
Revising Motion Planning under Linear Temporal Logic Specifications
in Partially Known Workspaces

Meng Guo, Karl H. Johansson and Dimos V. Dimarogonas

Abstract— In this paper we propose a generic framework
for real-time motion planning based on model-checking and
revision. The task specification is given as a Linear Temporal
Logic formula over a finite abstraction of the robot motion. A
preliminary motion plan is first generated based on the initial
knowledge of the system model. Then real-time information
obtained during the runtime is used to update the system model,
verify and further revise the motion plan. The implementation
and revision of the motion plan are performed in real-time.
This framework can be applied to partially-known workspaces
and workspaces with large uncertainties. Computer simulations
are presented to demonstrate the efficiency of the framework.

I. INTRODUCTION

Temporal-logic-based motion planning provides a fully
automated correct-by-design controller synthesis approach
for autonomous robots. Temporal logics such as Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL)
provide formal high level languages that can describe plan-
ning objectives more complex than the well-studied point-
to-point navigation [19], [22], [24]. The task specification
is given as an LTL formula with respect to a discretized
abstraction of the robot motion [3], [18]. Then a high-
level discrete plan is found by off-the-shelf model-checking
algorithms given the finite transition system and the task
specification [1], [17], [10]. This plan is then implemented
through the corresponding low-level hybrid controller.

The correctness of the above framework relies on the
critical assumption that the workspace is perfectly known
and is correctly represented in the finite transition system.
Once a motion plan is generated off-the-shelf, the robot
executes the motion plan no matter what changes in the
workspace, i.e., it does not react to real-time observations,
as discussed in [3], [9], [14]. Consequently, this framework
is not robust to model uncertainties in both the workspace
and robot dynamics. When a complete representation of the
workspace is not available, more sophisticated techniques
are needed. In [9], [30], the robot’s motion and the uncertain
workspace are modeled as nondeterministic Markov decision
processes, where the goal is to find a control strategy that
maximizes the probability that the specification is satisfied.
In [21], [31], a two-player GR(1) game between the robot
and the environment is constructed and a receding horizon
planning is introduced. A winning strategy for the robot can

The authors are with the ACCESS Linnaeus Center, School of Electrical
Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm,
Sweden. mengg, kallej, dimos@kth.se. This work was sup-
ported by the Swedish Research Council (VR), the Knut and Alice Wallen-
berg Foundation, NoE HYCON2 and EU STREP RECONFIG. The third
author is also affiliated with the KTH Centre for Autonomous Systems and
is supported by VR through contract 2009-3948.

be synthesized by exhaustively searching though all possible
combinations of the robot movements and the admissible
workspaces. [23] updates the motion plan in real-time by
“patching” it locally, where GR(1) formulas are assumed.
The allowed changes are that some cells in the workspace
become unreachable, which is only an aspect of the real-time
information we introduce in Section III.A.

In this paper, instead of aiming for a motion plan off-line
that takes into account every possible situation, we first create
a preliminary plan based on the initially available knowledge
about the robot and the workspace. Then while implementing
the plan, real-time information about the system is gathered,
based on which the current motion plan is verified and
revised. The topic of motion plan revision is also addressed
in [11] and [16], which emphasize on how to revise the task
specification when this task is not realizable by the current
system model. We, from an opposite viewpoint, are interested
in utilizing real-time information to update the system model,
then verify and revise the motion plan, while keeping the
specification unchanged.

The main contribution of this work is that we propose
a novel framework for real-time motion planning based on
model checking and revision. We first modify the existing
nested-DFS algorithm to search for an accepting path of
a directed graph, which gives a preliminary motion plan.
Then we classify three types of real-time information that
might be obtained during real-time execution, and show how
they can be used to update the system model. We provide a
criterion to verify whether the current motion plan remains
valid for the updated system. If not, an iterative revision
algorithm is designed to revise the plan locally such that
it becomes valid and fulfills the task specification. This
framework is particularly useful for operation in partially-
known workspaces and workspaces with uncertainties.

The rest of the paper is organized as follows: Section
II briefly introduces the automaton-based model-checking
framework. In Section III, we discuss about the real-time
information that might be gathered during the runtime, and
how it can be used to update the system model, and to verify
and revise the current motion plan. Simulation examples are
presented in Section IV to illustrate the proposed framework.

II. PRELIMINARY MODEL-CHECKING

A. Task Specification in LTL

Since a task specification is normally stated as the desired
behaviors of the robot within a specific workspace, the
workspace we consider here is geometrically partitioned into
N regions, denoted by the set Π = {π0, π1, . . . , πN}. Some

are regions of interest that are worth investigation or surveil-
lance. Some are regions to be avoided like obstacle-occupied
and forbidden areas. These regions can be in different shapes,
such as triangles [3], polygons [8] and hexagons [26]. There
are different cell decomposition schemes available, depend-
ing on the robot dynamics and associated control approaches.
The latter will be discussed further in Section II-D.

