2B−1
k=s(n−1)2B


1 − αk − ηk


= ∞. (7)

Theorem 1 hence states that divergence of certain prod-
ucts of the algorithm parameters guarantees global asymptotic
consensus.
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The following corollary follows from Theorem 1 straightfor-
wardly.

Corollary 1. Suppose Gk is uniformly jointly quasi-strongly con-
nected.
(i) Assume that αk ≥ αk+1 for all k. Algorithms in the set A1 achieve

global asymptotic consensus if


∞

k=0 α
(n−1)2B
k = ∞.

(ii) Assume that αk + ηk ≤ αk+1 + ηk+1 for all k. Algorithms in the
set A1 achieve global asymptotic consensus if


∞

k=0


1 − αk −

ηk
(n−1)2B

= ∞.

For uniformly jointly strongly connected graphs, it turns out
that consensus can be achieved under weaker conditions on
(αk, ηk).

Theorem 2. Suppose Gk is uniformly jointly strongly connected.
Algorithms in the set A1 achieve global asymptotic consensus if either

∞
s=0

(s+1)(n−1)B−1
k=s(n−1)B

αk


= ∞ (8)

or
∞
s=0

(s+1)(n−1)B−1
k=s(n−1)B


1 − αk − ηk


= ∞. (9)

Similarly, Theorem 2 leads to the following corollary.

Corollary 2. Suppose Gk is uniformly jointly strongly connected.
(i) Assume that αk ≥ αk+1 for all k. Algorithms in the set A1 achieve

global asymptotic consensus if


∞

k=0 α
(n−1)B
k = ∞.

(ii) Assume that αk + ηk ≤ αk+1 + ηk+1 for all k. Algorithms in the
set A1 achieve global asymptotic consensus if


∞

k=0


1 − αk −

ηk
(n−1)B

= ∞.

These results are consistent with the notion of infinite flow
which has been proposed in Touri and Nedic (2011, 2012) to study
the consensus and ergodicity of a chain of stochastic matrices
as well as the concept of persistent graph proposed in Shi and
Johansson (2013c).

We continue to show that consensus can still be reached as
long as the αk are varying sufficiently slow if ηk = 0 for all k. In
this case, asymptotic convergence of Algorithm (1) is guaranteed
under general conditions no longer relying on the merits of the
information flow property. We note that the assumption that ηk =

0 for all k is adopted for the ease of presentation, and it is clear
from its proof that more general conditions with ηk involved can
be easily derived using similar argument.

Theorem 3. Suppose ηk = 0 for all k.
(i) Suppose Gk is uniformly jointly quasi-strongly connected with

respect to B ≥ 1. Algorithms in the set A2 achieve global
asymptotic consensus if there exists 0 < δ < 1 such thatαk+1 − αk

 ≤
δ

(n−1)2B
, k ≥ 0.

(ii) Suppose Gk is uniformly jointly strongly connected with respect
to B ≥ 1. Algorithms in the set A2 achieve global asymptotic
consensus if there exists 0 < δ < 1 such that

αk+1 − αk
 ≤

δ
(n−1)B , k ≥ 0.

For bidirectional graphs, the conditions are much simpler
to state. We present the following result which in contrast to
Theorems 1 and 2 imposes a lower bound on the parameter in
Algorithm (1).

Theorem 4. Suppose Gk is bidirectional for all k and Gk is infinitely
jointly connected. Algorithms in the set A1 achieve global asymptotic
consensus if there exists a constant α∗ ∈ (0, 1) such that either
αk ≥ α∗ or 1 − αk − ηk ≥ α∗ for all k.

4.1. Proof of Theorem 1

We continue to use the following notation:

h(k) = min
i∈V

xi(k), H(k) = max
i∈V

xi(k),

andΦ(k) = H(k)−h(k). Following any solution of (1), it is obvious
to see that h(k) is non-decreasing and H(k) is non-increasing.

Note that if (6) guarantees asymptotic consensus of algorithm
(1), replacing the node state xi(k) with −xi(k) leads to that (7)
guarantees asymptotic consensus of algorithm (1) for −xi(k), i =

1, . . . , n. Since consensus for xi(k), i = 1, . . . , n is equivalent to
consensus for −xi(k), i = 1, . . . , n, (6) and (7) are equivalent in
terms of consensus convergence. Thus, we just need to show that
(6) is a sufficient condition for asymptotic consensus.

Take k∗ ≥ 0 as any moment in the iterative algorithm. Take
(n−1)2 intervals [k∗, k∗+B−1], [k∗+B, k∗+2B−1], . . . , [k∗+(n2

−

2n)B, k∗+(n−1)2B−1]. SinceGk is uniformly jointly quasi-strongly
connected, the union graph on each of these intervals has at least
one center node. Consequently, there must be a node v0 ∈ V and
n − 1 integers 0 ≤ b1 < b2 < · · · < bn−1 ≤ n2

− 2n such that v0
is a center of G


[k∗ + biB, k∗ + (bi + 1)B − 1]


, i = 1, . . . , n − 1.

