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Abstract— In this paper, we formulate and investigate a gen-
eralized consensus algorithm which makes an attempt to unify
distributed averaging and maximizing algorithms considered in
the literature. Each node iteratively updates its state as a time-
varying weighted average of its own state, the minimal state,
and the maximal state of its neighbors. This part of the paper fo-
cuses on time-dependent communication graphs. We prove that
finite-time consensus is almost impossible for averaging under
this uniform model. Then various necessary and/or sufficient
conditions are presented on the consensus convergence. The
results characterize some similarities and differences between
distributed averaging and maximizing algorithms.

Index Terms— Averaging algorithms, Max-consensus, Finite-
time convergence

I. INTRODUCTION

Distributed averaging algorithms, where each node itera-
tively averages its neighbors’ states, have been extensively
studied in the literature, due to its wide applicability in
engineering [11], [12], [23], computer science [8], [9], and
social science [5], [6], [7]. Recently also the max-consensus
algorithms have attracted attention. These algorithms com-
pute the maximal value among the nodes, and have been
used for leader election, network size estimation, and various
applications in wireless networks [23], [22].

The convergence to a consensus is central in the study
of averaging and maximizing algorithms but can be hard to
analyze, especially when the node interactions are carried
out over a switching graph. The most convenient way of
modeling the switching node interactions is just to assume
the communication graphs are defined by a sequence of time-
dependent graphs over the node set. The connectivity of this
sequence of graphs plays an important role for the network to
reach consensus. Joint connectivity, i.e., connectivity of the
union graph over time intervals, has been considered, and
various convergence conditions have been established [11],
[21], [12], [13], [15], [16], [14], [17], [16].

Few studies have discussed the fundamental similarities
and differences between distributed averaging and maxi-
mizing. Averaging and maximizing consensus algorithms
are both distributed information processing over graphs,
where nodes communicate and exchange information with
its neighbors in the aim of collective convergence. Average
consensus algorithms in the literature are based on two stand-
ing assumptions: local cohesion and node self-confidence.
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The node states iteratively update as a weighted average
of its neighbors’ states, with a positive lower bound for
the weight corresponding to its own state [11], [21], [12],
[15], [14], [20]. Average consensus algorithms can also be
viewed as the equivalent state evolution process where each
node updates its state as a weighted average of its own
state, and the minimum and maximum states of its neigh-
bors. Maximizing (or minimizing) consensus algorithms are
simply based on that each node updates its state to the
maximal (minimal) state among its neighbors [27], [28],
[29]. Asymptotic convergence is common in the study of
averaging consensus algorithms [14], [15], [20], [12], while
it has been shown that maximizing algorithms converge in
general in finite time [28], [29]. Finite-time convergence of
averaging algorithms was investigated in [23], [25], [26] for
continuous-time models, and recently finite-time consensus
in discrete time was discussed in [33] for a special case of
gossiping [32].

In this paper, we make the simple observation that averag-
ing and maximizing algorithms can be viewed as instances
of a more general distributed processing model. Using this
model the transition of the consensus convergence can be
studied for the two classes of distributed algorithms in a
unified way. Each node iteratively updates its state as a
weighted average of its own state together with the minimum
and maximum states of its neighbors. By special cases for
the weight parameters, averaging and maximizing algorithms
can be analyzed. This is the first part of the paper discussing
time-varying communication graphs. Under this uniform
model, we prove for averaging that finite-time consensus is
impossible in general, and asymptotical consensus is possible
only when the node self-confidence satisfies a divergence
condition. Various necessary and/or sufficient conditions are
presented on the consensus convergence. State-dependent
graph models are studied in Part II of the paper [34], and a
complete version of the paper can be found in [35].

The rest of the paper is organized as follows. In Section
II we introduce the considered network model, the uniform
processing algorithm, and the consensus problem. The im-
possibilities of finite-time or asymptotic consensus are stud-
ied in Section III. The main results are presented for time-
dependent graphs in Section IV. Finally some concluding
remarks are given in Section V.