In this paper we focus on the task specifications ϕ given as
Linear Temporal Logic (LTL) formulas, due to their powerful
expressiveness. The basic ingredients of an LTL formula
are a set of atomic propositions AP and several boolean
and temporal operators. LTL formulas are formed according
to the following grammar [1]: ϕ ::= true | a | ϕ1 ∧
ϕ2 | ¬ϕ | © ϕ | ϕ1 ∪ ϕ2, where a ∈ AP and © (next), ∪
(until). For brevity, we omit the derivations of other useful
operators like � (always), ♦ (eventually), ⇒ (implication)
and refer the interested readers to Chapter 5 of [1] for
details. AP usually reflects the properties of interest about
the system. LTL is particularly useful to generate complex
behaviors given some general instructions and rules of the
mission. The same task specification can be stated in different
ways, e.g., TASK1: “visit π1, π2, π3 infinitely often and
avoid all possible regions that are occupied by obstacles”
is equivalent to “visit π1, π2, π3 infinitely often and avoid
π4, . . . , π10” if we know regions π4, . . . , π10 are occupied
by obstacles. But the corresponding sets of AP are different.
The LTL formula of the former specification is given by

ϕ = (�♦a1) ∧ (�♦a2) ∧ (�♦a3) ∧ (�¬a4), (1)

where � , ♦ are always and eventually operators. The four
APs a1,2,3,4 are:

• a1,2,3 = {the robot is in region π1,2,3},
• a4 = {the robot is in a region
occupied by an obstacle},

while ten atomic propositions are needed in total for the
second case. This means that the way we define ϕ will
significantly effect the size of ϕ and the complexity of the
following procedures.

Given an LTL formula ϕ over AP , there is a union of infi-
nite words that satisfy ϕ: Words(ϕ) = {σ ∈ (2AP)w |σ |=
ϕ}, where |= ⊆ (2AP)w × ϕ is the satisfaction relation.
There exists a Nondeterministic Büchi automaton (NBA) Aϕ
over 2AP that Words(ϕ) = Lw(Aϕ), where Lw(Aϕ) is the
language of Aϕ. Aϕ can be constructed by first generating
a generalized NBA Gϕ following the proof of Theorem
5.37 in [1], which is then transformed into an equivalent
NBA Aϕ. This process can be done in time and space
2O(|ϕ|) [1]. There are fast translation algorithms [12] from
LTL to Büchi automaton, which are also available online
[25]. Specifically, the NBA corresponding to ϕ is defined
as: Aϕ = (Q, 2AP , δ, Q0, F), where Q is a finite set of
states, Q0 is the initial state, 2AP is the input alphabet,
δ : Q × 2AP → 2Q is a transition relation and F ⊆ Q is
a set of accepting states. For instance, the Büchi automaton
corresponding to (1) is illustrated in Figure 1 by [25].

q1

init

q2

q3

q1q1 ¬a4

a1 & ¬a4

¬a4

a2 & ¬a4

¬a4

a1 & ¬a4

a2 & a3 & ¬a4

¬a4a1 & a2 & a3 &
¬a4

a3 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & a3 &
¬a4

Fig. 1. Büchi automaton corresponding to (1) in TASK1. The transition
from state q1 to q3 is given by q3 ∈ δ(q1, l) where the input alphabet
l = (a2 & ¬a4), which is a short notation for four input alphabets {a2},
{a2, a1}, {a2, a3}, {a2, a1, a3}.

B. Discretized Abstraction

As stated in the introduction, a finite discretized ab-
straction [8] of the low level continuous robot motion
is constructed first. Here a labeled finite transition sys-
tem [1] is used as a model to describe the behavior
of the robot. The partitioned workspace consists of N
regions Π = {π0, π1, . . . , πN} and the robot motion
is abstracted as transitions among these regions. With
a slight abuse of notation, we denote the state πi =
{the robot is at region πi}. The states reflect
which region the robot is currently visiting. The transitions
or state changes represent that the robot has moved from
one region to another. Note that the transition relation is not
necessarily the adjacency relation in the geometrical sense.
Instead it is defined in the control-driven fashion:

Definition 1 (Control-driven transition): There is a tran-
sition from state πi to state πj if an admissible controller
uπi, πj exists that could drive the robot from any point in
region πi to a point in region πj .

The above definition is closely related to the implemen-
tation of a motion plan in Section II-D and the notion of
equivalence discussed later. There are many available control
techniques that drive a robot from any point inside a region
to an adjacent region through a desired facet, like vector-
field-based [7], navigation-function-based [19] for linear [2]
or nonholonomic dynamic models [24]. Formally the control-
driven finite transition system (FTS) is defined below:

Definition 2 (Control-driven FTS): The control-driven
FTS is a tuple Tc = (Π, →c, Π0, AP, Lc), where
• Π = {πi}, πi = {the robot is in region πi},
i = 1, · · · , N .

• →c⊆ Π×Π is the transition relation by Definition 1
• Π0 ⊆ Π is the set of initial states.
• AP is the set of atomic propositions specified by ϕ.
• Lc(πi) : Π→ 2AP is a labeling function.
We omit the Act element for simplicity. The labeling

function Lc(πi) is the subset of AP which are true at state
πi. By Definition 7.1 in [1], the finite transition system
Tc and the underlying controlled continuous system are
bisimulation-equivalent, i.e., following a sequence of tran-

sitions in Tc is equivalent to applying the controllers paired
with each transition in the continuous system. Tc needs both
the knowledge about the robot dynamics and the workspace
property. So if the workspace is only partially-known, the
constructed Tc might not reflect the actual system. In this
case, it is called the preliminary finite transition system.

