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Abstract—This paper presents a combination of reinforcement
learning (RL) and deterministic controllers to learn a quadrotor
control. Learning the quadrotor flight in a standard RL approach
requires many iterations of trial and error, which may bring
about risky exploration and battery consumption. In this paper,
we integrate a classical controller such as PD (proportional and
derivative) or LQR (linear quadratic regulator) with a RL policy
using their linear combination. The proposed method is not only
simple to use, but also fast in learning convergence. When the
algorithm is evaluated for a quadrotor trajectory tracking by
means of a velocity control for both simulation and experiment,
it demonstrates the faster convergence rate and better control
performance in comparison with an existing rapid model-based
RL method.

Index Terms—Reinforcement learning; model-based learning;
micro quadrotor.

I. INTRODUCTION

REINFORCEMENT learning (RL) is getting attention
for autonomous control [1], [2] since its data-driven

approach can reduce demands on engineering knowledge.
Model-based RL methods have been developed to shorten
the learning iterations [3], [4]. The probabilistic inference for
learning control (PILCO) [5] is known as one of the most rapid
model-based RL approaches, which has data-efficient structure
based on Bayesian inference with Gaussian process.

Nevertheless, PILCO may still require many online-learning
iterations in practice because of the inaccurate policy search
during the first few iterations. Given that the initial policy is
confined to random action, a minor or a meaningless update
on the policy search is made, which may cause the failure of
control during initial iterations. To address this problem, we
design the initial policy supported by deterministic controllers.
It can not only boost the learning convergence, but also
stabilize the balance between exploration and exploitation.

The proposed RL algorithm is made by linear combination
of a deterministic controller with PILCO framework. The main
advantage is the simplicity and the rapid learning convergence.
In this paper, two different combinations are introduced ac-
cording to availability of system model information. First, PD-
RL in which a PD controller is combined with PILCO that
can be used for the case when a system model is unknown
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Fig. 1: Learning 32 grams micro quadrotor flight

because both of PD and PILCO do not require the model
information. On the other hand, similar to some RL methods to
use a system model [6]–[8], LQR-RL can be used if a system
model is given, where LQR is an optimal control method. In
case of a quadrotor, its dynamic model can be approximated
by linearization [9].

Linear combination of multiple controllers within RL ap-
proaches can be found from some existing works. In [10],
reinforcement learning is combined with model predictive
control to compensate for a model-plant mismatch. In [11],
PID is merged to PILCO. Different from the proposed PD-RL
in this paper, its policy is replaced with PID control without a
fusion mechanism. In [12], deep neural network is employed
to learn a dynamics although the sample-expensive learning
can be its limitations. In [13], a PD controller is added to
the RL policy only for the first few iterations so that the
controller does not aid the final policy. Different from these
existing methods, the proposed method is neutral between the
deterministic controller and the policy in the sense that the
final controller does not rely on only the learned outcome.
Rather, the developed method lets the classic controller and
the RL policy complement each other in a way that the RL
policy reinforces the deterministic controller’s insufficiency.

The proposed algorithm is evaluated to learn a control
of the micro quadrotor control shown in Fig. 1. Compared
to relatively stable applications such as robotic manipulation
[14], [15] and ground robot [16], [17], the flight learning is
challenging because the quadrotor becomes easily unstable
when even small erroneous control is executed. For simulation
study, we compare the original PILCO, PD-RL and LQR-
RL, and evaluate difference of applying a linear policy and
a nonlinear policy for different trajectory-tracking references.
The experiment validates practicality of the proposed methods
by showing successful learning for the safe flight in only a few



iterations.
The rest of this paper is organized as follows. Section II

represents the proposed control methods. Section III and IV
demonstrate the performances of the proposed method with
simulation and experiment results, respectively. Section V
devotes to concluding remarks.

II. HYBRID REINFORCEMENT LEARNING CONTROL

Section II-A describes the problem formulation of the
policy search in model-based RL framework with description
of PILCO algorithm. Section II-B introduces the proposed
method. ‘Policy’ refers to the controller learned by RL, which
is updated per learning iteration. In this paper, formulation
of the policy is made by the combination with PD or LQR
controller.