II. PROBLEM DEFINITION

In this section, we introduce the network model, the
considered algorithm, and define the problem of interest.
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A. Network
We first recall some concepts and notations in graph theory

[1]. A directed graph (digraph) G = (V, E) consists of a
finite set V of nodes and an arc set E ⊆ V ×V . An element
e = (i, j) ∈ E is called an arc from node i ∈ V to
j ∈ V . If the arcs are pairwise distinct in an alternating
sequence v0e1v1e2v2 . . . ekvk of nodes vi ∈ V and arcs
ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , k, the sequence is
called a (directed) path with length k. If there exists a path
from node i to node j, then node j is said to be reachable
from node i. Each node is thought to be reachable by itself.
A node v from which any other node is reachable is called
a center (or a root) of G. A digraph G is said to be strongly
connected if node i is reachable from j for any two nodes
i, j ∈ V; quasi-strongly connected if G has a center [2]. The
distance from i to j in a digraph G, d(i, j), is the length
of a shortest simple path i → j if j is reachable from
i, and the diameter of G is diam(G)= max{d(i, j)|i, j ∈
V, j is reachable from i}. The union of two digraphs with
the same node set G1 = (V, E1) and G2 = (V, E2) is defined
as G1 ∪ G2 = (V, E1 ∪ E2). A digraph G is said to be
bidirectional if for every two nodes i and j, (i, j) ∈ E if
and only if (j, i) ∈ E . A bidirectional graph G is said to be
connected if there is a path between any two nodes.

Consider a network with node set V = {1, 2, . . . , n}, n ≥
3. Time is slotted. Denote the state of node i at time k ≥ 0 as
xi(k) ∈ R. Then x(k) =

(
x1(k) . . . xn(k)

)T
represents the

network state. For time-varying graphs, we use the following
definition.

Definition 2.1 (Time-dependent Graph): The interactions
among the nodes are determined by a given sequence of
digraphs with node set V , denoted as Gk = (V, Ek), k =
0, 1, . . . .

Throughout this paper, we call node j a neighbor of node
i if there is an arc from j to i in the graph. Each node
is supposed to always be a neighbor of itself. Let Ni(k)
represent the neighbor set of node i at time k.

B. Algorithm
The classical average consensus algorithm in the literature

is given by

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k), i = 1 . . . , n. (1)

Two standing assumptions are fundamental in determining
the nature of its dynamics:
A1 (Local Cohesion)

∑
j∈Ni(k)

aij(k) = 1 for all i and k;
A2 (Self-confidence) There exists a constant η > 0 such

that aii(k) ≥ η for all i and k.
These assumptions are widely imposed in the existing

works, e.g., [12], [11], [19], [20], [14], [15], [21]. With A1
and A2, we have∑

j∈Ni(k)

aij(k)xj(k) = ηxi(k) +
(
aii(k)− η

)
xi(k)

+
∑

j∈Ni(k),j 6=i

aij(k)xj(k) (2)

and (
1− η

)
min

j∈Ni(k)
xj(k) ≤

(
aii(k)− η

)
xi(k)

+
∑

j∈Ni(k),j 6=i

aij(k)xj(k)

≤
(
1− η

)
max

j∈Ni(k)
xj(k). (3)

Noting the fact that for any c ∈ [a, b] there exists a unique
λ ∈ [0, 1] satisfying c = λa+ (1−λ)b, we see from (3) that
for every i and k, there exists β〈i〉k ∈ [0, 1] such that(

aii(k)− η
)
xi(k) +

∑
j∈Ni(k),j 6=i

aij(k)xj(k)

= β
〈i〉
k

(
1− η

)
min

j∈Ni(k)
xj(k)

+
(
1− β〈i〉k

)(
1− η

)
max

j∈Ni(k)
xj(k)

= α
〈i〉
k min

j∈Ni(k)
xj(k) +

(
1− η − α〈i〉k

)
max

j∈Ni(k)
xj(k), (4)

where α〈i〉k = β
〈i〉
k (1− η) ∈ [0, 1− η].

Therefore, in light of (2) and (4), based on assumptions
A1 and A2, we can always write the average consensus
algorithm (1) into the following equivalent form:

xi(k + 1) = ηxi(k) + α
〈i〉
k min

j∈Ni(k)
xj(k)

+
(
1− η − α〈i〉k

)
max

j∈Ni(k)
xj(k), (5)

where α〈i〉k ∈ [0, 1−η] for all i and k. Thus, the information
processing principle behind distributed averaging is that each
node iteratively takes a weighted average of its current state
and the minimum and maximum states of its neighbor set.