We assume that Tc does not have a terminal state [1].
The successors of πi are defined as Post(πi) = {πk ∈
Π |πi →c πk} while predecessors of πi are Pre(πi) =
{πk ∈ Π |πk →c πi}. An infinite path fragment p of
Tc is an infinite state sequence p = π0π1π2 . . . such that
πi ∈ Post(πi−1) for all i > 0. Its trace is the sequence of
atomic propositions that are true in the states along the path,
i.e., trace(p) = Lc(π0)Lc(π1)Lc(π2) · · · . The trace of Tc
is defined as Trace(Tc) = ∪p∈I trace(p), where I is the
set of all infinite paths in Tc. The satisfaction relation p |= ϕ
if and only if trace(p) ∈ Words(ϕ), where ϕ is an LTL
formula over the same AP . We intend to find an infinite path
p of Tc that satisfies ϕ, where p is called a motion plan.

C. Product Automaton

There are several well-established methods to find an
infinite path p of Tc that p |= ϕ as in [1], [6] and [29].
In this paper, we use the automaton-based model-checking
approach, see [29] and Algorithm 11 in [1]. It is based
on checking the emptiness of the product Büchi automaton.
Since Words(ϕ) = Lw(Aϕ) and trace(p) ∈ Trace(Tc),
the original problem is equivalent to finding the intersection
Trace(Tc) ∩ Lw(Aϕ), which is actually the language of
Tc⊗Aϕ. This product automaton Ap = Tc⊗Aϕ accepts all
runs which are valid for Tc and at the same time satisfies ϕ.

Note here that unlike Algorithm 11 in [1], we do not
negate the task specification ϕ when applying the model-
checking algorithm. This is because we are interested in the
“good” behavior of the system that satisfies the specification,
not the “bad” behavior that satisfies the negated specification
for the purpose of verification. Formally, Ap is defined as:

Definition 3 (Product automaton): The product Büchi au-
tomaton [1] Ap = Tc⊗Aϕ = (Q′, 2AP , δ′, Q′0, F ′), where
• Q′ = Π×Q. q′ = 〈π, q〉 ∈ Q′, ∀π ∈ Π and ∀q ∈ Q.
• 〈πj , qn〉 ∈ δ′(〈πi, qm〉) iff πj ∈ Post(πi) and qn ∈
δ(qm, Lc(πj)).

• Q′0 = {〈π, q〉 |π ∈ Π0, q ∈ Q0}, set of initial states.
• F ′ = {〈π, q〉 |π ∈ Π, q ∈ F}, set of accepting states.

Algorithm 1 computes Ap given Tc and Aϕ. An accepting
run [1] of Ap consists of two parts: a part that is executed
only once from an initial state to one accepting state and the
second part which is repeated infinitely from an accepting
state back to itself. It can be represented by a finite accepting
path P of the directed state graph G(Ap) of Ap. As shown
in Figure 2, an accepting path P of G(Ap) always has the
following structure [5]:

P = q′0 q
′
1 q
′
2 · · · q′k︸ ︷︷ ︸
Pl

(q′f · · · · · · q′f︸ ︷︷ ︸
Pc

)ω , (2)

where q′0 ∈ Q′0 and q′f ∈ F ′. Pl is a finite sequence
of states from an initial state q′0 to an accepting state

Algorithm 1: Function Product(Tc, Aϕ), by Defini-
tion 3

Input: FTS Tc, NBA Aϕ over the same AP
Output: the product automaton Ap

1 foreach q′h = 〈πi, qm〉 ∈ Q′ do
2 if qm ∈ Q0 and πi ∈ Π0 then
3 q′h ∈ Q′0
4 if qm ∈ F then
5 q′h ∈ F ′

6 foreach q′s = 〈πj , qn〉 ∈ Q′ do
7 if πj ∈ Post(πi) and qn ∈ δ(qm, Lc(πj)) then
8 q′s ∈ δ′(q′h)

q_0 q_f

P_l

P_c

Fig. 2. Two parts of an accepting path

q′f while Pc is a cycle from q′f to q′f . Since the size
of G(Ap) is finite, there are finite number of states and
edges in P . Similar as in [1], we define suffix(x,P)
in Algorithm 3 and 5 as the segment of P after state
x, not including x; if x appears in P several times,
we choose the last x. Similarly, suffix((x, y),P) in
Algorithm 5 is defined as the segment of P after edge
(x, y), including y; if (x, y) appears in P several times,
we choose the first (x, y). Finally, prefix((x, y),P)
in Algorithm 5 is defined as the segment of P before
edge (x, y), not including x; if (x, y) appears in P
several times, we choose the first (x, y). For any finite
sequence of states P , we denote node(P) = { q′s | q′s ∈
Q′, q′s appears in P at least once } and edge(P) =
{(q′s, q′h) | q′h ∈ δ′(q′s), (q′s, q

′
h) appears inP at least once}.

