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Abstract

Efficient coverage of an area by a mobile vehicle is a com-
mon challenge in many applications. Examples include
automatic lawn mowers and vacuum cleaning robots. In
this paper a vehicle with uncertain heading is studied.
Five control strategies based on position measurements
available only when the vehicle intersects the boundary
of the area are compared. It is shown that the perfor-
mance depends heavily on the heading error. The results
are evaluated through extensive Monte Carlo simulations.
An experimental implementation on a mobile robot is also
presented.

1 Introduction

Mine detecting robots, search-and-rescue missions, and
snow removing vehicles are applications in which it is im-
portant to efficiently cover a given area. Recent commer-
cial implementations in consumer products include au-
tomatic vacuum cleaners [1] and automatic lawn mow-
ers [2]. Several solutions to the area coverage problem
are proposed in the literature, see Choset [3] for a recent
survey. Many existing algorithms consider the decompo-
sition problem, in which the main task is to find intelligent
ways to decompose a given large irregular area into pieces
easily covered by a default coverage path. An example of
such an algorithm is proposed by Hert and Lumesky [4].
There also exist heuristic coverage methods, for example,
behavior-based algorithms with one or more robots [5, 6].
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The efficiency of an algorithm can be measured through
the time it takes to complete the coverage. In the work
of Huang et al. [7], it is argued that a reasonable opti-
mization criterion is the total number of turns needed for
a complete coverage. This is based on the natural assump-
tions that for mobile robots and other vehicles, turns are
costly due to the need to decelerate, turn, and accelerate.
It seems like actuator and sensor errors have not been con-
sidered in the area coverage literature, though they play an
important role for the performance in many applications.

The main contribution of this paper is to introduce an
area coverage problem that has an uncertain and dynamic
vehicle model. Based on this model and the assump-
tion that position measurements are only available at the
boundary of the area to be covered, five control strate-
gies are analyzed through extensive simulations and ex-
periments. The setup is quite realistic, for example, for
mobile robots which might suffer from unreliable posi-
tion readings and limited sensor capacity. We consider the
problem of minimizing the total number of turns needed
to cover a given area, cf., [7]. The control strategies are
evaluated by comparing this number for various system
uncertainties. It is shown that for large uncertainties, a
randomized strategy is the best one, which seems intu-
itive since the system state does not reveal much informa-
tion in that case. For small uncertainties, a heuristic strat-
egy sweeping the area by a simple back-and-forth motion
is sufficient. The interesting case, however, is for uncer-
tainties of middle range. We present three robust control
algorithms that then outperforms the randomized and the
heuristic strategies. The computational tools are mainly
based on computational geometry software [8, 9]. The
complexity of the coverage algorithms is not studied in
the paper. In general, one can probably say, however, that
the presented solutions do not scale well. A complexity
analysis of the algorithms used in the geometrical opera-
tions can be found in [10]. In this context, we also remind
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of the art gallery problem, which is a somehow related
coverage problem that has been extensively studied also
regarding algorithmic complexity [11].

It is interesting to notice that the proposed closed-loop
control system for the area coverage can be modeled as a
hybrid automata. In this way, it is possible to have a low-
order model that still can capture the complexity of the
problem. The efficiency to use hybrid control in robotics
is also illustrated in time-optimal tracking control prob-
lems for Dubin’s vehicle [12].

The outline of the paper is as follows. The area cov-
erage problem is formulated in Section 2. Five control
strategies for solving the problem is presented in Sec-
tion 3. In Section 4 it is shown by extensive Monte Carlo
simulations that the preferable control strategy depends
on the error bound of the steering actuator. Experimental
results are presented in Section 5, where an implementa-
tion on a mobile robot is shown. Section 6 concludes the
paper.

2 Problem Formulation

Consider the problem of covering the set

Ω= [0,L]× [0,L] ⊂ R
2, L > 1,

by a square vehicle, as illustrated in Figure 1. The ve-
hicle covers a unit square, which is positioned with its
upper-right corner at coordinate (x,y). For simplicity,
we assume that the vehicle starts in the lower-left corner
(x(0),y(0)) = (1,1). At time t ≥ 0, the vehicle covers the
set

c(t) = [x(t)−1,x(t)]× [y(t)−1,y(t)].

The accumulated covered set is denoted

C(t) =
[

s∈[0,t]

c(s).