The standard maximizing algorithm [27], [28], [29] is
defined by

xi(k + 1) = max
j∈Ni(k)

xj(k), (6)

so distributed maximizing is each node interacting with its
neighbors and simply taking the maximal state within its
neighbor set.

In this paper, we aim to present a model under which
we can discuss fundamental differences of some distributed
information processing mechanisms. We consider the follow-
ing algorithm for the node updates:

xi(k + 1) = ηkxi(k) + αk min
j∈Ni(k)

xj(k)

+
(
1− ηk − αk

)
max

j∈Ni(k)
xj(k), (7)

where αk, ηk ≥ 0 and αk + ηk ≤ 1. We denote the set of
all algorithms of the form (7) by A, when the parameter
(αk, ηk) takes value as ηk ∈ [0, 1], αk ∈ [0, 1 − ηk]. This
model is a special case of (5) as the parameter αk is not
depending on the node index i in (7).

Note that A represents a uniform model for distributed
averaging and maximizing algorithms. Obeying the cohesion
and self-confidence assumptions, the set of (weighted) aver-
aging algorithms, Aave, consists of algorithms in the form
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of (7) with parameters ηk ∈ (0, 1], αk ∈ [0, 1− ηk]. The set
of maximizing algorithms, Amax, is given by the parameter
set ηk ≡ 0 and αk ≡ 0.

Remark 2.1: Algorithm (7) is more restrictive than (5) in
the sense that the averaging weight α〈i〉k in (5) might vary
for different nodes. Hence, (7) cannot in general capture
the averaging algorithm (1). Except for this difference, the
standing assumptions A1 and A2 of average consensus
algorithms are still fulfilled for algorithm (7).

Remark 2.2: In Algorithm (7) each node’s update only
depends on the states of the minimum and maximum neigh-
bor states at every time step. In other words, not all links
are active explicitly in the iterations. Therefore, the existing
convergence results on averaging algorithms cannot be ap-
plied directly, since these results rely on the connectivity of
the communication graph.

Remark 2.3: Following Algorithm (7), it is straightfor-
ward to see that the convergence limit is a convex combina-
tion of the initial values if consensus is reached. But due to
the state-dependent node update in (7), the coefficients in the
convex combination of the consensus limit indeed depend on
the initial condition (even with fixed communication graph).

C. Problem

Let
{
x(k;x0) =

(
x1(k;x0) . . . xn(k;x0)

)T}∞
0

be the
sequence generated by (7) for initial time k0 and initial value
x0 = x(k0) =

(
x1(k0) . . . xn(k0)

)T ∈ Rn. We will identify
x(k;x0) as x(k) in the following discussions. We introduce
the following definition on the convergence of the considered
algorithm.

Definition 2.2: (i) Asymptotic consensus is achieved for
Algorithm (7) for initial condition x(k0) = x0 ∈ Rn if there
exists z∗(x0) ∈ R such that

lim
k→∞

xi(k) = z∗, i = 1, . . . , n.

Global asymptotic consensus is achieved if asymptotic con-
sensus is achieved for all k0 ≥ 0 and x0 ∈ Rn.

(ii) Finite-time consensus is achieved for Algorithm (7) for
initial condition x(k0) = x0 ∈ Rn if there exist z∗(x0) ∈ R
and an integer T∗(x0) > 0 such that

xi(T∗) = z∗, i = 1, . . . , n.

Global finite-time consensus is achieved if finite-time con-
sensus is achieved for all k0 ≥ 0 and x0 ∈ Rn.

The algorithm reaching consensus is equivalent with that
x(k) converges to the manifold

C =
{
x = (x1 . . . xn)T : x1 = · · · = xn

}
.

We call C the consensus manifold. Its dimension is one.
In the following, we focus on the impossibilities and

possibilities of asymptotic or finite-time consensus. We will
show that the convergence properties drastically change when
Algorithm (7) transits from averaging to maximizing.