We modify the nested-DFS algorithm of [5], [13] to favor
Algorithm 5, where function M-DFS is reused. In particular,
compared with “traditional” DFS that returns a feasible path
from an initial state to a goal state, Algorithm 2 takes a
directed graph G, one state q, and a set of states Q in G
as inputs, and returns a feasible path from q to one state
belonging to Q, if one exists. The main Algorithm 3 takes a
directed graph G and a set of initial states Q0, and returns
one accepting path of G. In Algorithm 3, stack1 stands for
Pl while stack2 stands for Pc in (2). Note that if the inner
search at line 10 returns an empty stack2, the outer search
is resumed to search for the next reachable accepting state.
With an accepting path P of G(Ap) in hand, a preliminary
motion plan, namely an infinite path p in Tc can be generated
as a projection of P onto the state space Π of Tc. Its trace
should then automatically satisfy ϕ as proved in [29]. It can
be verified that worst-case time complexity of Algorithm 3

Algorithm 2: Function M-DFS(G, q, Q), modified depth-
first search algorithm

Input: directed graph G, state q ∈ G, a set of states
Q ⊆ G

Output: a path of G from q to one state in Q
1 stack = (q)
2 expstack = (q) while stack 6= ∅ do
3 x = top(stack)
4 if x is adjacent to a vertex y /∈expstack then
5 add y to the top of stack and expstack
6 if y ∈ Q then
7 return stack

8 else
9 remove x from the stack

Algorithm 3: Function N-DFS(G, Q0), modified nested-
DFS algorithm [6]

Input: directed graph G, set of initial states Q0

Output: an accepting path P = [stack1, stack2]
1 F={the set of accepting states in G}
2 foreach q0 ∈ Q0 do
3 stack1 = (q0)
4 expstack = (q0)
5 while stack1 6= ∅ do
6 x = top(stack1)
7 if x is adjacent to a vertex y /∈expstack then
8 add y to the top of stack1 and expstack
9 if y ∈ F then

10 stack2 = M-DFS(G, y, stack1)
11 if stack2 6= ∅ then
12 add suffix(top(stack2), stack1)

to the top of stack2
13 return stack1, stack2

14 else
15 remove x from the stack1

16 P = [stack1 stack2]

is in O(|Q0| · |G|2 · |F|), where |G| is the size of G.

D. Continuous Controller Synthesis

A preliminary motion plan essentially represents an infi-
nite sequence of regions to visit. Definition 1 states that there
exists an admissible controller paired with each transition in
Tc. Then a lower-level hybrid controller [3] that implements
the motion plan is synthesized by combining those contin-
uous controllers. As mentioned in [3], [9], [14], this hybrid
control scheme is normally built off-line and fixed once it is
synthesized. If Tc is built based on perfect knowledge of the
workspace and the robot dynamics, then this motion plan is
provably correct and can be implemented directly. However
if Tc is not aligned with the real workspace due to model

uncertainty or limited priori knowledge, the implementation
and revision of the motion plan need to be performed in
real time.

III. REAL-TIME VERIFYING AND REVISION

The autonomous robot is required to operate in a partially
known workspace while being capable of gathering real-time
information about the workspace, which is then used to verify
and revise the motion plan.

A. Real-time Information

For simplicity, we assume that any information is gathered
when the robot reaches a region, not during the transition
from one region to another. We define three different types
of real-time information that may be obtained at time t > 0:
• type A information: (πi, πj) ∈ A(t) if πj is added

to Post(πi). (πi, πj) ∈ A¬(t) if πj is deleted from
Post(πi).

• type B information: denote (b, πi) ∈ B(t) if the
labeling function of state πi is updated to b ⊆ 2AP ,
i.e., Lc(πi) = b.

• type C information: represents dynamic behaviors of
the environment.

For brevity, denote by Info(t) = {A¬(t), A(t), B(t)}, the
set of information obtained at time t > 0. The information
source can be either from on-board sensing measurements
or communication with external stations. Note that type C
information is included here for completeness. It will not be
discussed in this paper, and is a topic of ongoing research [4],
[21], [28]. We assume the workspace is partially-known and
static. Type A information about (πi, πj) will be updated
at most once. Regarding type B information about πi, any
element belonging to Lc(πi) can be changed at most once.
Namely, the transition relations and properties of the regions
are fixed once being identified.

B. Update Ap and Verification

Given the type A and B information, the first question is
how to utilize these information to update Ap from Section
II-C. We use the notation A−p and A+

p to distinguish the
product automaton before and after an update. In particular,
the updating rules from A−p to A+

p are:
Definition 4 (Updating Rules): A−p is updated to A+

p by
Info(t) at time t following the rules below:

1) If (πi, πj) ∈ A(t), 〈πj , qn〉 is added to δ′(〈πi, qm〉),
∀ qn, qm satisfying qn ∈ δ(qm, Lc(πj)).

2) If (πi, πj) ∈ A¬(t), 〈πj , qn〉 is deleted from
δ′(〈πi, qm〉), ∀qm, qn ∈ Q.

3) If (b, πj) ∈ B(t), then ∀πi ∈ Pre(πj):
• 〈πj , qn〉 is added to δ′(〈πi, qm〉), ∀ qn ∈ δ(qm, b),
• 〈πj , qn〉 is deleted from δ′(〈πi, qm〉), ∀ qn /∈
δ(qm, b).

