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Abstract—This paper presents a cloud-supported control
algorithm for coordinated trajectory tracking of networked
autonomous agents. The motivating application is the coordi-
nated control of Autonomous Underwater Vehicles. The control
objective is to have the vehicles track a reference trajectory
while keeping an assigned formation. Rather than relying on
inter-agent communication, which is interdicted underwater,
coordination is achieved by letting the agents intermittently
access a shared information repository hosted on a cloud.
An event-based law is proposed to schedule the accesses of
each agent to the cloud. We show that, with the proposed
scheduling of the cloud accesses, the agents achieve the required
coordination objective. Numerical simulations corroborate the
theoretical results.

I. INTRODUCTION

Networked vehicle systems have attracted a notable
amount of research in the past few decades [1]–[3]. In most
applications, employing a team of vehicle agents instead of
a single platform has numerous advantages. For example, a
group of agents usually provides robustness with respect to
the failure of a single agent in the group. When sampling
a property in a region of the space, a team of mobile
agents will provide a larger number of samples and increased
data redundancy. Also, certain tasks may be structurally
impossible to perform with a single agent. However, the
use of a fleet inevitably brings about the problem of coordi-
nating the vehicles. Multi-agent coordination is particularly
challenging in the case of Autonomous Underwater Vehicles
(AUVs) because of their limited communication, sensing
and localization capabilities [4], [5]. AUVs have numerous
applications, including, to name just a few, oceanographic
surveys, mine search, inspection of underwater structures,
and measurement of chemical properties in a water body [6].
Underwater communication may be implemented by means
of acoustic modems, but such modems are notoriously expen-
sive, power-hungry and limited in both radius and bandwidth.
Underwater positioning is also difficult, since good inertial
sensors are very expensive, and acoustic positioning systems
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have a limited range. Moreover, GPS is not available under-
water, and a vehicle has to surface whenever it needs to get
a position fix [7]. To deal with communication constraints,
event- and self-triggered control designs [8] can be applied
to networked multi-agent systems [9]. In this paper, self-
triggered multi-agent control is considered in combination
with the support of a shared information repository hosted
on a cloud. Namely, the cloud is intermittently accessed by
the agents according to a self-triggered protocol. Since direct
communication among the agents is interdicted when they
are underwater, the agents only exchange data through the
cloud repository, which is accessed asynchronously. The mo-
tivating application is a leader-following trajectory tracking
task for a formation of AUVs subject to disturbances. In the
traditional event- and self-triggered networked control, one-
to-one communication needs to be established at least when
an agent needs to update its control signal. Conversely, with
cloud-based approaches [10]–[12], the vehicles exchange
information without opening a communication channel be-
tween each other. Each vehicle simply leaves its information
on the cloud for the others to download later. A cloud-
supported control architecture for multi-agent coordination
was proposed by the authors in [12], where the problem of
driving a team of vehicles to a static formation is addressed.
In this paper, the approach is further developed to address
multi-agent leader-follower tracking problems, under more
general network topologies. Two different coordination ob-
jectives, namely practical and asymptotic convergence to a
given formation, are formulated mathematically, and graph-
theoretical results are used to show that the proposed cloud-
supported strategy achieves the desired objectives, despite
only using outdated information. Edge-space analysis [13],
[14] is used to address directed network topologies, thus
allowing for leader-follower coordination.

II. PRELIMINARIES

In this paper, ‖⋅‖ denotes the euclidean norm of a vector
or the corresponding induced norm of a matrix. Moreover,
{A}i,k denotes the entry of A in the i-th row and k-th column,
while {A}⊤i denotes the row vector corresponding to the i-th
row of A. The null vector in ℝn is denoted as 0n. The set of
the positive integers is denoted as ℕ, while ℕ0 = ℕ ∪ {0}.

A digraph is a tuple ( , ) with  = {1,… , N} and  ⊆
{(j, i) ∶ i, j ∈  , i ≠ j}. The elements of  and  are called
respectively vertexes and edges of the graph. A path from
vertex j to vertex i is a sequence of vertexes starting with j
and ending with i such that any two consecutive vertexes in
the sequence constitute an edge. A spanning tree is a digraph
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( ,  ) with N −1 edges such that there exists a node r with
a path to any other node. The node r is called the root of the
spanning tree. A digraph ( , ) is said to contain a spanning
tree if ( ,  ) is a spanning tree for some subset  of  .
Consider a digraph ( , ), and let the edges be denoted as
 = {e1,… , eM}. The incidence matrix of the digraph is
defined as B ∈ ℝN×M such that

{B}i,k =

⎧

⎪

⎨

⎪

⎩

1 if ek = (j, i) for some j ∈  ,
−1 if ek = (i, j) for some j ∈  ,
0 otherwise.