III. CONVERGENCE IMPOSSIBILITIES

In this section, we discuss the impossibilities of asymptotic
or finite-time convergence for the averaging algorithms in
Aave. One theorem for each case is proven.

Theorem 3.1: For every averaging algorithm in Aave,
finite-time consensus fails for all initial values in Rn except
for initial values on the consensus manifold.
Proof. We define

h(k) = min
i∈V

xi(k); H(k) = max
i∈V

xi(k).

Introduce Φ(k) = H(k) − h(k). Then clearly asymptotic
consensus is achieved if and only if limk→∞Φ(k) = 0.

Take a node i satisfying xi(k) = h(k). We have

xi(k + 1) = ηkxi(k) + αk min
j∈Ni(k)

xj(k)

+
(
1− ηk − αk

)
max

j∈Ni(k)
xj(k)

≤ (αk + ηk)h(k) + (1− ηk − αk)H(k). (8)

Similarly, taking another node m satisfying xm(k) = H(k),
we obtain

xm(k + 1) = ηkxj(k) + αk min
m∈Ni(k)

xj(k)

+
(
1− ηk − αk

)
max

m∈Ni(k)
xj(k)

≥ αkh(k) + (1− αk)H(k). (9)

With (8) and (9), we conclude that

Φ(k + 1) = max
i∈V

xi(k)−min
i∈V

xi(k)

≥ xm(k + 1)− xi(k + 1)

≥ ηkΦ(k). (10)

Therefore, since (10) holds for all k, we immediately obtain
that for every algorithm in the averaging set Aave,

Φ(K) ≥ Φ(k0)

K−1∏
k=k0

ηk > 0 (11)

for all K ≥ k0 as long as Φ(k0) > 0. Noticing that the initial
values satisfying Φ(k0) = 0 are on the consensus manifold,
the desired conclusion follows. �

Since the consensus manifold is a one-dimensional man-
ifold in Rn, Theorem 3.1 indicates that finite-time conver-
gence is almost impossible for average consensus algorithms.
This partially explains why finite-time convergence results
are rare for averaging algorithms in the literature.

Next, we discuss the impossibility of asymptotic consen-
sus. The following lemma is well-known.

Lemma 3.1: Let {bk}∞0 be a sequence of real numbers
with bk ∈ [0, 1) for all k. Then

∑∞
k=0 bk = ∞ if and only

if
∏∞

k=0(1− bk) = 0.
The following theorem on asymptotic convergence holds.
Theorem 3.2: For every averaging algorithm in Aave,

asymptotic consensus fails for all initial values in Rn except
for initial values on the consensus manifold, if

∑∞
k=0

(
1 −

ηk
)
<∞.
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Proof. In light of Lemma 3.1 and (11), we see that for every
algorithm in the averaging set Aave,

lim
K→∞

Φ(K) ≥ Φ(k0)

∞∏
k=k0

ηk > 0 (12)

if
∑∞

k=0

(
1 − ηk

)
< ∞ for all initial values satisfying

Φ(k0) > 0. The desired conclusion thus follows. �
Theorem 3.2 indicates that

∑∞
k=0

(
1 − ηk

)
= ∞ is a

necessary condition for average algorithms to reach asymp-
totic consensus. Note that ηk measures node self-confidence.
Thus, the condition

∑∞
k=0

(
1 − ηk

)
= ∞ characterizes the

maximal self-confidence that nodes can hold and still reach
consensus.

It is worth pointing out that Theorems 3.1 and 3.2 hold
for any communication graph.

IV. MAIN RESULTS

In this section, we focus on time-dependent graphs. We
first discuss a special case when the network topology is
fixed, and then time-varying communications will be dis-
cussed.

A. Fixed Graph

For fixed communication graphs, we present the following
result.

Theorem 4.1: Suppose Gk ≡ G∗ is a fixed digraph for all
k.

(i) For every algorithm in Aave, global asymptotic consen-
sus can be achieved only if G∗ is quasi-strongly connected.