The set of removed edges at t is denoted by R(t) ⊂ Q′×Q′.
Remark 1: Another possible approach would be to update

the finite transition system Tc first. Then A+
p can be re-

constructed by Definition 3 with the updated Tc. We chose
to revise A−p directly because the size of Ap is exponential

Algorithm 4: Function Update(A−p , Info(t)), by
Definition 4

Input: current A−p , update information Info(t)
Output: updated A+

p , the set of removed edges R(t)
1 {A¬(t), A(t), B(t)} = Info(t)
2 foreach (πi, πj) ∈ A(t) do
3 foreach qn ∈ δ(qm, Lc(πj)) do
4 q′h = 〈πi, qm〉 and q′s = 〈πj , qn〉
5 add q′s to δ′(q′h)

6 foreach (πi, πj) ∈ A¬(t) do
7 foreach qn ∈ δ(qm, Lc(πj)) do
8 q′h = 〈πi, qm〉 and q′s = 〈πj , qn〉
9 remove q′s from δ′(q′h)

10 add (q′h, q
′
s) to R(t)

11 foreach (b, πj) ∈ B(t) do
12 foreach πi ∈ Pre(πj) do
13 foreach qn ∈ δ(qm, b) do
14 q′h = 〈πi, qm〉 and q′s = 〈πj , qn〉
15 add q′s to δ′(q′h)

16 foreach qn /∈ δ(qm, b) do
17 q′h = 〈πi, qm〉 and q′s = 〈πj , qn〉
18 remove q′s from δ′(q′h)
19 add (q′h, q

′
s) to R(t)

in the length of ϕ, meaning that it would be computationally
expensive to construct the product automaton from scratch
each time a new piece of information is obtained.

Definition 4 is summarized in Algorithm 4. Note that the
corresponding state graph G(Ap) is also updated. Suppose
P− is an accepting path of A−p . In case new information is
obtained, A−p is updated to A+

p by Definition 4. Two natural
questions arise: 1. is P− an accepting path of G(A+

p)? 2.
if not, how can we modify P− such that it satisfies the
accepting condition of G(A+

p). The first question is answered
in this part and the second is addressed in Section III-C.

Assumption 1: (πi, πj) ∈ A¬(t) is obtained before the
first time that the transition from πi to πj is taken. πi ∈ B(t)
is obtained before the first time that πi is reached.

Theorem 1: Assume P− is an accepting path of G(A−p).
A−p is updated to A+

p based on Info(t). Then P− remains
to be an accepting path of G(A+

p) if and only if R(t) and the
set of edges in P− have no common elements, i.e., R(t) ∩
edge(P−) = ∅.

Proof: For the necessity part, if R(t) ∩edge(P−) = ∅,
it means that P− remains a valid path of G(A+

p). Since P−
is an accepting path of G(A−p), it contains a path from an
initial state to an accepting state and a cycle back to this
accepting state. Moreover, since A−p and A+

p have the same
set of initial states and accepting states, P− is an accepting
path of G(A+

p). For the sufficiency, if R(t) ∩edge(P−) 6=
∅, it means that at least one edge in P− is invalid thus P−
is not a valid path of G(A+

p), and thus it is also not an

q_0 x y q_f

I

Fig. 3. Path revision, case I.

q_0 q_f

y x

II

Fig. 4. Path revision, case II

accepting path.
Lemma 2: Assume P0 is an accepting path of G(A0

p),
where A0

p is the preliminary product automaton at t =
0. Then P0 remains valid through the runtime if R(t) ∩
edge(P0) = ∅, ∀t > 0.

Proof: The proof follows by applying Theorem 1
iteratively.

Lemma 2 can be thought as “lucky” cases where a pre-
liminary motion plan may be valid during the whole runtime
even though the system is updated frequently. Namely, the
part of the product automaton relevant to the preliminary
plan is correct initially. For example, a preliminary plan for
TASK1 may be feasible and obstacle free even though large
number of obstacles may exist in the workspace. However,
since the motion plan generated by model checking is not
necessarily unique, it is very likely that the preliminary plan
is refuted during the runtime.

C. Real-time Revision

Theorem 1 states that if R(t)∩edge(P−) 6= ∅, then P− is
not an accepting path of G(A+

p). The next question is how to
deal with the falsified P−. One possible solution could be to
recall Algorithm 3 with respect to the updated graph G(A+

p),
which returns an accepting path P+ of G(A+

p). But this
method requires a complete nested-DFS of G(A+

p), which
is computationally heavy (the worst-case time complexity
O(2|ϕ| · |Π|) from [1]) in case of large Tc and complex ϕ,
especially when Ap has to be updated frequently.

Instead we are interested in revising the current path P−
locally such that it fulfills the accepting condition of G(A+

p).
The idea is that since most of the path segments belonging
to P− are still valid for G(A+

p), we only need to make
up the edges that are not valid in G(A+

p). The framework
is provided in Algorithm 5 and summarized below. Let
(x, y) ∈ R(t)∩edge(P−). Depending on the location of the
removed edge (x, y) in an accepting path (2), there are three
possibilities: first, (x, y) ∈ stack1 but (x, y) /∈ stack2. As
shown in Figure 3, we want to find a “bridge” path bridge1
that connects state x to the suffix part of stack1 after (x, y).
Function M-DFS in Algorithm 2 serves this purpose. If such
a bridging path bridge1 exists, stack1 is revised by inserting
bridge1 between the prefix part of stack1 before (x, y) and
the suffix part of stack1 that bridge1 is connected to, as
in Line 8 of Algorithm 5. Secondly, if (x, y) ∈ stack2
but (x, y) /∈ stack1, a similar procedure can be applied to
stack2, as in Figure 4. stack2 is revised by inserting bridge2
between the prefix part of stack2 before (x, y) and the suffix
part of stack2 that bridge2 is connected to, as in Line 14 of
Algorithm 5. Thirdly, it is also possible that (x, y) ∈ stack1

and (x, y) ∈ stack2. The previous two procedures are
applied and stack1 and stack2 are both revised. Last but
not least, if any of the above calls to function M-DFS returns
an empty bridge1 or bridge2, it means that the current
accepting state is not reachable from x. Then Algorithm 3
is applied to G(A+

p), to find an accepting path from x to
another accepting state and cycles back. Note that P− is
revised iteratively and the condition R(t) ∩ edge(P−) 6= ∅
is also checked iteratively.