A. Problem formulation

Consider a discrete dynamical system with state xt ∈ Rd
and control input ut ∈ Rm, given by

xt+1 = f(xt, ut) + wt, (1)

where f(·) is an unknown function and wt is a Gaussian
noise distributed as N (0, σw). Model-based RL learns the
dynamics f(·) by using the training set {(xti , uti), xti+1},
where ti represent all the previous recorded time stamps in
training procedure. The training set is continuously updated
from control executions with the assumption that all the states
are measurable. In PILCO, the dynamics is assumed to follow
a Gaussian process (GP) model. Given the current state and
control input x̃t = (xt, ut) ∈ Rd+m, the prediction for the
next state xt+1 is as follows:

p(xt+1|xt, ut) = N (xt+1|µt+1,Σt+1) (2)
µt+1 = xt + Ef [∆t] (3)
Σt+1 = varf [∆t], (4)

where ∆t = xt+1 − xt and Ef [·] and varf [·] are mean
and variance of f , respectively, which are represented by GP
regression:

Ef [∆t] = kT∗

(
K(X̃, X̃) + σ2

wI
)−1

Y (5)

varf [∆t] = k(x̃t, x̃t)− kT∗
(
K(X̃, X̃) + σ2

wI
)−1

k∗. (6)

In (5), the training input is X̃ = [x̃1, · · · , x̃n] and training
output is Y = [∆1, · · · ,∆n]. A kernel function k(·, ·) is a
Gaussian kernel in this paper, and corresponding kernel vector
k∗ = k(X̃, x̃t) ∈ Rn×1 and kernel matrix K(X̃, X̃) ∈ Rn×n
are also Gaussian. More details of the GP training are ex-
plained in [18].

The policy π(x, θ) to control a system toward a desired state
should be learned. RL aims to find the optimal parameter θ by
the optimization to reduce an expected long-term cost Jπ(θ)
such that

min Jπ(θ) =

T∑
t=0

E[l(xt, ut)], (7)

x0 ∼ N (µ0,Σ0), (8)

where l(xt, ut) is the immediate cost function and the initial
state x0 is given as Gaussian distribution. In this paper, the
quadratic cost function is used such that

l(x, u) = (x− r)TQ(x− r) + uTRu, (9)

where Q and R are weights and r is the reference. The
advantage of PILCO algorithm is the analytic calculation for
the gradient of expected cost ∂J/∂θ. The gradient calculation
with respect to the cost function in (9) with the proposed RL
policy in this paper is described in APPENDIX.

In PILCO, the parameters of policy are randomly initialized
to have small values. In our experience, PILCO can be
easily biased to exploration so that a minor or a meaningless
policy update is made. Since many iterations for training are
inevitable, it is restrictive to apply the original PILCO in
practice.

B. Proposed policy
Let the policy of the original PILCO be πPILCO, and the

proposed two polices πPD-RL and πLQR-RL, respectively. Two
different types of linear combination of PILCO and determin-
istic controllers are as follows:

πPD-RL = πPILCO + uPD, (10)
πLQR-RL = πPILCO + uLQR. (11)

The parameter θ of πPILCO is updated online, while the
parameters of PD controller uPD and LQR controllers uLQR are
deterministic. Algorithm 1 overviews the proposed algorithm.

1) PD-RL: Because PD control does not need a system
dynamics, PD-RL does not also require any additional assump-
tion. When the system state includes derivative components
such as x = [x1, ẋ1, x2, ẋ2, · · · ] ∈ Rd, the PD control can be
defined as

uPD(x) = KPD(x− r), (12)

with

KPD =


Kp Kd 0 0 · · · 0
0 0 Kp Kd · · · 0

...
0 · · · · · · 0 Kp Kd

 ∈ Rm×d, (13)

Algorithm 1 Hybrid reinforcement learning control

1: Initialize θ randomly in πPILCO(x; θ)
2: if dynamic model is available then
3: Choose LQR-RL policy in (23) or (24).
4: Calculate gain KLQR using (21).
5: else
6: Select PD-RL policy in (15) or (17).
7: Set gain KPD manually.
8: end if
9: repeat