(ii) For every algorithm in Amax, global finite-time con-
sensus is achieved if and only if G∗ is strongly connected.
Proof. (i) If G∗ is not quasi-strongly connected, there exist
two distinct nodes i and j such that V1 ∩ V2 = ∅, where
V1 = {nodes from which i is reachable in G∗} and V2 =
{nodes from which j is reachable in G∗}. Consequently,
nodes in V1 never receive information from nodes in V2.
Take xi(k0) = 0 for i ∈ V1 and xi(k0) = 1 for i ∈ V2.
Obviously, consensus cannot be achieved under this initial
condition. The conclusion holds.

(ii) The result was proved in [27], and here we provide a
simple graphical proof.

(Sufficiency.) Let v0 be a node with the maximal value
initially. Then after one step all the nodes for which v0 is
a neighbor will reach the maximal value. Proceeding the
analysis we see that the whole network will converge to the
initial maximum in finite time.
(Necessity.) Assume that G∗ is not strongly connected. There
will be two different nodes i∗ and j∗ such that j∗ is not
reachable from i∗. Introduce V∗ = {j : j is reachable from
i∗}. Then V∗ 6= V because j∗ /∈ V∗. Moreover, the definition
of V∗ guarantees that all the nodes in V \ V∗ will never
be influenced by the nodes in V∗. Therefore, letting the
initial maximum be unique and reached by some node in
V∗, consensus will not be reached.

The proof is complete. �
As will be shown in the following discussions, quasi-

strong connectivity is not only necessary, but also sufficient

to guarantee global asymptotic consensus for the algorithms
in the averaging set Aave under some mild conditions on the
parameters (αk, ηk). Therefore, Theorem 4.1 clearly states
that quasi-strong connectivity is critical for averaging, as is
strong connectivity for maximizing.

B. Time-varying Graph

We now turn to time-varying graphs. Denote the joint
graph of Gk over time interval [k1, k2] as G

(
[k1, k2]

)
=

(V,∪k∈[k1,k2]E(k)), where 0 ≤ k1 ≤ k2 ≤ +∞. We
introduce the following definitions on the joint connectivity
of time-varying graphs.

Definition 4.1: (i) Gk is uniformly jointly quasi-strongly
connected (strongly connected) if there exists an integer B ≥
1 such that G

(
[k, k + B − 1]

)
is quasi-strongly connected

(strongly connected) for all k ≥ 0.
(ii) Gk is infinitely jointly strongly connected if G

(
[k,∞)

)
is strongly connected for all k ≥ 0.

(iii) Suppose Gk is bidirectional for all k. Then Gk is
infinitely jointly connected if G

(
[k,∞)

)
is connected for all

k ≥ 0.
Remark 4.1: The uniformly joint connectivity, which re-

quires the union graph to be connected over each bounded
interval, has been extensively studied in the literature, e.g.,
[11], [12], [14], [15]. The infinitely joint connectivity is
a more general case since it does not impose an upper
bound for the length of the interval where connectivity is
guaranteed for the union graph. Convergence results for
consensus algorithms based on infinitely joint connectivity
are given in [16], [17], [18].

The following conclusion holds for uniformly jointly
quasi-strongly connected graphs.

Theorem 4.2: Suppose Gk is uniformly jointly
quasi-strongly connected. Algorithms in the averaging
set Aave achieve global asymptotic consensus
if either

∑∞
s=0

[∏(s+1)(n−1)2B−1
k=s(n−1)2B αk

]
= ∞ or∑∞

s=0

[∏(s+1)(n−1)2B−1
k=s(n−1)2B

(
1− αk − ηk

)]
=∞.

Theorem 4.2 hence states that divergence of certain prod-
ucts of the algorithm parameters guarantees global asymp-
totic consensus.

It is straightforward to see that for a non-negative sequence
{bk} with bk ≥ bk+1 for all k,

∑∞
s=0

∏(s+1)(n−1)2−1
k=s(n−1)2B bk =

∞ if and only if
∑∞

k=0 b
(n−1)2B
k =∞. Thus, the following

corollary follows from Theorem 4.2.
Corollary 4.1: Suppose Gk is uniformly jointly quasi-

strongly connected.
(i) Assume that αk ≥ αk+1 for all k. Algorithms in the

averaging set Aave achieve global asymptotic consensus if∑∞
k=0 α

(n−1)2B
k =∞.