The in-incidence matrix is defined as B⊙ ∈ ℝN×M such
that {B⊙}i,k = {B}i,k if {B}i,k ∈ {0, 1} and {B⊙}i,k = 0
if {B}i,k = −1. For a spanning tree, the edge Laplacian
[14] is defined as Le = B⊤B⊙. For a digraph ( , ) that
contains a spanning tree, but is not itself a spanning tree, let
 =  ∪ , with ( ,  ) being a spanning tree. Without loss
of generality, let  = {e1,… , eN−1} and  = {eN ,… , eM}.
Partition the incidence and in-incidence matrices accordingly
as B = [B , B] and B⊙ = [B⊙ , B

⊙
 ] respectively. Then,

B has a left-pseudoinverse B† [15], and the reduced edge
Laplacian is defined as

Lr = B⊤ (B
⊙
 + B

⊙
 (B

†
 B)⊤). (1)

For any spanning tree, the edge Laplacian is positive definite,
while for any graph that contains a spanning tree, but is not
itself a spanning tree, the reduced edge Laplacian is positive
definite [14].

III. PROBLEM SETTING
Consider a multi-agent system composed of N agents

indexed as i ∈ {1,… , N} =  , with kinematics described
by

{

ẋi(t) = ui(t) + di(t) ∀t ≥ 0, i ∈ ,
xi(0) = xi,0 ∀i ∈ .

(2)

where xi(t) ∈ ℝn represents the state of agent i, xi,0 is
the initial state, ui(t) represents a control input, and di(t)
represents a disturbance signal. The control objective is to
have all the agents follow a desired reference trajectory r(t)
within a given tolerance. Such control objective is referred
to as practical consensus to the trajectory r(t), and can be
formalized as follows.

Definition III.1. The multi-agent system (2) is said to
achieve practical consensus to the reference trajectory r(t)
with tolerance � > 0 if lim supt→∞‖xi(t) − r(t)‖ ≤ � for all
i ∈ .

Remark III.1. In terms of our motivating application, we
have n = 2, each agent represents an AUV, and xi(t) +
bi ∈ ℝ2 represents a waypoint for vehicle i, where bi is
a constant bias vector. In this way, practical consensus of
x1(t),… , xN (t) corresponds to convergence of the vehicles to
a formation about r(t) defined by the bias vectors b1,… , bN .
However, the analysis remains valid for any n ∈ ℕ.

The reference trajectory can be measured only by a subset

 ⊆ of the agents, which are referred to as the leaders in
the multi-agent system. In this work, we assume that the
agents cannot exchange any direct information with each
other. This models the scenarios where, as in our AUV setup,
communication among the agents is physically interdicted. In
order to exchange information, the agents can only upload
and download data on a shared repository hosted on a cloud.
Namely, when it is connected to the cloud, an agent can
deposit some information, and, at the same time, download
some information that was previously uploaded by some
other agents. On the other hand, when it is not connected to
the cloud, an agent cannot exchange information at all. For
the purposes of this work, an agent’s access to the cloud can
be considered an instantaneous event, while communication
protocol problems, such as delays and packet losses, are left
out of the scope of this work. The cloud is modelled as a
shared resource with limited throughput and storage capacity,
and thanks to the control algorithm that we are going to
define, it is accessed only intermittently and asynchronously,
and the amount of data stored therein does not grow over
time. For each agent i, we define the sequence {ti,k}k∈ℕ0 of
the agent’s accesses to the cloud. Namely, ti,k with k ∈ ℕ
denotes the time when agent i accesses the cloud for the k-
th time, while conventionally ti,0 = 0 for all i ∈  . When
an agent i accesses the cloud at time ti,k, it also triggers a
measurement of its current state, which we denote as xi,k:

xi,k = x(ti,k). (3)

If agent i is a leader, it also produces a measurement of the
current value of the reference trajectory, which we denote as
ri,k:

ri,k = r(ti,k). (4)

The disturbance signals and the reference trajectory satisfy
the following assumption.

Assumption III.1. The disturbance signals di(t) in (2) and
the reference trajectory r(t) satisfy ‖di(t)‖ ≤ �i(t) and
‖ṙ(t)‖ ≤ �0(t), where

�i(t) = (�i,0 − �i,∞) e−�� +�i,∞, i ∈ {0, 1,… , N},

and �i,0, �i,∞, �� , are known non-negative constants for all
i ∈ {0, 1,… , N}.

Our goal is to propose a control strategy such that each
agent uses the information acquired from the cloud to attain
practical consensus as by Definition III.1. To completely
specify the control strategy, we need to define: the control
signals for each agent, the information that is uploaded and
downloaded by each agent when accessing the cloud, and a
law for scheduling the cloud accesses.

First, we define the control signals ui(t). In the proposed
control strategy, each signal ui(t) is piecewise constant, and
it is updated upon agent’s i cloud accesses, i.e.,

ui(t) = ui,k ∀t ∈ [ti,k, ti,k+1). (5)
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AGENT TIME POSITION CONTROL NEXT
1 t1,l1(t) x1,l1(t) u1,l1(t) t1,l1(t)+1
2 t2,l2(t) x2,l2(t) u2,l2(t) t2,l2(t)+1
⋮ ⋮ ⋮ ⋮ ⋮
N tN,lN (t) xN,lN (t) uN,lN (t) tN,lN (t)+1

Table III. Schematic representation of the data stored in the cloud at a
generic time instant t ≥ 0.