Assume that xv0(k∗) ≤
1
2h(k∗) +

1
2H(k∗).

We first bound xv0(k) for k ∈ [k∗, k∗ + (n− 1)2B]. It is not hard
to see that

xv0(k∗ + 1) = ηk∗xv0(k∗) + αk∗ min
j∈Nv0 (k∗)

xj(k∗)

+

1 − αk∗ − ηk∗


max

j∈Nv0 (k∗)
xj(k∗)

≤

αk∗ + ηk∗

1
2
h(k∗) +

1
2
H(k∗)


+


1 − αk∗ − ηk∗


H(k∗)

≤ αk∗

1
2
h(k∗) +

1
2
H(k∗)


+


1 − αk∗


H(k∗)

=
αk∗

2
h(k∗) +


1 −

αk∗

2


H(k∗).

Proceeding, we obtain

xv0(k∗ + m) ≤

k∗+m−1
k=k∗

αk

2
h(k∗)

+

1 −

k∗+m−1
k=k∗

αk

2

H(k∗), m = 0, 1, . . . . (10)

Since v0 is a center of G

[k∗ + b1B, k∗ + (b1 + 1)B − 1]


, there

exists another node v1 such that v0 is a neighbor of v1 for some
k1 ∈ [k∗ + b1B, k∗ + (b1 + 1)B − 1]. As a result, based on (10), we
have

xv1(k1 + 1)

= ηk1xv1(k1) + αk1 min
j∈Nv1 (k1)

xj(k1)

+

1 − αk1 − ηk1


max

j∈Nv1 (k1)
xj(k1)

≤ αk1xv0(k1) +

1 − αk1


H(k1)
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≤ αk1


k1−1
k=k∗

αk

2
h(k∗) +

1 −

k1−1
k=k∗

αk

2

H(k∗)

 +

1 − αk1


H(k∗)

=

k1
k=k∗

αk

2
h(k∗) +

1 −

k1
k=k∗

αk

2

H(k∗).

Proceeding, we have

xv1(k∗ + m) ≤

k∗+m−1
k=k∗

αk

2
h(k∗) +

1 −

k∗+m−1
k=k∗

αk

2

H(k∗),

form = (b1 + 1)B, . . . .

Continuing the analysis on time intervals [k∗ + biB, k∗ + (bi +
1)B − 1] for i = 2, . . . , n − 1 and nodes v2, v3, . . . , vn−1, similar
upper bounds for each node can be obtained:

xvi(k∗ + m) ≤

k∗+m−1
k=k∗

αk

2
h(k∗) +

1 −

k∗+m−1
k=k∗

αk

2

H(k∗),

form = (bi + 1)B, . . . . This immediately leads to

xvi(k∗ + (n − 1)2B) ≤

k∗+(n−1)2B−1
k=k∗

αk

2
h(k∗)

+

1 −

k∗+(n−1)2B−1
k=k∗

αk

2

H(k∗),

for i = 0, 1, . . . , n − 1, which implies

H

k∗ + (n − 1)2B


≤

k∗+(n−1)2B−1
k=k∗

αk

2
h(k∗)

+

1 −

k∗+(n−1)2B−1
k=k∗

αk

2

H(k∗).

Thus, we further conclude

Φ

k∗ + (n − 1)2B


≤

1 −

k∗+(n−1)2B−1
k=k∗

αk

2

 Φ(k∗). (11)

From a symmetric analysis by bounding x(k∗ + (n − 1)2B)
from below, we know that (11) also holds for the other condition
with xv0(k∗) ≥
1
2h(k∗) +

1
2H(k∗). Therefore, since k∗ is selected

arbitrarily, we can assume the initial time is k0 = 0, without loss
of generality, and then conclude that

Φ

K(n − 1)2B


≤ Φ(0)

K−1
s=0


1 −

1
2

(s+1)(n−1)2B−1
k=s(n−1)2B

αk


.

The desired conclusion follows immediately from Lemma 1.

4.2. Proof of Theorem 2

Notice that in a strongly connected graph, every node is a center
node. Therefore, when Gk is uniformly jointly strongly connected,
taking k∗ ≥ 0 as any moment in the iteration and n − 1 intervals
[k∗, k∗ +B−1], [k∗ +B, k∗ +2B−1], . . . , [k∗ + (n−2)B, k∗ + (n−

1)B − 1], any node i ∈ V is a center node for the union graph over
each of these intervals. As a result, the desired conclusion follows
repeating the analysis used in the proof of Theorem 1.