Assuming a dynamical model of the vehicle of the unicy-
cle type

ẋ(t) = cos(θ(t))
ẏ(t) = sin(θ(t))
θ̇(t) = ω(t)
v̇(t) = F/m

ω̇(t) = τ/J,

(1)

(x(t),y(t))

C(t)

Ω

θ0 + e0

θ0

(x0,y0)

c(t)

Figure 1: Area coverage problem. A square vehicle with
uncertain dynamics should cover the area of Ω as fast as
possible.

where the force over mass, F/m, and torque over iner-
tia momentum, τ/J are the input signals. Now assume
each independently actuated wheel applies a force F1,F2

against the ground. The force and torque can then be ex-
pressed as

(
F
τ

)
=

( 1
2

1
2

− 2
l

2
l

)(
F1

F2

)
(2)

Consider two cases: the robot moving straight in the head-
ing direction θ constant unit velocity of the vehicle, its
dynamics is given by

ẋ(t) = cos(θ(t)+ e(t))
ẏ(t) = sin(θ(t)+ e(t)),

(3)

where θ ∈ [−π,π) is the controlled heading and e an un-
known angular error. The error, which thus affects the
actuation of the control, is bounded by a known constant
ε ∈ [0,π).

The vehicle localization is constrained, such that the
vehicle position is known only at moments when the ve-
hicle hits the boundary of Ω, i.e., for t > 0 such that
c(t)∩ ∂Ω �= /0. This can be implemented in practice by
marking the boundary in a suitable way; compare cur-
rent systems used for automatic cleaning robots [1] and
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lawn movers [2]. The control strategies studied in the pa-
per are limited to piecewise constant controls triggered
by the events c(t)∩ ∂Ω �= /0, which corresponds to mo-
ments when the vehicle turns. Also the error e is piece-
wise constant and should be interpreted as the uncer-
tainty in the actuation of the turning angle. We suppose
that the turning events are separated in time and denoted
0 = t0 < t1 < .. . . The control θ at turn k is denoted θk

and the corresponding error ek. We suppose that θk + ek

never drives the vehicle outside Ω, i.e., for all t ≥ 0 we
have c(t) ⊂Ω.

In order to efficiently cover the area of Ω, denoted
A(Ω) =

R
Ω dz, it is reasonable to try to minimize the to-

tal number of turns N > 1 made by the vehicle to com-
plete the coverage, cf. [7, 3]. The feedback controls θ k,
k = 0,1, . . . ,N, can be written as

θk = f (xk,yk,Ck),

where (xk,yk) = (x(tk),y(tk)) is the position at the turning
point and Ck =C(tk) is the total covered set up till time tk.

The closed-loop system can be described as the hy-
brid automaton in Figure 2. When the guard condition
c(t)∩ ∂Ω �= /0 is fulfilled, a discrete-event is generated.
It updates the control θ and the error e according to the
indicated reset maps. A control law f that solves the cov-
erage problem in N turns corresponds to a family of hy-
brid trajectories, which each consists of N straight lines.
A hybrid automaton describing the area coverage control
problem. When the guard condition c∩∂Ω �= /0 is enabled
(i.e., the vehicle coverage intersects the boundary of Ω),
a discrete event takes place. At the event, the control θk

and error ek are updated according to a control law f and
an error set [−ε,ε], respectively.

An interesting hybrid differential game problem is to
find a feedback control law f that minimizes N, given
hard constraint on the error |ek| < ε. The authors are not
aware of a general solution to this robust control prob-
lem. Instead we present a few intuitive algorithms in next
section, and the rest of the paper is devoted to their evalu-
ations.

3 Area Coverage Control Strategies

Five feedback control strategies for area coverage are pre-
sented in this section. They are denoted nominal, guaran-
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Figure 2: Comparison of area coverage control algorithms
at t = t2.

teed, possible, heuristic, and randomized. The first three
of them are “greedy” in the sense that they try to maxi-
mize the area covered between two turns given different
constraints. The fourth strategy is heuristic and basically
mimics a traditional way of covering an area when there
are no actuator errors; a boustrophedon path [3, 13]. The
fifth control strategy is a randomized solution, which is in-
spired by commercial implementations in automatic vac-
uum cleaners and lawn movers [1, 2].

Figure 2 shows a comparison of how the first three con-
trol strategies are derived. The snapshot is taken at turn
k = 2. The current coverage c(t2) of the vehicle is marked
by a small square. The gray area corresponds to the accu-
mulated coverage C(t2). At this moment, the hybrid con-
trol strategies maximize the area to be covered till turn
k = 3, i.e., search for the best control θ2 over the interval
[−π,π). Figure 2 shows areas for θ2 = −π/4. How these
are derived is further described below.