Namely, the control signals are computed as follows:

ui,k = c
(

pi(ri,k − xi,k) +
∑

j∈i

(x̂i,kj − xi,k)
)

, (6)

where c > 0 is a control gain, pi = 1 if i ∈  and pi = 0
otherwise, i ⊆  ⧵ {i}, and x̂i,kj is an estimate of the
state of agent j done by agent i at time ti,k. Such estimate
is defined later in this section.

Next, we define the information uploaded and downloaded
by each agent when accessing the cloud. When agent i
accesses the cloud at time ti,k, it uploads: the current time ti,k,
the measurement of its current state xi,k, the control signal
ui,k that is going to be applied until the following access,
and the scheduled time ti,k+1 of the following access. When
these values are uploaded, they overwrite those that were
uploaded by the same agent upon the previous access. In
this way, the amount of data contained in the cloud remains
constant. Namely, for each agent, the cloud contains the
information that was uploaded upon that agent’s most recent
access. Denoting as li(t) the index of the most recent access
of agent i before time t, i.e. li(t) = max{k ∈ ℕ0 ∶ ti,k ≤ t},
a tabular representation of the data contained in the cloud at
a generic time t is given in Table III.

Before uploading its own information, agent i downloads
and stores the information corresponding to the agents j ∈
i. Such information is used by agent i to construct the
estimates x̂i,kj for j ∈ i that are used for computing the
control signal (6), and also to schedule its following access to
the cloud. Namely, the estimate x̂i,kj is computed as follows:

x̂i,kj = xj,lj (ti,k) + uj,lj (ti,k)(ti,k − tj,lj (ti,k)). (7)

Note that such estimate coincides with the state that agent j
would have at time ti,k if no disturbances were acting on it
in the time interval [tj,lj (ti,k), ti,k).

Finally, let us define the rule for scheduling the agents’
accesses to the cloud. Each agent schedules its own accesses
recursively, according to the following rule:

ti,k+1 = inf{t > ti,k ∶Δi,k(t) ≥ �i,k(t) ∨ �i,k(t) ≥ &i(t)}, (8)
Δi,k(t) =∫

t
ti,k
�i(�)d�, (9)

�i,k(t) = min
q∶i∈q

{ &q(t)
2c|q|

}

, (10)

�i,k(t) =c
(

‖

‖

‖

‖

(|i| + pi)ui,k(t − ti,k)

−
∑

j∈i

uj,ℎj (min{t, tj,ℎj+1} − ti,k)
‖

‖

‖

‖

+ (|i| + pi)Δi,k(t) + pi ∫

t

ti,k
�0(�)d�

+
∑

j∈i

Δj,ℎj (t) +
∑

j∈i
t>tj,ℎj+1

∫

t

tj,ℎj+1
�j(�)d�

)

, (11)

&i(t) =(&i,0 − &i,∞) e
−�& +&i,∞, (12)

where &i,0, &i,∞ and �& are given non-negative constants
for all i ∈  , ℎj = lj(ti,k), �i(t) and �(t) are defined in
Assumption III.1, and �j(�) is a bounded scalar signal to be
given later in the paper. The expression of Ci,k(t) emerges
from the analysis conducted in the following section, and
therefore, will be clarified later. Note however that functions
(9)–(12) can be computed locally by agent i at time ti,k by
using the information acquired from the cloud at that time,
and knowing |q| for q ∶ i ∈ q . The functions &i(t) with
i ∈  are referred to as threshold functions, since &i(t)
a threshold that �i,k(t) must overcome to trigger the cloud
access ti,k+1 of agent i.

Remark III.2. In terms of our motivating application, an
agent’s accesses the cloud correspond to the times when an
AUV comes to the water surface. A position measurement
corresponds to GPS fix that a vehicle can obtain while on
the water surface. On the other hand, when a vehicle is
underwater, it cannot communicate with other vehicles or
access GPS. Nevertheless, it has to find a control value and
the next surfacing instant coping with the fact that in the
future other vehicles will surface and update their control
input to a yet unknown value.

Remark III.3. The fundamental difference between the pro-
posed control strategy and the majority of the existing self-
triggered coordination strategies for multi-agent systems is
that, in the proposed strategy, an agent does not require other
agents to exchange information when it needs to update its
control signal. Conversely, when an agent needs to update
its control signal, it uses the information that is already
available in the cloud, i.e., that was previously uploaded by
the other agents upon their own access times.

IV. MAIN RESULT

In this section, we show how the multi-agent system
(2), under the control algorithm defined by (5)–(12), can
achieve practical consensus to the reference trajectory as by
Definition III.1. First, we need to introduce a digraph induced
by the sets  and i with i ∈ that captures the topology
of the information exchanges processed through the cloud.

Definition IV.1. Consider the multi-agent system (2) under
the control law (6). Let  =  ∪ {0} and  = {(j, i) ∶
j ∈ i, i ∈  } ∪ {(0, i) ∶ i ∈ }. We say that the
digraph ( , ) is the digraph associated with the multi-agent
system. Moreover, we denote the edges of the digraph as
 = {e1,… , eM}.