(ii) Assume that αk + ηk ≤ αk+1 + ηk+1 for all k. Algo-
rithms in the averaging set Aave achieve global asymptotic
consensus if

∑∞
k=0

(
1− αk − ηk

)(n−1)2B
=∞.

For uniformly jointly strongly connected graphs, it turns
out that consensus can be achieved under weaker conditions
on (αk, ηk).
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Theorem 4.3: Suppose Gk is uniformly jointly
strongly connected. Algorithms in the averaging
set Aave achieve global asymptotic consensus
if either

∑∞
s=0

[∏(s+1)(n−1)B−1
k=s(n−1)B αk

]
= ∞ or∑∞

s=0

[∏(s+1)(n−1)B−1
k=s(n−1)B

(
1− αk − ηk

)]
=∞.

Similarly, Theorem 4.3 leads to the following corollary.
Corollary 4.2: Suppose Gk is uniformly jointly strongly

connected.
(i) Assume that αk ≥ αk+1 for all k. Averaging algorithms

in the set Aave achieve global asymptotic consensus if∑∞
k=0 α

(n−1)B
k =∞.

(ii) Assume that αk + ηk ≤ αk+1 + ηk+1 for all k. Aver-
aging algorithms in the set Aave achieve global asymptotic
consensus if

∑∞
k=0

(
1− αk − ηk

)(n−1)B
=∞.

For bidirectional graphs, the conditions are much simpler
to state. We present the following result.

Theorem 4.4: Suppose Gk is bidirectional for all k and
Gk is infinitely jointly connected. Averaging algorithms in
the set Aave achieves achieve global asymptotic consensus
if there exists a constant α∗ ∈ (0, 1) such that either αk ≥ α∗
or 1− αk − ηk ≥ α∗ for all k.

The convergence of algorithms in the maximizing set
Amax is stated as follows.

Theorem 4.5: Maximizing algorithms in the set Amax

achieve global finite-time consensus if Gk is infinitely jointly
strongly connected.

Theorems 4.2–4.5 together provide a comprehensive un-
derstanding of the convergence conditions for the considered
model (7) under time-varying graphs. Infinitely jointly strong
connectivity is sufficient for global finite-time consensus
for algorithms in Amax according to Theorem 4.5, while
infinitely joint connectivity cannot ensure global asymptotic
consensus for algorithms in Aave in general. Thus, in this
sense algorithms in Aave and Amax are fundamentally dif-
ferent under infinitely jointly connected graphs.

The rest of this section contains the proofs of Theorems
4.2–4.5.

1) Proof of Theorem 4.2: Following any solution of (7),
it is obvious to see that h(k) is non-decreasing and H(k)
is non-increasing. Due to the symmetry of the algorithm we
just need to show that

∑∞
s=0

[∏(s+1)(n−1)2B−1
k=s(n−1)2B αk

]
=∞ is

a sufficient condition for asymptotic consensus.
Take k∗ ≥ 0 as any moment in the iterative algorithm.

Take (n − 1)2 intervals [k∗, k∗ + B − 1], [k∗ + B, k∗ +
2B − 1], . . . , [k∗ + (n2 − 2n)B, k∗ + (n− 1)2B − 1]. Since
Gk is uniformly jointly quasi-strongly connected, the union
graph on each of these intervals has at least one center node.
Consequently, there must be a node v0 and n − 1 integers
0 ≤ b1 < b2 < · · · < bn−1 ≤ n2 − 2n such that v0 is a
center of G

(
[k∗+biB, k∗+(bi +1)B−1]

)
, i = 1, . . . , n−1.

Assume that

xv0(k∗) ≤
1

2
h(k∗) +

1

2
H(k∗). (13)

Then through recursive estimation we can obtain (details

can be found in [35])

Φ
(
k∗ + (n− 1)2B

)
≤
(

1−
∏k∗+(n−1)2B−1

k=k∗
αk

2

)
Φ(k∗).

(14)

From a symmetric analysis by bounding h(k∗+(n−1)2B)
from below, we know that (14) also holds for the other
condition with xv0(k∗) ≥ 1

2h(k∗)+
1
2H(k∗). Therefore, since

k∗ is selected arbitrarily, we can assume the initial time is
k0 = 0, without loss of generality, and then conclude that

Φ
(
K(n− 1)2B

)
≤ Φ(0)

K−1∏
s=0

(
1− 1

2

(s+1)(n−1)2B−1∏
k=s(n−1)2B

αk

)
.