3.1 Nominal Control

The nominal control strategy maximizes the new area
covered by the vehicle between turn k and k+1 neglecting
the influence of the error. The feedback control is given
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by
θN

k = arg max
θ∈[−π,π)

A(B(xk,yk,θ)∪Ck),

where
B(x,y,θ) =

[

z∈�(x,y,θ): c̄(z)⊂Ω
c̄(z)

denotes the set to be covered till next turn if the error
was zero. Here c̄(z) denotes the set covered by a vehi-
cle in position z ∈Ω and � : R

2× [−π,π) �→ R
2 is the line

�(x,y,θ) = {(x+ scosθ,y+ ssinθ) : s ≥ 0}. The union of
the striped areas corresponds B(x2,y2,−π/4) in Figure 2.

3.2 Guaranteed Control

The guaranteed control strategy maximizes the new area
that is guaranteed to be covered by the vehicle between
turn k and k+1. This feedback control law is given by

θG
k = arg max

θ∈[−π,π)
A(B∩(xk,yk,θ)∪Ck),

where
B∩(x,y,θ) =

\

α∈[−ε,ε]
B(x,y,θ+α)

denotes the set guaranteed to be covered regardless of the
actual error executed at tk. In Figure 2, the vertically
striped area corresponds to B∩(x2,y2,−π/4). Note that
this algorithm will not work for large ε. In that case, when
a sufficiently large part of the area has been covered at
time tk, say, the guaranteed new area to cover is equal to
zero, i.e., A(B∩(xk,yk,θk)∪Ck) = A(Ck). (When this hap-
pens in our implementation, a random control action is
issued.)

3.3 Possible Control

The possible control strategy maximizes the area that cor-
responds to the nominal control but evaluated over the
union of all possible errors less than ε. This feedback
control law is given by

θP
k = arg max

θ∈[−π,π)
A(B∪(xk,yk,θ)∪Ck),

where
B∪(x,y,θ) =

[

α∈[−ε,ε]
B(x,y,θ+α).

The union of the black and the stripped areas in Figure 2
corresponds to B∪(x2,y2,−π/4).

Figure 3: The left picture shows that a boustrophedon
path does not succeed to cover the set Ω, when there is a
non-zero steering error ε. The proposed heuristic strategy,
however, performs conservative movements to guarantee
complete coverage, as shown in the right picture.

3.4 Heuristic Control

The heuristic control strategy mimics a boustrophedon
path, which is the simple back-and-forthmotion an ox fol-
lows when dragging a plow in a field [3]. The only differ-
ence here is that the heuristic control θH

k is choosing con-
servatively, so that C(t) is guaranteed to be a connected
set for all t ≥ 0, see Figure 3. Note that a pure boustro-
phedon strategy, without the error compensation, might
not succeed in covering the whole set Ω. For small ε, the
heuristic control strategy is efficient in the sense that N
is close to optimal. When ε grows, however, the strategy
rapidly deteriorates. For ε larger than εc = 2−1 arctanL−1

it happens that the path makes a closed orbit, which thus
does not contribute to the area coverage.

3.5 Randomized Control

The randomized control strategy is simply to let θR
k take

a random value from the uniform distribution U(−π,π).
This algorithm is easy to implement, since no state in-
formation, such as current position or covered area, is
needed. The Electrolux automatic cleaning robot Trilo-
bite [1] and the Husqvarna automatic lawn mover Solar
Mover [2] apply similar randomized navigation schemes.

3.6 Computational Implementation

The greedy control algorithms require the calculation of
the area covered by the polygons generated from the ve-
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Area covered:46.355 Nominal

Guaranteed Possible

Figure 4: Snapshot of an area coverage simulation at turn
k = 4. About half of the area is covered, as indicated by
the white part of Ω. The plots illustrates the nominal,
guaranteed, and possible control strategies.

hicle movements. These algorithms are implemented in
Matlab. They are based on Vatti’s algorithms for poly-
gon clipping [8] as implemented by Murta in the General
Polygon Clipping Library [9]. Functions for area calcu-
lation and convex hull generation by Pankratov [14] are
also used.

4 Simulation Results

To evaluate the area coverage control strategies, the re-
sults from Monte Carlo simulations are presented in this
section. The size of the set Ω to be covered is set to
L = 10. The turning error ek, k = 0, . . . ,N, is drawn from
a uniform distributionU(−ε,ε) (except for the last part of
the section, where a comparison with normally distributed
errors is made).

Figure 4 shows a snapshot of a simulation with ε =

Area covered:97.5983 Nominal

Guaranteed Possible

Figure 5: Snapshot of an area coverage simulation after
k = 25 turns. Almost all of the area is covered.

