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Abstract— Queue overflow of a dynamic queue system gives
rise to the information loss (or packet loss) in the communica-
tion buffer or the decrease of throughput in the transportation
network. This paper investigates a stochastic optimal control
problem for dynamic queue systems when imposing probability
constraints on queue overflows. We reformulate this problem as
a Markov decision process (MDP) with safety constraints. We
prove that both finite-horizon and infinite-horizon stochastic op-
timal control for MDP with such constraints can be transformed
as a linear program (LP), respectively. Feasibility conditions
are provided for the finite-horizon constrained control prob-
lem. Two implementation algorithms are designed under the
assumption that only the state (not the state distribution) can
be observed at each time instant. Simulation results compare
optimal cost and state distribution among different scenarios,
and show the probability constraint satisfaction by the proposed
algorithms.

I. INTRODUCTION

The queuing model is a widely studied stochastic dynamic
model, which considers decisions about resource allocation
for certain services. It has a wide range of applications
including business decision-making, industrial management,
communication system, computer networks and traffic con-
trol [1], [2], [3], [4]. One stream of research on queuing
models studies the optimal control policy, which seeks the
control action selection to optimize certain performance
metrics related to the queue length and control input. If
multiple design objectives are involved, the problem becomes
a constrained optimization, which aims to find a policy to
optimize one of the objectives while guaranteeing the value
of the other objectives within a certain range.

It is worth noting that there are a few main approaches
to tackle the optimal queue control problem. As the optimal
control can be categorized as a sequential decision making
problem, a dynamic programming (DP) is applicable for both
finite and infinite horizon problems [5], [6], [7]. However, the
dynamic programming fails to cope with the optimization
with additional constraints on extra performance require-
ments. Another approach is based on the empirical measure
of the state-action pairs, which is commonly used for infinite
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horizon problems [7], [8]. This approach can deal with the
constraints on a design objective which is linear in the
empirical measure of the state-action pairs.

In practice, it is desirable to keep the system state inside a
safety region with a high probability. For example, limiting
probability of queue overflows for a dynamic queue system
is of great interest since queue overflows give rise to the
information loss (or packet loss) in the communication buffer
or the decrease of throughput in the transportation network.
The classical approaches mentioned above fail to handle
this scenario. The dynamic programming cannot capture the
requirement specified by probability constraints, while the
empirical measure only deals with a steady state requirement.
As the safety region requirement should be satisfied for the
whole trajectory, the transient behavior in a finite horizon
should also be considered.

In [9], some attempts have been made to deal with the
safety constraints for a general sequential decision making
problem in a finite horizon regime. They proposed a dynamic
program to obtain a policy for the worst case, which can be
efficiently computed by a linear program (LP). This result
provides a performance guarantee on the lower bound of the
system performance.

In this work, we consider the stochastic optimal control
problem of dynamic queue systems when imposing some
probability constraints on queue overflows. This problem can
be transformed as a Markov decision process (MDP) with
safety constraints, as in [9]. Different from [9], we tackle
the probabilistic constraint by directly solving the problem.
Our main continuations are summarized as follows.
(1) We provide an LP reformulation for both finite-

horizon and infinite-horizon cases, respectively. Com-
pared with [9], our LP exactly solves the finite-horizon
stochastic optimal control problem with probability con-
straints without any performance loss or conservatism.
In addition, we explore the feasibility conditions for the
finite-horizon constrained problem.

(2) We propose two implementation algorithms under the
assumption that only the state (not the state distribution)
can be observed at each time instant. The first algorithm
is in a receding-horizon manner according to the state-
adaptive optimal policy of the finite-horizon constrained
problem while the second one is based on the stationary
optimal policy of the infinite-horizon constrained prob-
lem.

The remainder of this paper is organized as follows. Sec-
tion II provides the problem formulation. Section III presents
the feasibility conditions and the LP reformulation for the
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finite-horizon constrained problem. Section IV develops the
LP reformulation for the infinite-horizon constrained prob-
lem. An example in Section V illustrates the effectiveness of
our approach. Section VI concludes this paper.

Notation. Let N denote the set of nonnegative integers
and R denote the set of real numbers. For some q,s ∈ N
and q < s, let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q}
and {r ∈N | q≤ r≤ s}, respectively. When ≤, ≥, <, and >
are applied to vectors, they are interpreted element-wise. 1
denotes a vector of all ones with appropriate dimension. Pr
denotes the probability measure. E denotes the expectation
of a random variable. For a set X, P(X) is the collection
of the probability distribution on a Borel subset of X.