Note that (j, i) ∈  for some i, j ∈  if and only
if agent i downloads the information uploaded by agent
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j, while (0, i) ∈  if and only if agent i is a leader,
i.e., if it receives information about the reference trajectory.
Therefore, the digraph ( , ) represents the topology of the
information exchanges that are processed through the cloud.
The following assumption ensures that the information about
the reference trajectory can reach all the agents in the system.

Assumption IV.1. The digraph ( , ) associated with the
multi-agent system (2) contains a spanning tree with root
in the vertex 0. Namely, we let, without loss of generality,
 =  ∪ , where  = {e1,… , eN−1},  = {eN ,… , eM},
and ( ,  ) is a spanning tree with root in the vertex 0.

For each edge el = (j, i) ∈  , with l ∈ {1,… ,M}, we let
yl(t) = xj(t)−xi(t) if j ∈ , and yl(t) = r(t)−xi(t) if j = 0.
In other words, yl(t) is the mismatch between the states of
the two agents whose indexes appear in the edge el . Let
y (t) = [y⊤1 (t),… , y⊤N−1(t)]

⊤, y(t) = [y⊤N (t),… , y⊤M (t)]
⊤,

and
y(t) = [y⊤ (t), y

⊤
 (t)]

⊤. (13)

Let B and B⊙ be respectively the incidence and in-
incidence matrices of ( , ), and let them be partitioned
as B = [B , B] and B⊙ = [B⊙ , B

⊙
 ] according to how

 is partitioned into  and . Note that, letting x(t) =
[r⊤(t), x⊤1 (t),… , x⊤N (t)]

⊤, we have

y (t) = − (B⊤ ⊗ In)x(t) (14)
y(t) = − (B⊤ ⊗ In)x(t). (15)

Under Assumption IV.1, B has a left-pseudoinverse B† (see
[15] for further details), therefore, from (14) and (15), it
follows that

y(t) = ((B
†
 B)⊤ ⊗ In)y (t). (16)

Finally, let the reduced edge Laplacian Lr of ( , ) be
defined as in Section II. If ( , ) is itself a spanning tree, let
y (t) = y(t), B = B and Lr = Le, where Le is also defined
in Section II. Next, let us introduce some signals which shall
be used in the convergence analysis. Consider the signals

vi(t) = c
(

pi(r(t) − xi(t)) +
∑

j∈i

(xj(t) − xi(t))
)

, (17)

for all i ∈  . Note that vi(t) can be obtained from
(6) by substituting the measurements ri,k, xi,k and the es-
timates x̂i,kj respectively with ri(t), xi(t) and xj(t). Let v(t) =
[0⊤n , v1(t)

⊤,… , vN (t)⊤]⊤ so that we can rewrite (17) com-
pactly as

v(t) = c(B⊙ ⊗ In)y(t). (18)

Let ũi(t) be the mismatch between the actual control input
ui(t) and vi(t) for each i ∈ , i.e.,

ũi(t) = ui(t) − vi(t), (19)

and let ũ(t) = [0⊤n , ũ1(t)
⊤,… , ũN (t)⊤]⊤. We are now in the

position to state our first convergence result.

Theorem IV.1. Consider the multi-agent system (2), and let
Assumptions III.1 and IV.1 hold. If ‖ũi(t)‖ ≤ &i(t) for all

t ∈ [0, t̄) and all i ∈  , then there exist �, � > 0 such that
‖y (t)‖ ≤ �(t) for all t ∈ [0, t̄), where

�(t) =�
(

�0 e−c�t +‖B ‖∫

t

0
e−c�(t−�)‖�(�) + &(�)‖d�

)

,

(20)
�0 = ‖y (0)‖, �(t) = [�0(t), �1(t),… , �N (t)]⊤ and &(t) =
[0, &1(t),… , &N (t)].

Proof. Substituting (19) into (2), we have

ẋi(t) = vi(t) + ũi(t) + di(t). (21)

Letting d(t) = [ṙ⊤(t), d⊤1 (t),… , d⊤N (t)]
⊤, (21) can be rewrit-

ten compactly as

ẋ(t) = v(t) + ũ(t) + d(t). (22)

Left-multiplying both sides of (22) by −(B⊤ ⊗In), and using
(14) and (18) and the properties of the Kronecker product,
we have

ẏ (t) = − c(B⊤ B
⊙ ⊗ In)y(t) − (B⊤ ⊗ In)(ũ(t) + d(t)),

(23)
Substituting (13) into (23), observing that (16) holds thanks
to Assumption IV.1, and using the properties of the Kro-
necker product, we have

ẏ (t) = − c(Lr ⊗ In)y (t) − (B⊤ ⊗ In)(ũ(t) + d(t)),
(24)

where Lr is the reduced edge Laplacian of ( , ), as defined
in (1). The Laplace solution of (24) reads

y (t) = e−cL
′t y (0) − ∫

t

0
e−cL

′(t−�) B′(ũ(t) + d(t))d�,
(25)

where we have denoted L′ = Lr⊗In and B′ = B⊤ ⊗In for
brevity. Taking norms of both sides in (25), and using the
triangular inequality, the properties of the Kronecker product,
Assumption III.1, and the hypothesis ‖ui(t)‖ ≤ &i(t) for all
t ∈ [0, t̄) and all i ∈ , we have

‖y (t)‖ ≤‖e−cL′t‖ ⋅ ‖y (0)‖

+ ‖B ‖∫

t

0
‖e−cL

′(t−�)
‖‖�(�) + &(�)‖d�,

(26)

for all t ∈ [0, t̄), where �(t) and &(t) are defined in the
theorem statement. Since Lr is positive definite, −L′ =
−Lr⊗In is Hurwitz, and therefore there exist �, � > 0 such
that

‖e−cL
′t
‖ ≤ � e−c�t ∀t ≥ 0. (27)

The proof is concluded by substituting (27) into (26).

