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Abstract— As one of the extensions of model predictive
control (MPC), event-triggered MPC takes advantage of the
reduction of control updates. However, approaches to event-
triggered MPCs may be subject to frequent event-triggering
instants in the presence of large disturbances. Motivated by
this, this paper suggests an application of machine learning to
this control method in order to learn a compensation model
for disturbance attenuation. The suggested method improves
both event-triggering policy efficiency and control accuracy
compared to previous approaches to event-triggered MPCs. We
employ the radial basis function (RBF) kernel based machine
learning technique. By the universial approximation property
of the RBF, which imposes an upper bound on the training
error, we can present the stability analysis of the learning-
aided control system. The proposed algorithm is evaluated by
means of position control of a nonholonomic robot subject to
state-dependent disturbances. Simulation results show that the
developed method yields not only two times less event triggering
instants, but also improved tracking performance.

I. INTRODUCTION

Model predictive control (MPC), which is one of modern
control methods, derives control action by solving an optimal
control problem based on the information about the dynamics
and the current state of the plant. On the other hand,
event-triggered control is a sampled data control scheme
and requires the executions only when the desired control
specification cannot be guaranteed. The application of event-
triggered strategies to model predictive control (MPC) has
been drawing increasing attention, due to advantages of the
reduction of control updates and the capability to deal with
nonlinearities and constraints.

The assumption used for general event-triggered policies
is the input-to-state stability (ISS) of the plant. The ISS
property is used to find sufficient conditions for triggering,
in the case of uncertain nonlinear systems with additive
disturbance [1]-[4], where an upper bound of the disturbance
is known. Maximum upper bound on the disturbance is the
major criterion for judging an event-trigger. The major adverse
aspect of these event-triggered MPCs is that the triggering
occurs too frequently when the bound is large, which is a
common situation in practice.
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Motivated by this problem, the main contribution of this
paper is applying machine learning technique to compensate
for the disturbance to improve triggering efficiency as well as
control performance. Many of disturbance rejection methods
such as adaptive control require restrictions on the disturbance
such as a known upper bound or a known structure (e.g,
constant or harmonic) [5]-[7]. The suggested learning-aided
control approach can relax these restrictions and automatically
model a compensator.

Many works have applied machine learning techniques to
enhance performance of control systems by learning empirical
model synthesis. In [8], [9], the unknown part of a dynamic
model or disturbance is modelled by supervised learning. In
[10]-[12], reinforcement learning is used to derive a control
policy for a system with unknown dynamics through trial-
and-error interactions in a dynamic environment. In [13],
[14], parametric controllers are automatically designed by
machine learning technique while guaranteeing safety of
robotic systems. Despite their efforts to exploit machine
learning methods, they have only focused on improving
tracking performance, but not provided stability analysis.

In this paper, the distinctive feature is that we are capable
of conducting a stability analysis despite the fact that the
control design is based on machine learning techniques. To
this purpose, we adopt the radial basis function (RBF) as
a kernel function that is a part of the the machine learning
algorithm. As an RBF characteristics, it has the universial
approximation property that serves as an upper bound on the
training error. This property is used to guarantee stability of
the suggested control system.

As one of RBF-based machine learning algorithms, we
employ least square support vector regression (LSSVR).
Support vector machine (SVM) [15] has been widely used
in a range of applications such as data mining, classification,
regression and time-series forecasting [16]. The LSSVR
developed from [17] is modified from the standard SVM.
This reformulation simplifies the optimization in a way that
the solution is characterized by a linear system while standard
SVM solves an optimization in every iteration step by interior
point methods. In particular, when machine learning is used
for a control system, computational issues are important
because control inputs should be properly provided in time.
Thus, LSSVR can be one of suitable applications to combine
with control systems.

The proposed algorithm is evaluated to position control of
a nonholonomic robot and is compared to a standard event-
triggered MPC. The simulation results show the learning
effect on control performance, triggering condition, and



disturbance compensation under the event-triggered MPC
framework. Also, we can see that smooth control inputs are
generated from the suggested control method, while oscillated
control inputs are shown for a standard event-triggered MPC
scheme. As a result, the developed method yields not only
two times less event triggering instants, but also improved
tracking performance.

The rest of this paper is organized as follows. Section II

presents the system description and summarizes contributions.