II. PROBLEM FORMULATION

A. Dynamic queue model

Consider a dynamic queue system

qt+1 = min{max(qt −ut ,0)+at , q̄}, t ∈ N, (1)

where qt is the queue length, ut is the control input, at is
the arrival, and q̄ ∈ N is the size of the queue. The control
input is constrained by

ut ∈ U, N[0,ū], ∀t ∈ N, (2)

where ū ∈ N is the upper bound on control input. Fur-
thermore, the arrivals at are independent and identically
distributed (i.i.d.) with probability mass function

f (k) = Pr{at = k}, ∀t ∈ N. (3)

B. Probability constraints

In this work, we are interested in the probability of qt = q̄
at time instant t, i.e., the probability that the queue overflows
occur. In practice, the queue overflows increase the risk in
losing the information or data in the communication buffer,
or decreasing the throughput in the transportation network.
Here, we impose a probability constraint on qt = q̄ at each
time step, i.e.,

Pr{xt = q̄} ≤ ε,∀t ∈ N, (4)

where 0≤ ε ≤ 1 is a prescribed probability level.

C. Reformulation as a finite MDP

The above dynamic queue system can be formulated as an
MDP, denoted by S = (X,U,T,c):
• state space: X= N[0,q̄];
• control space: U= N[0,ū];
• transition kernel:

T (y|x,u) =


0, if y < (x−u)+,
f (y− (x−u)+), if (x−u)+ ≤ y < q̄,

∑
∞

k=q̄−(x−u)+ f (k), if y = q̄,

• one-stage cost: c(x,u) and terminal cost: c f (x).
Remark 2.1: The transition kernel above is explicitly de-

fined according to the probability mass function of the
arrivals and the queue dynamics (1).

Remark 2.2: For a dynamic queue model, the queue
length captures the so-called “delay” while the control input
corresponds to the “control power”. In this work, we do not
impose any structure on the cost function. It can be a tradeoff
between “delay” and “control power”.

Denote Ux as the admissible control set when the state is
x, i.e., Ux = {u ∈ U | ∃y ∈ X,T (y|x,u)> 0}. And let |Ux| be
the cardinality of Ux.

Assumption 2.1: For any x ∈ X, |Ux| ≥ 1.
The policy is restricted to the randomized Markovian pol-

icy, denoted by µ : X→P(U). The initial state probability
distribution is denoted by p0 ∈P(X). The objective of this
work is to solve the following two problems.

Problem 2.1: Given a finite horizon N and an initial
state distribution p0, find, if there exists, an optimal policy
µ∗ = (µ∗0 ,µ

∗
1 , . . . ,µ

∗
N−1) solving the following finite-horizon

stochastic optimal control problem

min
µ

E{
N−1

∑
t=0

(c(xt ,ut))+ c f (xN)} (5a)

subject to
∀t ∈ N[1,N] : Pr{xt = q̄} ≤ ε. (5b)

Problem 2.2: Find, if there exists, an optimal policy µ∗ =
(µ̄∗, µ̄∗, . . .) solving the following infinite-horizon stochastic
optimal control problem

min
µ

lim
N→∞

1
N
E{

N−1

∑
t=0

(c(xt ,ut))} (6a)

subject to
∀t ∈ N : Pr{xt = q̄} ≤ ε. (6b)

III. FINITE-HORIZON STOCHASTIC OPTIMAL CONTROL

This section aims to provide a strategy to solve Prob-
lem 2.1. First, we characterize the feasibility conditions.
Then, we reformulate the finite-horizon stochastic optimal
control problem as an LP.

A. Feasibility conditions

Given a finite horizon N, a policy µ = (µ0,µ1, . . . ,µN−1)
can be represented by a sequence of matrices M =
(M0,M1, . . . ,MN−1) satisfying

∀t ∈ N[0,N−1] :


Mt ∈ R(q̄+1)×(ū+1),

Mt ≥ 0,
Mt1 = 1.