10: Implement a hybrid policy and collect training data
11: Train Gaussian Process model to learn a system model
12: Evaluate the policy by predicting Jπ(θ)
13: Update the policy based on the gradient ∂Jπ(θ)/∂θ
14: until θ converges



where Kp,Kd are tuning parameters corresponding to the state
error and the derivative of the state error, respectively. The
merit of the PD controller is the intuitive gain-tuning. The gain
Kp responds to the convergence rate to approach the reference,
and Kd increases the stability by relaxing oscillatory response
of the system. From our experience, PD-RL outperforms
PILCO as long as we set Kp and Kd not too big, because the
insufficiency of the PD controller is covered by the RL policy
as the learning repeats. When the linear policy is defined as

πPILCO(x, θ) = Ax+ b, (14)

θ = {A ∈ Rm×d, b ∈ Rm},

the combination is as follows:

πPD-RL = (A+KPD)x−KPDr + b, (15)

where A, b become the learning parameter as θ described in
the first step of Algorithm 1. In (15), continuously updated
matrix A can compensate the inaccurately tuned KPD, and
the feed-forward gain b helps approach the reference fast in a
tracking scenario [19].

PILCO allows to use any differentiable polices including
a nonlinear policy such as a Gaussian policy. Without loss
of generality, the proposed hybrid approach can combine a
nonlinear policy. When the Gaussian policy is defined as

πRBF(x, θ) =

l∑
i=1

wiφi(x), (16)

φi(x) = exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
,

with the learning parameter θ = {wi,Σi, µi}, the PD-RL with
the Gaussian policy policy is as follows:

πPD-RBF = πRBF(x, θ) +KPD(x− r). (17)

The dimensionality of the learning parameter of the Gaussian
policy is larger than the dimensionality of the linear policy’s.
Selecting a policy between the linear and nonlinear ones may
depend on complexity of a learning objective.

2) LQR-RL: LQR is one of optimal control methods, which
derives the control input to minimize a penalty cost. Different
to PD-RL, the LQR-RL method can be used when a linear or
linearized system model is available. Since linear or linearized
models are preferred by many engineers, there are many
possible applications of the LQR-RL such as a quadrotor
control. When a point mass model and a 1st order dynamics
are considered in 2D space, i.e., x = [x, y, ẋ, ẏ]T, the quadrotor
system can be linearized as follows:

ẋ ≈ Fx+Gu, (18)

where

F =


0 0 1 0
0 0 0 1
0 0 − 1

τx
0

0 0 0 − 1
τy

 , G =


0 0
0 0
1
τx

0

0 1
τy

 , (19)

and the time constants τx and τy can be experimentally
obtained by [9]. Approximation error by incorrectly tuned τx
and τy could be considered as model uncertainty.
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Fig. 2: Comparison of tracking results given a circular ref-
erence; the number of the final learning iteration differs to
each algorithm, and all the hybrid algorithms outperform the
benchmarked PILCO in terms of the learning convergence rate
and the control performance.

Similar to the PD controller, uLQR is also defined as the
feedback form:

uLQR = KLQR(x− r). (20)

Given the quadratic cost function in (9), the gain KLQR is
obtained by

KLQR = −R−1GP, (21)

and P is calculated by the algebraic Riccati equation given by

P = PF + F TP − PGR−1GTP +Q. (22)

The tuning parameters are the weights Q and R in (9). Because
the LQR tends to generate conservative control input, LQR-
RL can yield a stable initial exploration. When a linear RL
policy is used, the hybrid policy is defined as

πLQR-RL = (A+KLQR)x−KLQRr + b. (23)

LQR-RL with the Gaussian policy defined in (16) is as follows

πLQR-RBF = πRBF(x, θ) +KLQR(x− r). (24)

For simulation study, we compare performances of two LQR-
RLs using each linear and Gaussian policy in Sec. III.