Remark IV.1. The positive scalar � must be smaller than
min{eig(Lr)}, but can be chosen as close to that as desired.
If Lr is diagonalizable, one can choose � = min{eig(Lr)}
and � = ‖V ‖‖V −1‖, where Lr = V ΛV −1 and Λ is diagonal
[16].

Corollary IV.1. Under the same hypotheses as Theo-
rem IV.1, we have ‖ui(t)‖ ≤ �i(t), for all t ∈ [0, t̄) and
all i ∈ , where

�i(t) = �i�(t) + &i(t), (28)
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�i = c‖{B
⊙
 + B

⊙
 (B

†
 B)⊤}i‖, and �(t) is defined in (20).

Proof. Substituting (13) into (18), and using (16), we have
vi(t) = −c({B

⊙
 + B

⊙
 (B

†
 B)⊤}i ⊗ In)y (t). Taking norms

of both sides, and using the Cauchy-Swartz inequality, we
have

‖vi(t)‖ ≤ �i‖y (t)‖. (29)

From (19), using the triangular inequality, we have

‖ui(t)‖ ≤ ‖vi(t)‖ + ‖ũi(t)‖. (30)

Using (29) and the hypothesis ‖ũi(t)‖ ≤ &i(t) into (30)
concludes the proof.

The next step in our analysis is to show that the condition
‖ũi(t)‖ ≤ &i(t) holds for all t ≥ 0 and all i ∈ if the control
algorithm defined by (5)–(12) is applied with �(t) given by
(20). This is formalized in the following theorem.

Theorem IV.2. Consider the multi-agent system (2), let
Assumptions III.1 and IV.1 hold, and let the system be
controlled by the algorithm defined by (5)–(12), (20) and
(28). Then the closed-loop system does not exhibit Zeno
behavior and ‖ũi(t)‖ ≤ &i(t) holds for all t ≥ 0 and all
i ∈ .

Proof. Substituting (6) and (17) into (19), we have

ũi(t) =c
(

pi(ri,k − xi,k) +
∑

j∈i

(x̂i,kj − xi,k)

− pi(r(t) − xi(t)) −
∑

j∈i

(xj(t) − xi(t))
)

(31)

for t ∈ [ti,k, ti,k+1), where xi,k, ri,k and x̂i,kj are defined in
(3), (4) and (7) respectively. Reordering the terms in (31),
we have

ũi(t) =c(|i| + pi)(xi(t) − xi,k) − cpi(r(t) − ri,k)
− c

∑

j∈i

(xj(t) − x̂
i,k
j ) (32)

for t ∈ [ti,k, ti,k+1). First consider the term xi(t)−xi,k in (32).
Integrating (2) in [ti,k, t), and using (3), (5) and (6), we have

xi(t) − xi,k = ui,k(t − ti,k) + ∫

t

ti,k
di(�)d�. (33)

Now consider the term r(t) − ri,k in (32). Using (4), we can
write

r(t) − ri,k = ∫

t

ti,k
ṙ(�)d�. (34)

Finally, consider the terms xj(t) − x̂i,kj in (32). For these
terms we need to distinguish two cases, namely t ≤ tj,ℎj+1
and t > tj,ℎj+1. Notice that the latter case corresponds to the
fact that agent j updates its control input to a value unknown
to agent i. In the first case, integrating (2) for agent j in

[tj,ℎj , t), using (3) and (7), and noting that uj(t) = uj,ℎj for
t ∈ [tj,ℎj , tj,ℎj+1), we have

xj(t) − x̂
i,k
j =uj,ℎj (t − ti,k)

+ ∫

t

tj,ℎj

dj(�)d�, t ∈ [tj,ℎj , tj,ℎj+1).
(35)

In the second case, similar observations lead to

xj(t) − x̂
i,k
j =uj,ℎj (tj,ℎj+1 − ti,k)

+ ∫

t

tj,ℎj+1
uj(�)d� + ∫

t

tj,ℎj

dj(�)d�, t > tj,ℎj+1.