Section III describes the control problem formulation under
nonlinear MPC with some assumptions. Section IV introduces
the suggested learning-based event-triggered MPC. Section V
describes the LSSVR machine learning algorithm. Section VI
and Section VII show simulation results and concluding
remarks.

II. SYSTEM DESCRIPTION

Consider the nonlinear discrete-time dynamic system

Try1 = f@g, uk, di), (D

where z;, € R™ denotes the system state, u € R™ is the
control input, and d € R” is the additive disturbance. The
system is subject to constraints on the state and on the control
variables x € X, u € U.

We assume that the uncertainty dy, is a function of x; and
uy, satisfying:

Tpt1 = fap, ur) + d(zk, ur), 2

with known f (2, ux) and unknown disturbance d(xy, ug).
This paper uses model predictive control (MPC) for
tracking. The control input sequence u(k + j|k) is calculated
over a finite horizon 0 < 7 < N.
To counteract uncertainty d(xy, ux), we aim to design the
disturbance compensator g(xy,uy) such that

ld(@r, ur) — 9@, up) || = ex <&, 3)

where the uncertainty compensation error is bounded by

€ > 0, and we assume that the full state x; is measurable.

The main contribution of this paper is applying a machine
learning technique to model g(x, ug). The bound in (3) can
be obtained by the property of the universal approximation
[18] when applying the radial basis function (RBF) as a
kernel function used in the machine learning algorithm.

The predictive state sequence should be estimated for
calculating the optimal control in the MPC scheme. Taking the
model g(xy,uy) into account, the predicted state &(k + j|k)
for 7 > 1 is given by

(k+jlk) = f@E+7=1k),ulk+j—1[k)
+ 9@k +7 = 1[k), u(k + 7 — 1[k)). (4)

This prediction model in (4) is different to the prediction
model of the previous works [1]-[3] which use only the
nominal model, i.e the first term of the right hand in (4).
The extension to event-triggered MPC is considered with
disturbance compensator. The idea behind the event-triggered
MPC is to trigger a solution process of the optimal control

problem, only when it is needed. Otherwise, it keeps using
the control input calculated at the last event-trigger instant.
The updates of the control law depend on the error of the
actual and the predicted states of the system. Therefore, the
estimation by the disturbance compensation in (4) affects the
triggering condition as well as the control input calculation.

III. CONTROL PROBLEM FORMULATION

In this section, the problem formulation of nonlinear
MPC is presented. The design and analysis of the proposed
controller is provided along with some assumptions that are
necessary to achieve stability of the closed-loop system.

A. System assumptions

Assumption 1: 1t is assumed that f(0,0) = 0 and f(x,u)
is locally Lipschitz in the domain X x U with Lipschitz
constant L.

Let us define the preidction model f(zx, up) = f(xk, uk)+
g(xk,uy) from (4). Then f(:ck, ug) is also locally Lipschitz,
given by:

1f (@1, u) = fz,u)|| < Lyllzy — a2 (5)
Remark 1: Lipschitz assumption for the nominal model f
with Lipschitz constraint L is standard for guaranteeing ISS
(input-to-state stability). Without loss of generality, the RBF
function g satisfies Lipschitz condition with constraint L.
Because both f and g satisfy Lipschitz condition, a linear
combination of them, i.e., f, is also Lipschitz with Lipschitz
constraint Lf =Ly + L,
Remark 2: The event-triggered MPC algorithms presented
in [1]-[3] assume that the addictive disturbance is bounded
such that

il <. (6)

After applying a designed compensator, the bound of the
disturbnace error € can be smaller than ~:

R ? (7N

The more efficient event-triggering condition is derived by
the relationship (7) in comparison with the existing works
that should set the bound ~y in (6) high enough in practice.
In comparison with the existing works, the machine learning
based adaptive method can compensate for the uncertainty
regardless of its magnitude and structure once its pattern is
recognized.

We note e as the Euclidean norm of difference between
the true state and the predicted state, given by

e(k + jlk) = [lzrr; — &(k + jlk)||. ®)

Note that at the current time step k, e(k|k — 1) is measurable,
while e(k+j|k—1) for j > 1 are non-measurable predictions.
Both measurable and non-measurable variables are necessary
to derive the event-triggering condition. The non-measurable
prediction has a bound as in the following lemma.