III. SIMULATION

The proposed algorithm is evaluated for a quadrotor ve-
locity control when position and velocity references r =
[rx, ry, ṙx, ṙy]T are given . The initial position is estimated with
addictive noise Σ0, i.e, x̂o ∼ N (0,Σ0). The control frequency
is 10 Hz and the quadrotor is given 8 sec to track a reference
trajectory, so 80 training samples are collected from one roll-
out. The attitude control is assumed stabilized and the height
control is fixed. We focus on learning the velocity control
uẋ, uẏ on 2D space. Although the low-level controllers are
predefined, a careful velocity control is required to prevent
the quadrotor from crashing.

In the first simulation, the executed methods are 1) the
original PILCO, 2) PD-RL with high gain, 3) PD-RL with low
gain, 4) LQR-RL, and 5) LQR-RL with model uncertainty,
and a circular trajectory is given as the tracking reference.
Herein, the high gain in PD-RL meets the condition for
largely initialized Kp and Kd; it tries to approach the ref-
erence hasty. The low gain leads less aggressive and delayed
tracking results. For the LQR-RL evaluation, we add model
uncertainty represented by the time constant parameters τx
and τy defined in (19). Incorrectly tuned parameters make
the LQR controller misunderstand dynamics, and this causes
negative initial tracking performance. However, as the learning
repeats, the LQR-RL policy is expected to remedy inaccuracy
of the LQR controller. We set the weight parameters Kp = 3
and Kd = 0.1 for PD-RL with high gain, and Kp = 0.2
and Kd = 0.2 for PD-RL with low gain. The well-tuned
linearization parameters for LQR are set as τx = τy = 0.105
and the perturbed parameters to include model uncertainty are
set as τx = τy = 0.001. The LQR gain KLQR is calculated by
(21) with the cost Q = 15 · I4×4 and R = I2×2, where Ip×p
indicates the p-by-p identity matrix.

Fig. 2 illustrates the tracking results of the compared
methods, where the initial and the final trajectories on 2D
view as well as the reference trajectory are shown in (a)
and (b), and the tracking results represented by root mean
square error (RMSE) according to the number of learning
iterations are shown in (c). The initial tracking result is made
without using any pre-trained policy so that all hybrid polices
at the initial iteration are almost same to the pure PID or
LQR controller. The original PILCO takes 18 iterations to
converge and the converged policy produces a bias error after
the learning termination. The PD-RL with the low gain shows
the slow tracking to reach the reference at the beginning
and takes 8 iterations to complete the learning as shown
in Fig. 2(a). The PD-RL with the high gain presents the
overshoot trajectory firstly, and then converges to the stable
tracking trajectory quickly. When an accurate system model
is given without model uncertainty, LQR-RL gives the best
performance in terms of the smallest error and the shortest
iteration. In Fig. 2(b), although the model uncertainty is added,
the LQR-RL still presents the successful learning performance.

To see more detail of the difference between the PD-RL and
the LQR-RL, Fig. 3 presents the expected cost and the actual
cost after the first learning. The expected cost is obtained by
the policy evaluation at the 12th step in Algorithm 1 and the
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Fig. 3: Expected cost Jπ(θ) in (28) at the first policy eval-
uation and the actual cost are compared. The expected cost
is represented as a Gaussian random variable with mean and
variance. Large variance indicates unreliability of the learned
model and requirement for more policy search.

actual cost is obtained by implementing the learned policy.
Because the modelling algorithm is based on the probabilistic
Gaussian process, the expected cost is represented by mean
and standard deviation. The large deviation indicates unrelia-
bility of the learned model, which refers to the requirement
for more policy search. To complete the learning, the deviation
should be as small as possible and the expected cost should
fit to the actual cost. Therefore, the expected cost history
is an empirical evidence to validate a convergence rate. In
comparison to the LQR-RL in which the actual cost fits in
the expected cost deviation as shown in Fig. 3(b), the PD-
RL produces large deviation in Fig. 3(a) at the first iteration.
Although both methods finally converge in the simulation
study as shown in Fig. 2(c), the large deviation problem in
the PD-RL causes failure of the flight learning experiments in
our experience.