The desired conclusion follows immediately from Lemma
3.1.

2) Proof of Theorem 4.3: Notice that in a strongly con-
nected graph, every node is a center node. Therefore, when
Gk is uniformly jointly strongly connected, taking k∗ ≥ 0 as
any moment in the iteration and n−1 intervals [k∗, k∗+B−
1], [k∗+B, k∗+2B−1], . . . , [k∗+(n−2)B, k∗+(n−1)B−1],
any node i ∈ V is a center node for the union graph over
each of these intervals. As a result, the desired conclusion
follows repeating the analysis used in the proof of Theorem
4.2.

3) Proof of Theorem 4.4: Similar to the proof of Theorem
4.2, we only need to show that the existence of a constant
α∗ ∈ (0, 1) such that αk ≥ α∗ is sufficient for asymptotic
consensus.

Take k∗1 ≥ 0 as an arbitrary moment in the iterative
algorithm. Take a node u0 ∈ V satisfying xu0(k∗1) = h(k∗1).
We define k1 = inf

{
k ≥ k∗1 : there exists another node

connecting u0 at time k
}

, and then V1 =
{
k ≥ k∗1 : nodes

which are connected to u0 at time k1
}

. Thus, we have

xu0
(k1 + 1) = ηk1

xu0
(k1) + αk1

min
j∈Nu0 (k1)

xj(k1)

≤ α∗h(k∗1) +
(
1− α∗

)
H(k∗1) (15)

and

xi(k1 + 1) ≤ α∗h(k∗1) +
(
1− α∗

)
H(k∗1) (16)

for all i ∈ V1.
Note that if nodes in {u0} ∪ V1 are not connected with

other nodes in V \ ({u0}∪V1) during [k1 +1, k1 +s], s ≥ 1,
we have that for all i ∈ {u0} ∪ V1,

xi(k1 +m) ≤ α∗h(k∗1) +
(
1− α∗

)
H(k∗1) (17)

for all m = 1, . . . , s+1. Continuing the estimate, k2, . . . , kd
and V2, . . . ,Vd can be defined correspondingly until V =
{u0} ∪ (∪di=1Vi), so eventually we have

xi(kd + 1) ≤ αd
∗h(k∗1) +

(
1− αd

∗
)
H(k∗1), i = 1, . . . , n,

(18)

which implies

H(kd + 1) ≤ αd
∗h(k∗1) +

(
1− αd

∗
)
H(k∗1). (19)
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We denote k∗2 = kd + 1. Because it holds that d ≤ n−1, we
see from (19) that

Φ(k∗2) ≤
(
1− αn−1

∗
)
Φ(k∗1). (20)

Since Gk is infinitely jointly connected, this process can be
carried on for an infinite sequence k∗1 < k∗2 < . . . . Thus,
asymptotic consensus is achieved for all initial conditions.
This completes the proof.

4) Proof of Theorem 4.5: Let v0 be a node with the
maximal value initially. Because Gk is infinitely jointly
strongly connected, we can define k1 = inf

{
k ≥ k∗1 : there

exists another node for which v0 is a neighbor at time k
}

and then V1 =
{
k ≥ k∗1 : nodes for which v0 is a neighbor

at time k1
}

. Then at time k1 + 1 all the nodes in V1 will
reach the maximal value. Proceeding the analysis we know
that the whole network will converge to the initial maximum
in finite time. �

V. CONCLUSIONS

This paper focused on a uniform model for distributed
averaging and maximizing. Each node iteratively updated its
state as a weighted average of its own state, the minimal
state, and maximal state among its neighbors. We proved
that finite-time consensus is almost impossible for averaging
under the uniform model. This part of the paper investigate
time-dependent communication graphs. Necessary and suffi-
cient conditions were established on the graph to ensure a
global consensus. We showed that quasi-strong connectivity
is critical for averaging algorithms, as is strong connec-
tivity for maximizing algorithms. The results revealed the
fundamental connection and difference between distributed
averaging and maximizing.
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