Lemma 1: The error e(k + j|k) for j > 1 is bounded by
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Proof: By using the triangle inequality and the Lipschitz
condition of the model, we can obtain the following recursion

|2k+1 — 2(k + 1[K)||

= [|zk+1 — f(2(K[K), ur) — g(2(k[k), up) |
= |wkt1 — flzn, uk) — 9(@r, ur)||

= ||d(zk, uk) — g(zp, ur)|| =ex <€

k4 — 2(k + jlR)||
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Lemma 2: The error of predictions between current and
previous time steps is bounded such that

| (k + j1k) = 2(k + jlk = D)]| < Lie(klk — 1)
Proof:

(10)

1&(k|k) — 2(k|k — 1)|| = e(k]k — 1)

&k + 1]k) — 2(k + 1)k — 1)||

= || f (&(k|k), uk) + g (2(k|k), ur)

—f (@(klk = 1), ur) — g (Z(k|k — 1), up) ||

< Llla(klk) — @(klk — 1) = Le(klk — 1)
Hﬂk+ﬂ@—£%+ﬂk—DH§L%wm—1)

|

Lemma I and Lemma 2 are used to analyze stability and
feasibility of the control system. We note that their proofs are
similar to the proofs shown in [2]-[4]. Thus, the remaining
proofs in this paper will be condensed because of the
similarity to the existing works [2]-[4]. However, we highlight

the differences to the existing works by Remarks 2, 3, and 4.

B. MPC formulation

MPC is a control strategy that calculates predictions of
current and future control inputs by solving an online finite
horizon optimal control problem (FHOCP). The current and
predictive states and control inputs are denoted in vector
format as

X(k) = {&(k +ilk) =, Uk) = {uk +ilk) 5

where N is length of prediction horizon, and the initial state
is given such that Z(k|k) = xx. The FHOCP is formulated
in the following:

min J(X (k). U (k) =

N-1

agﬁﬂL@%+ﬂmw%+1WD+V@%+N%»

subject to

Bk +j+1k) = f (@(k + jlk), u(k + j|k)) € X;
u(k + jlk) €U,
#(k+ Nk) € Xy,

Vj=0,...,N—1, (11)

where Xy denotes the terminal constraint set, L(-) is the
running cost function, and V'(-) is the terminal cost function.
The following assumptions are required to guarantee control
stability and feasibility.

Assumption 2: The running cost L(z,w) is Lipschitz con-
tinuous in X x U, with a Lipschitz constant L.. Also, It
satisfies L(0,0) = 0 and there are positive integers o > 0
and w > 1, such that L(z,u) > of|(z,uw)||“.

Assumption 3: There exists a local stabilising controller
h(x) for the terminal set X in the sense that V' (f(x, h(x)))—
V(z) < —=L(z,h(x)) for Vo € ®, and V is Lipschitz in ¢
with Lipschitz constant Ly,. The compact set ® is given by
O={zxeR"”:V(z) <as}suchthat ® C Xy_,, form =
1,...,N —1. The final set Xy = {x € R": V() < ay} is
such that Vo € @, f(z,h(x)) € X}.

The constraint set X; in (11) is made to guarantee that
there is a robust positively invariant set for the closed-loop
system where a solution of the FHOCP exists. By Lemma 1,
the set X is defined by

X=X~ Bj(e),

, -1
with Bj(e) =z € R" : ||z| < cep (12)
Ly—1

and the set operator ~ denotes the Pontryagin difference.

Remark 3: From (12), as the set B,(¢) becomes larger,
the constraint set AX; becomes smaller so that feasibil-
ity of the FHOCP decreases. Let us call the relation-
ship in (7), which denotes that the set B;(¢) in (12)
established by ¢ is much smaller than the set B;(y) =
{a: ER™: x| <7v- (L} —-1)/(Ly— 1)} that is defined in
the existing works [2]-[4]. Therefore, a degree of the
feasibility of the proposed event-triggered MPC is improved
as large as the difference between ~ and .

IV. LSSVR-BASED EVENT-TRIGGERED MPC

In this section, the triggering condition of the suggested
event-triggered MPC control is presented with guarantee of
feasibility and stability.

A. Control law and feasibility analysis

In the classic time-triggered MPC strategy, the FHOCP is
solved at every time step. In the event-triggered setup, the



rest of the predictions might be used until a new event occurs
or the lapse of the horizon time.