Theorem 3: An accepting path of G(A+
p) can always be

found by Algorithm 5 if one exists.
Proof: Since bridge1, bridge2, nstack1 and nstack2

are derived from G(A+
p), they are always valid for G(A+

p).
Whenever stack1 and stack2 are revised at Line 8, 11, 12,
16, 19, 20, the number of elements within R(t)∩edge(P−)
is decreased at least by one. Since the size of R(t) is finite,
the “while” loop in Algorithm 5 will eventually terminate
and return a valid accepting path P+ of G(A+

p), i.e., P−
needs to be revised at most as many times as the size of
R(t). This completes the proof.

To conclude, Algorithm 6 provides the complete structure
of the real-time motion planner based on real-time model
checking and revision. Given the preliminary transition sys-
tem and the task specification, a product automaton is con-
structed based on Definition 1, an accepting path of which is
obtained by Algorithm 3. This accepting path is implemented
by the corresponding hybrid controller. Whenever a piece
of new information is perceived during the runtime, the
product automaton is firstly updated by Algorithm 4 and
then the current motion plan is revised by Algorithm 5 if
it contains any removed edges. Implementation and revision
of the motion plan are performed in real-time.

D. On-the-fly Construction and Applicability

As discussed in [1] and [5], an interesting aspect of the
automaton-based model-checking algorithm is that it can be
executed on-the-fly, meaning that Tc, Aϕ and the product
automaton Ap can be generated in parallel with searching
for an accepting path of Ap. In our case, a complete
construction of Ap by Algorithm 1 can also be avoided.
The adjacency relation needed at Line 7 of Algorithm 3 and
Line 5 of Algorithm 2 can be built “on demand”. Namely
the transition relation from q′h to q′s is verified only when q′h
is visited. That is to say, when Algorithm 3 terminates and
returns an accepting path, only relevant parts of the entire
product automaton Ap are constructed. Moreover, it is worth
mentioning that our framework can be integrated with other
path searching methods concerning optimality [15], [28]. A
weighted finite transition system [28] could be introduced
to take into account the cost of each transition and minimal
cost path search algorithms from [15], [22] can be used in
Algorithm 2, 3 and 5 to replace the depth-first search.

Our framework can be applied to various workspaces
without modifying ϕ since the task specifications are given as
general operation rules and full knowledge of the workspace
is not required. For instance, (1) can be applied to any

Algorithm 5: Function Revise(G(A+
p), P−, R(t)),

revision of the current path
Input: the accepting path P− before update, directed

graph G(A+
p), R from Algorithm 4

Output: an accepting path P+ of G(A+
p)

1 [stack1, stack2] = P−
2 while (R(t) ∩ edge(P−)) 6= ∅ do
3 (x, y) ∈ (R(t) ∩ edge(P−))
4 initialize bridge1 and bridge2 as nonempty
5 if (x, y) ∈ stack1 then
6 bridge1=M-DFS(G(A+

p), x, suffix((x, y),
stack1))

7 if bridge1 6= ∅ then
8 stack1=[prefix((x, y), stack1) bridge1

suffix(top(bridge1), stack1)]

9 else
10 [nstack1, nstack2]=N-DFS(G(A+

p), x)
11 stack1=[prefix((x, y), stack1)

nstack1]
12 stack2 = nstack2

13 if (x, y) ∈ stack2 then
14 bridge2=M-DFS(G(A+

p), x, suffix((x, y),
stack2))

15 if bridge2 6= ∅ then
16 stack2=[prefix((x, y), stack2) bridge2

suffix(top(bridge2), stack2)]

17 else
18 [nstack1, nstack2]=N-DFS(G(A+

p), x)
19 stack1=[stack1 prefix((x, y), stack2)

nstack1]
20 stack2 = nstack2

21 P− = [stack1 stack2]

22 P+ = P−

partitioned workspace consisting of three regions of interests,
independent of its size or inner structure.

IV. EXAMPLE — SURVEILLANCE ROBOT

Consider a unicycle robot that satisfies: ẋ0 = v cos θ,
ẏ0 = v sin θ, θ̇ = w, where p0 = (x0, y0)T ∈ R2 is
the center of mass, θ ∈ [0, 2π] is the orientation, and
v, w ∈ R are the transition and rotation velocities. The
robot is equipped with on-board sensors that gather real-
time information about the workspace while operating. This
workspace consists of three regions of interest and several
regions are occupied by obstacles. The surveillance task is
given by “visit region A, B, C infinitely often and avoid all
possible obstacles”. As discussed in Section II-A, four atomic
propositions are needed and the corresponding LTL task
specification is given by (1). Its associated NBA is shown in
Figure 1. All simulations are carried out in MATLAB on a
desktop computer (3.06 GHz Duo CPU and 8GB of RAM).
All computations were accomplished within one second.