(36)
Substituting (33)–(36) into (32) yields

ũi(t) =c
(

(|i| + pi)ui,k(t − ti,k)

−
∑

j∈i

uj,ℎj (min{t, tj,ℎj+1} − ti,k)

+ ∫

t

ti,k
((|i| + pi)di(�) − piṙ(t))d�

−
∑

j∈i
∫

t

tj,ℎj

dj(�)d� −
∑

j∈i
t≥tj,ℎj+1

∫

t

tj,ℎj+1
uj(�)d�

)

. (37)

Taking norms of both sides in (37), and using the triangular
inequality and Assumption III.1, we have

‖ũi(t)‖ ≤c
(

‖

‖

‖

‖

(|i| + pi)ui,k(t − ti,k)

−
∑

j∈i

uj,ℎj (min{t, tj,ℎj+1} − ti,k)
‖

‖

‖

‖

+ (|i| + pi)Δi,k(t) + pi ∫

t

ti,k
�0(�)d�

+
∑

j∈i

Δj,ℎj (t) +
∑

j∈i
t≥tj,ℎj+1

∫

t

tj,ℎj+1
‖uj(�)‖d�

)

, (38)

for t ∈ [ti,k, ti,k+1). Next, suppose by contradiction that some
agent i at some time t̄ ∈ [ti,k, ti,k+1) attains ‖ũi(t̄)‖ > &i(t̄),
while ‖ũq(t)‖ ≤ &q(t) for all t ∈ [0, t̄) and all q ∈  . Then,
using Corollary IV.1, we have

‖uj(�)‖ ≤ �j�(�) + &j(�) ∀t ∈ [0, t̄) ∀j ∈i. (39)

Evaluating (38) for t = t̄, and using (39), we have

‖ũi(t̄)‖ ≤ �i,k(t̄), (40)

where �i,k(t) is defined in (11). By (40), ‖ũi(t̄)‖ > &i(t̄)
implies �i,k(t̄) > &i(t̄). But this is a contradiction, since the
scheduling rule (8)–(12) and (20) guarantees that �i,k(t) ≤
&i(t) for all t ∈ [ti,k, ti,k+1) and all k ∈ ℕ0.
To exclude that the system exhibits Zeno behavior, con-

sider the conditions (8) that trigger the cloud accesses. From
(9), we see that the triggering condition Δi,k(t) ≥ �i,k(t)
requires t − ti,k ≥ &q,∞∕(2c�i,0|q|) for some q ∈  , and
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therefore, it cannot generate Zeno behavior. Next, consider
the condition �i,k(t) ≥ &i(t). Evaluating (11) for t = ti,k we
have

�i,k(ti,k) = c
∑

j∈i

Δj,ℎj (ti,k). (41)

Recalling that ti,k ∈ [tj,ℎj , tj,ℎj+1), and noting that (8)
guarantees Δj,ℎj (t) < &i(t)∕(2c|i|) for all t ∈ [tj,ℎj , tj,ℎj+1),
from (41) we have

�i,k(ti,k) ≤ &i(ti,k)∕2. (42)

Differentiating both sides of (11), and using (9), the conti-
nuity of �i,k(t) and the triangular inequality, we have

�i,k(t) ≤�i,k(ti,k) + ∫

t

ti,k
si,k(�)d�, (43)

where

si,k(t) =c
(

(|i| + pi)(‖ui,k‖ + �i(t)) + pi�0(t)

+
∑

j∈
t<tj,ℎj+1

‖uj,ℎj‖ +
∑

j∈i

�j(t) +
∑

j∈
t≥tj,ℎj+1

�j(t)
)

(44)

From Corollary IV.1, we have ‖ui,k‖ = ‖ui(t)‖ ≤ �i(t) and
‖uj,ℎj‖ = ‖uj(t)‖ ≤ �j(t) for all j ∈i such that t < tj,ℎj+1.
Since �j(t) = �j�(t)+&j(t) is upper-bounded, �j(t) ≤ �j,0 and
�(t) ≤ �0 for all t ≥ 0, from (44), we have

si,k(t) ≤c
(

(|i| + pi)(�̄i + �i,0) + pi�0 +
∑

j∈
(�̄j + �j,0)

)

,

(45)
where �̄j denotes the maximum value attained by the func-
tion �j(t). Denoting the right-hand side of (45) as s̄i,k, and
substituting (42) and (45) into (43), we have

�i,k(t) ≤ &i(ti,k)∕2 + s̄i,k(t − ti,k) (46)

From (46), a necessary condition for having �i,k(t) ≥ &i(t) is

&i(ti,k)∕2 + s̄i,k(t − ti,k) ≥ &i(t). (47)

Observing that &i(t) = (&i(ti,k) − &i,∞) e
−�& (t−ti,k) +&i,∞, we

can rewrite (47) as &i(ti,k)∕2 + s̄i,k(t − ti,k) ≥ (&i(ti,k) −
&i,∞) e

−�& (t−ti,k) +&i,∞. For any &i(ti,k) > &i,∞ ≥ 0 and any
�& > 0, the positive solutions in the unknown � of the
equation &i(ti,k)∕2 + s̄i,k� ≥ (&i(ti,k) − &i,∞) e

−�&� +&i,∞ is
lower-bounded. Therefore, condition (47) cannot be satisfied
for t − ti,k arbitrarily small. Consequently, the triggering
condition &i,k(t) ≥ &i(t) cannot generate Zeno behavior either.
We can conclude that the closed-loop system defined by (2),
(5)–(12) and (20) does not exhibit Zeno behavior.