Suppose that we obtained the optimal solution
U (k—-1)={u*(k—1k—-1),...,u*(k+ N = 2|k - 1)}
and the corresponding optimal cost J*(k—1) from
the last time step k& — 1. Then, the control sequence
U(k+m) = {u*(k+mlk+m), ..., u*(k+m+N—-1lk+m)}
for time steps m =0,..., N — 1 is given by:

u(k+jlk+m) =

{ u*(k+jlk—1)
h(z(k + N — 1|k +m))

From the control law (13), instead of solving the FHOCP
at k + m, the control input U(k + m) is applied to check
stability and decide if an event is triggered.

Analysis of feasibility to ensure existence of a solution
satisfying all the constraints for the FHOCP, is given the
following lemma.

Lemma 3: A system described by (2) is assumed to satisfy
all Assumptions 1-3. Then, the FHOCP is feasible if the
learning error € is bounded by:

(13)
forj=m,...,N — 2,
forj=m+ N —1.

(ap — ay)
e< 14
< (14)
f
Proof: We can follow the feasibilty proof described in
[3] by applying Lemma I and Lemma 2. [ ]

B. Stability analysis and triggering condition

Let the optimal cost at time step k — 1 be J*(k — 1) and
the costs of the feasible sequence be indicated by J(k + 7)
for j = 0,...,N — 1. Then, the differences of these costs
are given by

AJ; = J(k+35)— J*(k—1).

Theorem 1: Consider a system described by (2) and
assume Assumptions 1-3. Then, with the control law (13),
AJ; is bounded by:

- for j =0,

AJy < Lz, -e(klk—1) — a|lzp_1|* (15)

-for1<j <N -1,

Lj ~1 J
AJ; < LZj : Lj: 1 "€ — az ||£k+j—i||wv (16)
1=0
where
LNV
Ly =LyLW Y7 .1 (17)
J f Lf -1

Thus, according to input-to-state stability (ISS) [19], the
optimal cost is an ISS-Lyapunov function of the closed loop
system. Thus, the closed-loop system is input-to-state stable.

Proof: We can follow the procedures of Theorems I
and 2 described in [2] by applying our Lemma [ and Lemma
2. [ ]

Consequently, the triggering rule is defined to maintain the
stability, which is ensured when AJ; is strictly decreasing:

Adjp < AJj. (18)
By (15)—(18), the triggering condition can be stated in the
following.
Triggering rule:
- for 5 =0,
Lz, -e(klk—1) <o-a|zp-1]" (19)
-for1<j<N-—1,
Lj 1 J
f w
LZJ.-Lf_1 -sga-a;ka,iﬂ-H (20)
and
; -1 L1 B "
A e T e <o alzgl”,

2L
with 0 <o <1, and Lz, from (17).

In case of j = 0, the measurable error e(k|k — 1) =
||k — Z(k|k — 1)|| is used for the triggering condition, where
Z(k|k — 1) is obtained by the learning-based estimation.
Afterwards, for predictive period 1 < j < N — 1, the
triggering condition depends on the upper bound .

Remark 4: Relatively large values on the left-hand terms
in (20) and (21) than the right-hand terms cause frequent
triggering instants, which is one of the practical problems
in conventional event-triggered MPC [2]-[4]. In this paper,
however, the proposition that € is small enough by uncertainty
compensation can prevent the frequent triggering instants.

To summarize, suppose that the FHOCP is solved at k. The
FHOCP is triggered at k + j if (19) or (20)-(21) is violated.
When they are satisfied for all 0 < j < N — 1, the FHOCP
is triggered at the last horizon step k + N.

V. COMPENSATOR DESIGN BASED ON MACHINE LEARNING

This section describes how to design the compensator
g(x, ug) through a machine learning technique.

Machine learning techniques commonly use a kernel
function that transforms data in raw representation into feature
vector representation, which causes big impact to learning
performance. The most popular kernel function is the radial
basis function (RBF). In this paper, we employ least square
support vector regression (LSSVR) as the learning bodyframe
and RBF as the kernel function.

The basic idea of LSSVR is to map the data x € RM to
a higher dimensional feature space H (reproducing kernel
Hilbert space) using a nonlinear mapping ¢(x) : RM —
H € R", and then find the relationship between the scalar
target variable y and the explanatory variable x (i.e., linear
regression) in the kernel space. In other words, given a training
set of [ training samples {(x;,¥;)}!_,, it maps the training
samples to a new data set {(¢4(x;),y;)}\_; with the nonlinear
mapping ().
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Fig. 1: Simulation results of the proposed algorithm in comparison to the standard event-triggered MPC [2], with respect to
(a): tracking results, (b) and (c): event-triggering instants, (d) and (e): control inputs, and (f): uncertainty prediction.