Lastly, we compare two LQR-RLs using each the linear
policy in (23) and the Gaussian nonlinear policy in (24). The
Gaussian policy has more learning parameters than the linear
one, which has more potential for a complex tracking. As
a challenging tracking problem, we test a spline trajectory
reference in which position and velocity references are chang-
ing dynamically rather than the circular reference. For both
polices, we tune the parameters to have the best performance.
Fig. 4 shows the tracking results and the RMSE plot from
which the Gaussian policy outperforms the linear policy.

IV. EXPERIMENT

The circular trajectory tracking is given to the flight learning
experiment and Crazyflie 2.0 quadrotor is used. The state
of the quadrotor is measured by the motion capture system
(VICON) and the computer having i7 6700K 4.0GHz CPU im-
plements the learning and control on Robot operating system
(ROS) environment. Fig. 5(a) shows the experimental view.

For experiment, we implement the LQR-RL excluding the
original PILCO and the PD-RL due to the significantly slow
convergence and the risky flight as described in the previous
Section III. The model parameters τx = 0.105 and τy = 0.105
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Fig. 4: Gaussian policy v.s linear policy of LQR-RL for a
spline trajectory tracking.

in (19), the cost weights Q = 15 · I4×4 and R = 0.001 · I2×2

in (9) are set, and the LQR gain KLQR in (21) is calculated

KLQR =

[
−1.5340 0 −0.6862 0

0 −1.5340 0 −0.6862

]
.

Fig. 5 shows the learning and tracking results and the
learning terminates by the second iteration. Initially the LQR-
RL yields the delayed tracking on both position and velocity
as shown in Fig. 5(b). After, the position error is reduced by
producing more active control in Fig. 5(c). After only two
iterations, the learning result shown in Fig. 5(d) is improved
with the reduced velocity error. The video of the experimental
flight can be found at HTTPS://YOUTU.BE/ZKWAPQPSNIU.

V. CONCLUSIONS
This paper presented a new hybrid RL control algorithm by

combining PD and LQR control methods to PILCO algorithm.
Both the methods improved the convergence rate to complete
the learning much than the original PILCO algorithm. They
were evaluated by the quadrotor tracking control and the
experimental results validated the outstanding performance
with respect to the rapid convergence and control performance.

APPENDIX
The state x follows Gaussian probability p(x) with mean

µx and covariance Σx, represented by

p(x) = N (µx,Σx), (25)

and the derivative with respect to the probabilistic state is given
by

dEx[l(x)]

dp(x)
=

{
dEx[l(x)]

dµx
,
dEx[l(x)]

dΣx

}
. (26)

When K is defined as KPD in (13) or KLQR in (21), the
cost function in (9) is as follows:

l(x) = (x− r)T (Q+KTRK
)

(x− r)
+ xT (2ATRKT +ATRA

)
x

+
(
2bTRA+ 2bTRK − 2rTKTRA

)
x

+ bTRb− 2bTRKr. (27)

The expectation of the immediate cost l(x) is in the following

Ex[l(x)] =

∫
l(x)p(x)dx, (28)

which can be determined by (25) and (27). The random
variable xTCx for any C ∈ Rd×d follows non cen-
tral chi square whose mean is tr(WΣx) and variance is
2
(
tr(WΣx) + 2µT

xWµx
)

such that

xTWx ∼ χ(tr(WΣx), µT
xWµx), (29)

where tr(·) is matrix trace. According to (25) and (29), the
expectation of the cost in (28) is as follows:

Ex[l(x)] = tr
(
(Q+KTRK + 2ATRKT +ATRA) · Σx

)
+ (µx − r)T(Q+KTRK)(µx − r)
+ µT

x(2ATRKT +ATRA)µx

+
(
2bTRA+ 2bTRK − 2rTKTRA

)
µx

+ bTRb− 2bTRKr. (30)

Finally, the gradient of the expectation of the cost in (26) is
calculated as

dEx[l(x)]

dµx
= 2(µx − r)T(Q+KTRK) (31)

+ 2µT
x(2ATRKT +ATRA) (32)

+
(
2bTRA+ 2bTRK − 2rTKTRA

)
, (33)

dEx[l(x)]

dΣx
= Q+KTRK + 2ATRKT +ATRA. (34)
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