Remark IV.2. Agent i can compute �j(t) for j ∈ by (20)
and (28), and therefore by only using some neighborhood
information on the network topology (�j for j ∈ ) and the
initial conditions (‖y (0)‖).

Theorems IV.1 and IV.2 amount to our main result, which
is formalized as follows.

Theorem IV.3. Consider the multi-agent system (2), let
Assumptions III.1 and IV.1 hold, and let the system be
controlled by the algorithm defined by (5)–(12) and (20).
Then the closed-loop system does not exhibit Zeno behavior
and achieves practical consensus as by Definition III.1,
with tolerance � = maxi∈ {

√

mi}�∞, where mi is the
number of edges in the shortest path from vertex 0 to
vertex i in the graph ( ,  ), and �∞ = limt→∞ �(t) =
�‖B ‖

‖�∞+&∞‖

c� , where �∞ = [�0,∞, �1,∞,… , �N,∞]⊤ and
&∞ = [0, &1,∞,… , &N,∞]⊤.

Proof. From Theorems IV.1 and IV.2, we have ‖y (t)‖ ≤
�(t) for all t ≥ 0, where �(t) is defined by (20). Letting
t →∞, we have therefore lim supt→∞‖y (t)‖ ≤ �∞. Finally,
observing that ‖r(t)−xi(t)‖ ≤

√

mi‖y (t)‖ yields the desired
result.

V. ASYMPTOTIC CONVERGENCE

If the disturbances vanish quickly enough, and the refer-
ence trajectory converges quickly enough to a fixed point,
then the proposed algorithm, with only small adjustments,
is capable to drive all the agents to the reference point
asymptotically. In this case, the following assumption is
needed.

Assumption V.1. Assumption III.1 holds with �∞, �1,∞,… ,
�N,∞ = 0 and �� < cmin{eig(Lr)}.

In this scenario, the threshold functions are chosen as

&i(t) = &i,0 e
−�& t, (48)

with
0 < �& < �� < cmin{eig(Lr)}. (49)

Note that Theorem IV.1 and Corollary IV.1 still hold. More-
over, solving the integral in (20), and using Assumption V.1
and (49), we have

�(t) ≤ �̄ e−�& t, (50)

where

�̄ = �
(

‖y (0)‖ +
‖�(0)‖
c� − ��

+
‖&(0)‖
c� − �&

)

, (51)

and �(t), &(t) are defined in the statement of Theorem IV.1.
In the following theorem we show that this version of the
proposed algorithm is still Zeno-free.

Theorem V.1. Consider the multi-agent system (2), let As-
sumptions IV.1 and V.1 hold, and let the system be controlled
by the algorithm defined by (5)–(11), (20) and (48), with �&
satisfying (49). Then, the closed-loop system does not exhibit
Zeno behavior and ‖ũi(t)‖ ≤ &i(t) holds for all t ≥ 0 and all
i ∈ .

Proof. Reasoning as in Theorem IV.2, we can show that the
scheduling rule (8)–(11), (20) and (48) guarantees ‖ũi(t)‖ ≤
&i(t) for any t ≥ 0. To show that the closed-loop system is
Zeno free, consider again the condition (8) that triggers the
cloud accesses. From (9), we can see that the triggering con-
dition Δi,k(t) ≥ �i,k(t) requires

�q,0
��
e−�� ti,k (1 − e−��(t−ti,k)) ≥
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&q,0
2c|q |

e−�& ti,k e−�& (t−ti,k) for some q ∈  . By (49), the

previous inequality implies ( &q,0
2c|q |

+ �q,0
��
)e−�& (t−ti,k) ≤ �q,0

��
.

Therefore, the condition Δi,k(t) ≥ �i,k(t) cannot generate
Zeno behavior. Next, consider the condition �i,k(t) ≥ &i(t).
With similar reasoning as in Theorem IV.2, we can show
that (42) and (43) still hold. Using Corollary IV.1 and
(48) and (50), and recalling that t ∈ [ti,k, ti,k+1), we have
‖ui,k‖ = ‖ui(t)‖ ≤ �i(t) ≤ (�i�̄ + &i,0) e

−�& t and ‖uj,ℎj‖ =
‖uj(t)‖ ≤ �j(t) ≤ (�j �̄ + &j,0) e

−�& t for all j ∈ i such that
t < tj,ℎj+1. Replacing these two inequalities into (44), and
using (48)–(50), we have

si,k(t) ≤c
(

(|i| + pi)(�i�̄ + &i,0 + �i,0) + pi�0

+
∑

j∈
(�j �̄ + &j,0)

)

e−�& t ∀t ∈ [ti,k, ti,k+1),
(52)

where �̄ is defined in (51). Substituting (42) and (52) in (43),
we have

�i,k(t) ≤
&i(ti,k)
2

+
�i,k
�&

e−�& ti,k (1 − e−�& (t−ti,k)), (53)

where �i,k denotes the coefficient that multiplies e−�& t in (52).
From (53), a necessary condition for having �i,k(t) ≥ &i(t) is

&i(ti,k)
2

+
�i,k
�&

e−�& ti,k (1 − e−�& (t−ti,k)) ≥ &i(t). (54)

Observing that &i(t) = &i(ti,k) e
−�& (t−ti,k) and &i(ti,k) =

&i,0 e
−�& ti,k , (54) can be rewritten as

&i,0
2
+
�i,k
�&

≥
(

&i,0 +
�i,k
�&

)

e−�& (t−ti,k),

which has lower-bounded solutions in the unknown t − ti,k.
Hence, the triggering condition �i,k(t) ≥ &i(t) cannot generate
Zeno behavior either. We can conclude that the closed-loop
system does not exhibit Zeno behavior.