Algorithm 6: Function RM-MC(T 0
c , Aϕ, Info(t)), real-

time model checker
Input: preliminary T 0

c , NBA Aϕ, real-time information
Output: accepting path of the current Ap

1 A−p = Product(T 0
c , Aϕ)

2 Q′0={the set of initial states in A−p }
3 P− = N-DFS(G(A−p), Q′0)
4 while implementing the plan P− do
5 if Info(t) 6= ∅ then
6 [A+

p , R(t)] = Update(A−p , Info(t))
7 P+= Revise(G(A+

p), P−, R(t))
8 P− = P+ and A−p = A+

p

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Fig. 5. Initially known workspace Fig. 6. Preliminary product automa-
ton

A. Example one

In the first example, we consider the unicycle model
and the 6 × 6 workspace in Figure 5, where each cell has
the size rs × rs. Regions A, B, C are regions 6, 31, 36
respectively. There exist continuous controllers that steer
the robot from any cell to one of its four geometrically
neighboring cells. Specifically, it has four motion primitives
“up, down, left, right”, where the “up” motion
can be implemented by letting v = vconst, w = rs

2 vconst
, until

θ = π
2 , then v = vconst, w = 0 for time period t = rs

vconst
. The

other three primitives can be defined similarly.
By Definition 2, the preliminary finite transition system

is given by Tc = (Π, →c, Π0, AP, Lc), where Π =
{1, 2, · · · 36}, Π0 = {1}, AP = {a1, a2, a3, a4} as defined
in Section II-A, and Lc is the labeling function indicating
if the robot is at regions 6, 31, 36, or in collision with the
obstacles. The workspace is initialized as obstacle free as
in Figure 5. It is not known a priori how many obstacles
there are and how they are deployed in the workspace. The
actual workspace is shown in Figure 8, where regions in gray
are occupied by obstacles and there are walls (black lines)
between some neighboring regions.

The framework in Algorithm 6 is applied here. The
preliminary A0

p as shown in Figure 6 has 36 × 4 = 144
states and is constructed following Definition 3. One of its
accepting paths P0 is obtained by Algorithm 3 (red line in
Figure 6), from which a preliminary motion plan is built. For
simplicity, we assume that the robot receives new information
twice during the runtime (once for the lower half workspace

1 6

31 36

Fig. 7. Motion plan after the first
update

1 6

31 36

Fig. 8. Motion plan after the second
update

and once for the upper half workspace). In practice, when
and how much information is obtained rely heavily on the
sensing ability of the robot. The robot is capable of gathering
two kinds of information: 1. if there is a wall between the
current region and its neighboring regions; 2. which of the
nearby regions are occupied by obstacles. Clearly the first
one belongs to type A information and the second is type B
information in Section III-A.

At region 1, the robot obtains the information:
A¬ = {(1, 2), (2, 1), (5, 6), (6, 5)} and B =
{(a4, 13), (a4, 15), (a4, 3), (a4, 4), (a4, 16), (a4, 18)},
meaning that going directly from region 1 to region 2 and
vice versa are not allowed due to the presence of a wall
in the middle (same for regions 5 and 6), and regions 13,
15, 3, 4, 16, 18 are detected to be occupied by obstacles.
Then the product automaton is updated accordingly by
Algorithm 4, where 324 edges are removed in total. Then
Algorithm 5 is used to revise the current accepting path
recursively, where function M-DFS is called only 10 times.
The updated motion plan is illustrated by the arrowed red
lines in Figure 7, which is valid for the currently-known
workspace, but not valid for the actual workspace. The
robot follows this motion plan until it reaches region
14. At region 14, the robot obtains the information:
A¬ = {(31, 32), (32, 31), (35, 36), (36, 35)} and B =
{(a4, 33), (a4, 34), (a4, 21), (a4, 22), (a4, 19), (a4, 24)}
and the procedure is repeated. Function M-DFS is called
13 times before an accepting path is found. The updated
plan is valid for the actual workspace and fulfills the task
specification, as illustrated in Figure 8.

B. Example two

In our second example, we consider again the unicycle
model and the workspace in Figure 9, which consists of 12
polygonal regions. Regions A, B, C in ϕ are regions 2, 3, 4
respectively. The continuous controller that drives the robot
from an region to any geometrically adjacent region is based
on [24], which is built by constructing vector fields over
each cell for each face. The controller design is not stated
here for brevity. The preliminary workspace is initialized as
obstacles free and the corresponding Tc is constructed as
before. The actual workspace is shown in Figure 10, where
region 9 is occupied by obstacles and there are walls between
some regions. The robot is capable of perceiving the same

1

2
3

5

6

7

9

10

11

12

8

4

Fig. 9. Initial workspace and the
preliminary motion plan

1

2 3

4

Fig. 10. Actual workspace and the
final motion plan

types of information as described in the previous example.
The product automaton has 12×4 = 48 states. A preliminary
motion plan is generated by Algorithm 3 (arrowed red line
in Figure 9), but it is not valid for the actual workspace as
it intersects with region 9, which is occupied by obstacles.

The robot moves according to the motion plan and reaches
region 12, where it obtains the following information: A¬ =
{(4, 11), (11, 4)}, and B = {(a4, 9)}. The product automa-
ton is updated accordingly, where 71 edges are removed
in total. The revision is finished after function M-DFS is
called only two times. The updated motion plan is illus-
trated by the arrowed red lines in Figure 10. Then the
robot follows this updated motion plan. At region 6 and
3, it obtains the information: A¬ = {(6, 8), (8, 6)} and
A¬ = {(7, 3), (3, 7)}, respectively. 32 edges are removed
in both cases. But the motion plan remains valid because
its corresponding accepting path does not contain any of the
removed edges. The final trajectory is shown in Figure 10.