(7)

Each row of Mt is a probability distribution over the control
space, which corresponds to a randomized Markovian policy.
Then, the state distribution pt evolves as

pt+1(x) = ∑
y∈X

∑
u∈U

T (x|y,u)Mt(y,u)pt(y)

= ∑
y∈X

Ht(x,y)pt(y), ∀x ∈ X,∀t ∈ N[0,N−1], (8)

with an initial state distribution p0. In (8), the matrix Ht is
defined by

Ht(x,y) = ∑
u∈U

T (x|y,u)Mt(y,u), ∀x,y ∈ X. (9)
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The probability constraints (5b) only involve the state x =
q̄, which can be rewritten with respect to the state distribution
pt as follows

pt ≤ p̄, p̄ =

[
1
ε

]
, ∀t ∈ N[1,N]. (10)

Given an initial state distribution p0, Problem 2.1 is said
to be feasible if there exists a sequence of matrices M =
(M0,M1, . . . ,MN−1) such that

∀t ∈ N[0,N−1] :

{
pt+1 = Ht pt ,

pt+1 ≤ p̄,
(11)

where Ht is a function of Mt defined in (9). The follow-
ing proposition provides sufficient conditions to ensure the
feasibility of Problem 2.1.

Proposition 3.1: Given an initial state distribution p0,
Problem 2.1 is feasible if there exist K1 ∈ R(q̄+1)×(ū+1),
K2 ∈R(q̄+1)×(ū+1), L1 ∈R(q̄+1)×(q̄+1), L2 ∈R(q̄+1)×(q̄+1), S ∈
R(q̄+1)×(q̄+1), and s ∈ Rq̄+1 satisfying

K1 ≥ 0,K11 = 1, (12a)
L1(x,y) = ∑

u∈U
T (x|y,u)K1(y,u),∀x,y ∈ X, (12b)

L1 p0 ≤ p̄, (12c)
K2 ≥ 0,K21 = 1, (12d)
L2(x,y) = ∑

u∈U
T (x|y,u)K2(y,u),∀x,y ∈ X, (12e)

S≥ 0, (12f)
L2 +S+ s1T ≥ 0,s+ p̄≥ (L2 +S+ s1T )p̄. (12g)

Proof: Given an initial state distribution p0, the satis-
faction of probability constraint (5b) at t = 1 is equivalent
to the existence of K1 ∈ R(q̄+1)×(ū+1) and L1 ∈ R(q̄+1)×(q̄+1)

satisfying (12a)–(12b) such that the initial distribution p0 can
be steered to a new distribution L1 p0 ≤ p̄, i.e., (12c).

Then, we need to find the conditions such that pt ≤ p̄ with
p1 ≤ p̄, ∀t ∈ N[2,N]. It is sufficient to consider the existence
of K2 ∈R(q̄+1)×(ū+1) and L2 ∈R(q̄+1)×(q̄+1) satisfying (12d)–
(12e) and L2 p≤ p̄, ∀p≤ p̄. And following Lemma 1 in [10],
the fact that L2 p≤ p̄, ∀p≤ p̄ is equivalent to the existence
of S ∈ R(q̄+1)×(q̄+1), and s ∈ Rq̄+1 satisfying (12g)–(12g).

The proof is completed.
Remark 3.1: In Problem 2.1, we do not require a feasible

initial state distribution, i.e., p0 ≤ p̄. Thus, the feasibility
conditions consist of two parts: one is to enforce the initial
state distribution to be feasible and the other is to guarantee
that pt ≤ p̄ is controlled invariant.

B. Reformulation as LP

From (8), we have pt+1 = Ht · · ·H2H1 p0 and Ht is a
function of decision variables Mt . Note that the resulting
constraints are non-convex. In [9], it is argued that finding
a feasible solution to Problem 2.1 is challenging and DP
fails to solve this problem directly. Hence, the authors
of [9] propose an approximate method to search the feasible
region and provide a modified DP to provide a lower bound
on the optimal reward or an upper bound on the optimal

cost. Different from [9], we can exactly solve Problem 2.1
without any performance loss or conservatism. The following
theorem shows that Problem 2.1 is equivalent to an LP.
Denote by J∗N(p0) the optimal cost of Problem 2.1.

Theorem 3.1: Problem 2.1 can be reformulated as the
following LP:

min
V=(V0,V1,...,VN−1,VN)

N−1

∑
t=0

∑
x∈X

∑
x∈U

c(x,u)Vt(x,u)

+ ∑
x∈X

c f (x)VN(x) (13a)

subject to
V1 ∈ R(q̄+1)×(ū+1),V1 ≥ 0,1TV11 = 1,V11 = p0, (13b)

∀t ∈ N[1,N−1] :
Vt ∈ R(q̄+1)×(ū+1),Vt ≥ 0,1TVt1 = 1,

∑
u∈U

Vt(x,u)− ∑
y∈X

∑
u∈U

T (x|y,u)Vt−1(y,u) = 0,∀x ∈ X,

Vt1≤ p̄,

(13c)