Consider the linear regression model:

g(x) = (w, p(x)) +b, we R" beR,

)

where w and b are the coefficients, which are estimated by
the following optimization problem:

l
: 1 2 1 2
min 5w + 5 ;é
7g(X1'),

S.t. gz =Y;

where the constant ¢ > 0 is weight parameter.

A Lagrangian to solve the optimization is given by:

L(w,b,f;a) 7w ’lU+

252

wé(x;) +b)

Zaz{y_ _fi}v

where a; € R are the Lagrange multipliers, and the KKT

(Karush-Kuhn-Tucker) conditions are given by:

oL

3w_0 = w—;amxl

oL l

o =0 = ;ai:O,

oL

8&-_0 = a; = c§;,

OL

B, 0 = y— (wo(x;) +b) - &-

After elimination of the variables w and e, we can obtain the
following solution form:

0 1 1
1 b
1 k(Xl,Xl) + E k(Xl,Xl) oy
1 1| |
1 k(xl,x1)+g k(xl,xl)Jrg
= [O U1 yl]Ta
where k(x;,x;) = ¢(x;)To(x;) for 4,5 = 1,...,l is a

kernel function. Finally, by Mercer’s theorem [15], the fitting



function as the output of LSSVR is given by:

I
9(x) = Zaik(X,xi) +b.

In this paper, the kernel function is defined by radial basis
function (RBF):

k(xi,x;) = exp (c1 - [|xi — x][|/c2),

where c; and ¢, are weight parameters to control strength
and smoothness of the kernel function. Therefore, the LSSVR
output is rewritten by:

l
g(x) =Y azexp(er - [xi — x| /ea) +b. (22)
=1

The RBF-based LSSVR (22) has a property of the universal
approximation by the following lemma.

Lemma 4: For any given continuous real function g(x)
on a compact set £ and arbitary £ > 0, there exists on
approximation function g(x) formed by (22) such that

Supyc|9(x) — g(x) <e. (23)
Proof: See [18]. |

VI. SIMULATION RESULTS

For the simulation study, we consider the position control of
a nonholonomic robot including state-dependent disturbance,
given by:

iy = 7T+ (1+6)vT cosby, (24)
TZ_H r% + viT sin 0y,
Ok+1 = 0O+ wiT.

In this case, the uncertainty in (2) is defined as d(zy,uy) =
dvyT cos By, that is only restricted on x-axis state.

The vector v = [v, w] is the control input. The state vector
x = [r*,rY,0]T is comprised by the 2-D position of the robot
(r*,rY) and the orientation ¢. The uncertainty § = 0.4 is
assumed constant. The constraints of the state and input are
given by |r*|,|rY| < 10 and |v|, |w| < 2. Given reference
r*, the running cost function and terminal cost function are
given by L = ||z — r*[|3), + [[ul|,, and V = ||z[|), with
Ql = 2_[3><3, QQ = 0.5.[2><2, and Qg = .[3><3. The prediction
horizon is set to N = 20 steps, and the time interval is set
to T'= 0.2 sec. The initial positions is (r§, 77, 600) = (0,0,0)
and the reference goal is 7* = (5, 8, 7).

A. Performance analysis

We present some comparison results to the conventional
event-triggered MPC [2]. From Fig. 1(a), the proposed control
scheme outperforms the compared method due to the learning
capability in compensating for the oscillating uncertainty.
Figs. 1(b) and 1(c) depict the triggering instants of both
algorithms. Among 60 time steps, 26 and 13 triggering
instants occur, respectively. From Figs. 1(d) and 1(e), the
control inputs are shown. The suggested method yields the
smooth control action, while the compared method barely
approaches the reference by the oscillating control input. The

better control performance as well as less triggering instants
are caused by the accurate uncertainty estimation as shown

in Fig. 1(f).
VII. CONCLUSION

This paper presented the LSSVR-based event-triggered
MPC strategy. It has guaranteed stability and feasibility of the
control system. Simulation results showed that the developed
control scheme yields two times less event triggering instants
and better tracking performance for a unicycle vehicle with
model uncertainty, compared with a standard event-triggered
MPC.
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