V. CONCLUSION

In this paper we proposed a generic framework for real-
time motion planning based on iterative model checking and
revision. This framework is particularly useful for partially
known workspace and workspace with large uncertainties.
Real-time sensory information is used to update the system
model, based on which the motion plan is revised locally and
iteratively. Future work could include dynamic environments
and multiple robots.

REFERENCES

[1] C. Baier, J.-P Katoen. Principles of model checking. The MIT Press,
2008.

[2] C. Belta, V. Isler, G. J. Pappas. Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions on
Robotics, 21(5): 864-874, 2005.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas.
Symbolic planning and control of robot motion. IEEE Robotics and
Automation Magazine, 14: 61-71, 2007.

[4] Y. Chen, J. Tumova, C. Belta. LTL Robot motion control based
on automata learning of environmental dynamics. IEEE International
Conference on Robotics and Automation (ICRA), 2012.

[5] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Computer-aided
Verification, 1992.

[6] E. M. Clarke, O. Grumberg, D. A. Peled. Model checking. The MIT
Press, 1999.

[7] J. Desai, J. Ostrowski, V. Kumar. Controlling formations of multiple
mobile robots. IEEE Int. Conf. Robotics and Automation, 2864-2869,
1998.

[8] X. Ding, M. Kloetzer, Y. Chen, C. Belta. Automatic deployment of
robotic teams. IEEE Robotics Automation Magazine, 18: 75-86, 2011.

[9] X. C. Ding, S. L. Smith, C. Belta, D. Rus. LTL control in uncertain
environments with probabilistic satisfaction guarantees. 18th IFAC
World Congress, 2011.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas. Temporal
Logic Motion Planning for Dynamic Mobile Robots. Automatica, 45(2):
343-352, 2009.

[11] G. E. Fainekos. Revising temporal logic specifications for motion
planning. IEEE Conference on Robotics and Automation, 2011.

[12] P. Gastin, D. Oddoux. Fast LTL to Büchi automaton translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), 2001.

[13] G. J. Holzmann, D. Peled, M. Yannakakis. On nested depth first search.
American Mathematical Society, 1997.

[14] S. Karaman, E. Frazzoli. Sampling-based algorithms for optimal
motion planning. International Journal of Robotics Research, 30(7):
846-894, 2011.

[15] S. Karaman, E. Frazzoli. Vehicle routing with linear temporal logic
specifications: Applications to Multi-UAV Mission Planning. Naviga-
tion, and Control Conference in AIAA Guidance, 2008.

[16] K. Kim, G. E. Fainekos, S. Sankaranarayanan. On the revision problem
of specification automaton. IEEE International Conference on Robotics
and Automation, 5171-5176, 2012.

[17] M. Kloetzer, C. Belta, A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1): 287-297, 2008.

[18] M. Kloetzer, C. Belta. Automatic deployment of distributed teams
of robots from temporal logic specifications. IEEE Transactions on
Robotics, 26(1): 48-61, 2010.

[19] D. E. Koditschek, E. Rimon. Robot navigation functions on manifolds
with boundary. Advances Appl. Math., 11:412-442, 1990.

[20] H. Kress-Gazit, T. Wongpiromsarn, U. Topcu. Correct, reactive
robot control from abstraction and temporal logic specifications. IEEE
Robotics and Automation Magazine, 2011.

[21] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas. Temporal Logic-based
Reactive Mission and Motion Planning. IEEE Transactions on Robotics,
25(6): 1370-1381, 2009.

[22] S. M. LaValle. Planning algorithms. Cambridge University Press,
2006.

[23] S. C. Livingston, R. M. Murray, J. W. Burdick. Backtracking temporal
logic synthesis for uncertain environments. In IEEE International
Conference on Robotics and Automation, 51635170, 2012.

[24] S. R. Lindemann, I. I. Hussein, S. M. LaValle. Real time feedback
control for nonholonomic mobile robots with obstacles. 45th IEEE
Conference on Decision and Control, 2406-2411, 2006.

[25] D. Oddoux, P. Gastin. LTL2BA software: fast translation
from LTL formulae to Büchi automaton. http://
www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.php.

[26] A. S. Oikonomopoulos, S. G. Loizou, K. J. Kyriakopoulos. Co-
ordination of multiple non-holonomic agents with input constraints.
Proceedings of the IEEE International Conference on Robotics and
Automation, 869-874, 2009.

[27] N. Piterman, A. Pnueli, Y. Saar. Synthesis of reactive(1) designs. Proc.
VMCAI, 364-380, 2006.

[28] A. Ulusoy, S. L. Smith, X. Ding, C. Belta. Robust multi-robot optimal
path planning with temporal logic constraints. IEEE International
Conference on Robotics and Automation (ICRA), 2012.

[29] M. Y. Vardi, P. Wolper. An automaton-theoretic approach to automatic
program verification. IEEE Computer Society, 332-344, 1986.

[30] E. M. Wolff, U. Topcu, R. M. Murray. Robust Control of Uncertain
Markov Decision Processes with Temporal Logic Specifications. Amer-
ican Control Conference (ACC), 2012.

[31] T. Wongpiromsarn, U. Topcu, R. M. Murray. Receding Horizon
Temporal Logic Planning for Dynamical Systems. IEEE Conference
on Decision and Control, 2009