Theorems IV.1 and V.1 amount to our asymptotic conver-
gence result, which is formalized as follows.

Theorem V.2. Consider the multi-agent system (2), let As-
sumptions IV.1 and V.1 hold, and let the system be controlled
by the algorithm defined by (5)–(11), (20) and (48), with �&
satisfying (49). Then the closed-loop system does not exhibit
Zeno behavior and limt→∞‖r(t) − xi(t)‖ = 0 for all i ∈ .

Proof. Reasoning as in Theorem IV.3, we have ‖r(t) −
xi(t)‖ ≤

√

mi�(t), where mi is defined in Theorem IV.3.
From (50), letting t → ∞ in the previous inequality yields
the desired convergence result.

VI. NUMERICAL SIMULATIONS

In this section, we present two numerical simulations
of the proposed algorithm, which demonstrate respectively
practical consensus and asymptotic convergence. We con-
sider a system made up of N = 4 agents plus the reference
trajectory, with graph topology as in Figure 1. Note that for

Fig. 1. Topology of the multi-agent system used in the simulations. The
node r represents the reference trajectory.
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Fig. 2. Results of the first simulation scenario. Top: first position variable
x(1)i (t) for each agent and r(1)(t) for the reference trajectory. Bottom: error
norm ||xi(t) − r(t)|| for each agent.

this topology Assumption IV.1 is satisfied, and we have � =
min{eig(Lr)} = 0.53, ‖B ‖ = 1.90 and � = 3.61. For the
first simulation, we let c = 1.8, &(t) = [0.0, 9.5 ⋅ 10−3, 0.48,
0.57, 0.67]⊤5.0 e−4.0t +5.0, �(t) = [99.9, 1.0, 2.0, 3.0, 4.0] ⋅
10−3 for all t ≥ 0. We let the derivative of the refer-
ence trajectory and the disturbances be sinusoidal, namely
ṙ(t) = �0(t)[cos(2�f0t), sin(2�f0t)], di(t) = �i(t)[cos(2�fit),
sin(2�fit)]. Note that with this choice Assumption III.1
is satisfied. The frequencies are chosen as fi = i∕T for
i ∈ {0, 1,… , N}, where T is the simulation time. The
simulation runs for t ∈ [0.0, 2.5], with a fixed step of 10−4
(the physical time scale can be chosen according to the
particular application). Figures 2 and 4 show the results of
this simulation. We have a total of 305 updates corresponding
to an average inter-update time of 0.033, two order of magni-
tudes larger than the simulation step. Hence, the simulation
corroborates the absence of Zeno behavior. For the second
simulation, we let c = 1.0, &(t) = [0.0, 9.5 ⋅ 10−3, 0.48, 0.57,
0.67]⊤10.0 e−1.0t, �(t) = [99.9, 1.0, 2.0, 3.0, 4.0] ⋅ 10−3 e−1.1t.
Note that, with these choices, Assumption V.1 and (48) are
satisfied, and the derivative of the reference trajectory and the
disturbances vanish asymptotically. The simulation runs for
t ∈ [0.0, 10.0], with the same step as before. Figures 3 and
4 show the results of this simulation. In this case, we have
a total of 1418 updates, corresponding to an average inter-
event time of 0.0282, still two order of magnitudes larger
than the simulation step. Hence, the simulation corroborates
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Fig. 4. Top: updates in the first simulation scenario for each agent. Bottom: updates in the second simulation scenario for t ∈ [9.0, 10.0] for each agent.
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Fig. 3. Results of the second simulation scenario. Top: first position
variable x(1)i (t) for each agent and r(1)(t) for the reference trajectory. Bottom:
error norm ||xi(t) − r(t)|| for each agent.

the absence of Zeno behavior.

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

A cloud-supported control algorithm for leader-follower
trajectory tracking in a network of mobile agents under
disturbances has been proposed. The considered setup al-
lows multi-agent coordination in case of interdicted com-
munication among the agents. Specifically, the scenario of
controlling a formation of AUVs has been considered as a
motivating example. The control algorithm overcomes the
limitation of having a pre-assigned trajectory for the whole
fleet as well as synchronizing the surfacing of the agents
[7]. Sufficient conditions for both bounded and asymptotic
convergence have been identified, in terms of the topology
of the information exchanges with the cloud, and of the
scheduling of the control updates. The proposed control
algorithm is effective in guaranteeing the overall stability
despite each agent receiving outdated information and not
knowing other agents’ future control inputs. Future work
will further develop the approach of the paper considering

more complex agent dynamics and control objectives. Also,
non-idealities in the cloud access, such as delays and packet
losses, will be taken into account.
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