0.078 at t = t4. The upper left plot shows the accumu-
lated covered set C(t4) in white, with the current coverage
c(t4) marked by a small square. At this stage the covered
area is equal to A(C(t4)) ≈ 46%. Recall that the vehicle
starts in the lower left corner (x(0),y(0)) = (1,1). Note
that the error e0 leads to that the vehicle is not able to steer
exactly to the upper right corner. The upper right plot in-
dicates the estimation for the nominal control, while the
lower left and the lower right shows the guaranteed and
possible controls, respectively. Figure 5 shows a snap-
shot of this same simulation at t = t25. At this much later
state of the simulation almost all of Ω is covered, namely,
A(Ω) ≈ 98%.

An extensive simulation comparison of the five area
cover control strategies is shown in Figure 6. For each
value of the error bound ε marked in the figure, one hun-
dred Monte Carlo simulations were done and the average
N was derived for 98% coverage. The ε-axis can roughly
be divided into four regions. For small errors (ε < 0.07),
the heuristic control strategy gives the best result. Note
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Figure 6: The average number of turns N required for
98% coverage versus error bound ε. Five control strate-
gies are compared. Each mark corresponds to one hun-
dred Monte Carlo simulations. The control strategy that
gives the best performance depends on ε.

that for ε = 0, it gives N = 18, which is the optimal. For
ε > 0.07, the strategy shows quickly bad performance.
This is related to the parameter εc = 0.05, see Section 3.
For ε ∈ (0.07,0.10), the nominal and the guaranteed con-
trol strategies are equally good. Then for ε ∈ (0.1,0.4),
the nominal control is the best. For large errors (ε > 0.4),
the randomized strategy perform similarly, which is natu-
ral because the worst-case error is then larger than 23 de-
grees. For a given vehicle model, Figure 6 indicates hence
preferable choices of feedback controls. Though it should
be emphasized that the implementation complexity varies
for the different control strategies.

The nominal control strategy shows a quite good per-
formance over a large range of error bounds. Figure 7
shows the same result as in Figure 6 for this algorithm,
but includes the standard deviations.

It is interesting to see how influential the error distribu-
tion is on the results. Figure 8 shows a comparison be-
tween errors ek from the uniform distribution U(−ε,ε)
(marked with rings) and errors from the normal distribu-
tion N (0,ε/

√
3) (asterisks). The distributions thus have

the same means and standard deviations. As expected, the
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Figure 7: Similar simulations as in Figure 6 for the nomi-
nal control strategy. The dashed curves indicate the stan-
dard deviation.

normal distribution yields a slightly lower N, but still the
results are comparable.

5 Experimental Results

The experimental setup is based on the Khepera II mobile
robot, see Figure 9. The diameter of the Khepera robot
is 55 mm and the area to be covered has L = 550, so the
experimental setup and the simulation study have roughly
the same quota A(c)/A(Ω). A camera and image process-
ing software are used for the localization of the robot at
the boundary of Ω. From modeling experiments, the er-
ror bound for the Khepera II robot was determined to be
ε = 0.078,

As illustrated by the snapshot in Figure 10, the experi-
ment follows the behavior quite well of the corresponding
simulations (Figure 4). When running an experiment for
a long time, it has been noticed however that the error
model used in the simulation is not accurate. The error
distribution tends to change over time. This is particu-
larly the case if the localization error at the boundary of
Ω is not negligible.
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Figure 8: Similar simulations as in Figure 6 for the nom-
inal control strategy. The rings indicate the results for
uniformly distributed errors, while the asterisks indicate
normally distributed errors.

6 Conclusions

Motivated by the need for robust control algorithms for
area coverage under uncertain vehicle models, we pre-
sented and analyzed a few possible strategies. It was
shown that the number of turns needed in order to cover
an area is increasing with the error bound ε of the turns.
Moreover, which algorithm that performed the best de-
pends on ε. For example, for a bad steering actuator (large
ε), a randomized algorithm performed as well as the more
intelligent ones, while for a better actuator considerable
improvements can be achieved by using the proposed ro-
bust strategies.

The closed-loop control system for the area coverage
was presented as a hybrid automata. In this way, it was
possible to have a low-order model that still can capture
the complexity of the problem. It would be interesting to
apply existing verification tools in order to analyze this
so called timed automata [15], which the area coverage
problem in the paper led to. Another possible extension
of the work is to consider collaborating vehicles.

Figure 9: Experimental setup for evaluation of the area
coverage robot.
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