4.3. Proof of Theorem 3

Weonly present the detailed proof of (i), and (ii) can be obtained
using a similar argument to that in the proof of Theorem 2.

We introduce

α = lim inf
k→∞

αk.

Note that their existence is guaranteed by the boundedness of
{αk}

∞

k=0.
First of all we assume that α > 0. Pick a constant ϵ > 0 such

thatα−ϵ > 0. By the definition ofα, there exists an integer k∗ ≥ 0
such that for all k ≥ k∗, αk ≥ α − ϵ > 0. Applying the recursive
analysis that we used to derive (11) in the proof of Theorem 1, we
similarly obtain

Φ

k∗ + (n − 1)2B


≤ Φ


k∗


1 −


α − ϵ

(n−1)2B
/2


,

from which we can show that limk→∞ Φ

k


= 0 and the desired
conclusion follows.

Suppose that α = 0. By the definition of α, there exists an
infinite sequence k1 < k2 < · · · with km+1 − km > (n − 1)2B
such that

αkm ≤
δ

(n − 1)2B
,

where 0 < δ < 1. Fix anm ≥ 1 and consider αkm . Sinceαk+1 − αk
 ≤

δ

(n − 1)2B
, k ≥ 0,

it holds

αkm+s ≤ δ < 1,

for all s = 0, 1, . . . , (n − 1)2B − 1, which implies that

1 − αkm+s ≥ 1 − δ > 0,

for all s = 0, 1, . . . , (n − 1)2B − 1. Consider the evolution of
y(k) = (y1(k) . . . yn(k))T with yi(k) = −xi(k), i = 1, . . . , n. Note
that

Φ(k) = max
i∈V

xi(k) − min
i∈V

xi(k) = max
i∈V

yi(k) − min
i∈V

yi(k).
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Applying the recursive analysis to the y-system that we used to
derive (11) in the proof of Theorem 1, one has

Φ

km + (n − 1)2B


≤ Φ


km


1 −


1 − δ

(n−1)2B
/2


,

which in turn leads to

Φ

km+1


≤ Φ


km


1 −


1 − δ

(n−1)2B
/2


,

noticing that Φ(k) is non-increasing. This proves limk→∞ Φ

k


=

0 and therefore consensus is achieved. This completes the
proof.

4.4. Proof of Theorem 4

Similar to the proof of Theorem1,we only need to show that the
existence of a constant α∗ ∈ (0, 1) such that αk ≥ α∗ is sufficient
for asymptotic consensus.

Take k∗

1 ≥ 0 as an arbitrary moment in the iterative algorithm.
Take a node u0 ∈ V satisfying xu0(k

∗

1) = h(k∗

1). We define

k1 = inf

k ≥ k∗

1 : there exists another node

connecting u0 at time k


and then

V1 =

i ∈ V : i is connected to u0 at time k1


.

Thus, we have

xu0(k1 + 1) ≤ α∗h(k∗

1) +

1 − α∗


H(k∗

1)

and

xi(k1 + 1) ≤ α∗h(k∗

1) +

1 − α∗


H(k∗

1)

for all i ∈ V1.
Note that if nodes in {u0} ∪ V1 are not connected with other

nodes in V\({u0} ∪V1) during [k1 + 1, k1 + s], s ≥ 1, we have that
for all i ∈ {u0} ∪ V1 andm = 1, . . . , s + 1,

xi(k1 + m) ≤ α∗h(k∗

1) +

1 − α∗


H(k∗

1).

Continuing the estimate, k2, . . . , kd and V2, . . . , Vd can be
defined correspondingly until V = {u0} ∪ (∪d

i=1 Vi). Eventually
we have

xi(kd + 1) ≤ αd
∗
h(k∗

1) +

1 − αd

∗


H(k∗

1), i = 1, . . . , n,

which implies

H(kd + 1) ≤ αd
∗
h(k∗

1) +

1 − αd

∗


H(k∗

1). (12)

We denote k∗

2 = kd + 1. Because it holds that d ≤ n − 1, we see
from (12) that

Φ(k∗

2) ≤

1 − αn−1

∗


Φ(k∗

1).

Since Gk is infinitely jointly connected, this process can be carried
on for an infinite sequence k∗

1 < k∗

2 < · · · . Thus, asymptotic
consensus is achieved for all initial conditions. This completes the
proof.

5. Conclusions

We have proposed and analyzed a max–min consensus
algorithm for an n-node network. In the considered algorithm,
each node iteratively updated its state to a weighted average of
its own state together with the minimum and maximum states
of its neighbors. Some necessary and/or sufficient conditions have
been established for the proposed max–min consensus algorithm
under time-dependent graphs. These convergence conditions do
not rely on the assumption on the positive lower bound of the arc
weights. The relaxation was exactly gained from the knowledge of
the positive direction of the network state axis.
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