Vt ∈ Rq̄+1,VN ≥ 0,1TVN = 1,
VN(x)− ∑

y∈X
∑

u∈U
T (x|y,u)VN−1(y,u) = 0,∀x ∈ X,

VN ≤ p̄,

(13d)

which gives

J∗N(p0) =
N−1

∑
t=0

∑
x∈X

∑
x∈U

c(x,u)V ∗t (x,u)+ ∑
x∈X

c f (x)V ∗N(x), (14)

where V∗ = (V ∗0 ,V
∗
1 , . . . ,V

∗
N−1,V

∗
N) is the optimal solution of

LP (13).
Proof: First of all, Problem 2.1 can be rewritten as

min
M=(M0,M1,...,MN−1)

N−1

∑
t=0

∑
x∈X

∑
x∈U

c(x,u)Mt(x,u)pt(x)

+ ∑
x∈X

c f (x)pN(x) (15a)

subject to
M1 ∈ R(q̄+1)×(ū+1),M1 ≥ 0,M11 = 1, (15b)

∀t ∈ N[1,N−1] :
Mt ∈ R(q̄+1)×(ū+1),Mt ≥ 0,Mt1 = 1,
pt(x) = ∑

y∈X
∑

u∈U
T (x|y,u)Mt−1(y,u)pt−1(y),∀x ∈ X,

pt ≤ p̄,

(15c)

pN(x) = ∑
y∈X

∑
u∈U

T (x|y,u)MN−1(y,u)pN−1(y),∀x ∈ X,

pN ≤ p̄.
(15d)

Define Vt(x,u) = Mt(x,u)pt(x), ∀x ∈ X,u ∈ U,∀t ∈
N[0,N−1], and VN = pN . The constraints (15b) and initial state
distribution can be reformulated as (13b). And the constraints
(15c)–(15d) can be written as (13c)–(13d). Furthermore, the
cost function (15a) is equivalent to (18a). Thus, we conclude
that Problem 2.1 is equivalent to the LP (13).

Remark 3.2: The decision variables Vt in the LP (13) is
an occupation measure over X×U. The row sum of Vt
corresponds the state distribution at time t.
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Corollary 3.1: If Problem 2.1 is feasible and Assumption
2.1 is satisfied, the optimal policy M∗ = (M∗0 ,M

∗
1 , . . . ,M

∗
N−1)

of Problem 2.1 can be characterized as ∀t ∈ N[0,N−1],

M∗t (x,u) =


V ∗t (x,u)

∑
v∈U

V ∗t (x,v)
, if ∑

v∈U
V ∗t (x,v)> 0

1
|Ux| , if ∑

v∈U
V ∗t (x,v) = 0,u ∈ Ux,

0, otherwise,

(16)

where V ∗t is the optimal solution to the LP (13).
Proof: This result follows from the definition of

Vt(x,u) = Mt(x,u)pt(x), ∀x ∈ X,u ∈ U,∀t ∈ N[0,N−1], and
M11 = 1. Note that when ∑v∈UV ∗t (x,v) = 0, any distribution
over control space does not change the optimal cost. Here, we
choose the uniform distribution over the admissible control
set of state x.

C. Implementation algorithm

In practice, the state distribution at each time step cannot
be observed. Hence, it is more reasonable to design a state-
feedback implementation algorithm. The following algorithm
provides a receding-horizon implementation strategy for the
finite-horizon case. At each time step, we first derive the
optimal policy by solving Problem 2.1 initialized from the
observed state. Then, the control input is chosen in a random
way according to the resulting optimal policy.

Algorithm 1 Finite-horizon Implementation Algorithm
1: Initialize t = 0.
2: Observe the current queue length qt and set the initial

distribution p0 = eqt+1 where ek is a vector with kth
element being one and other elements being zero.

3: Solve the LP (13) and obtain a sequence of matrices
M∗ = (M∗0 ,M

∗
1 , . . . ,M

∗
N−1) based on (16).

4: Select the (qt +1)th row of M∗0 as µ∗t , i.e., the optimal
policy when the state is qt .

5: Randomly choose one control input following the distri-
bution µ∗t and implement it.

6: Set t = t +1 and go to step 2.

IV. INFINITE-HORIZON STOCHASTIC CONTROL

In this section, we focus on handling Problem 2.2. We
will first investigate an LP reformulation for infinite-horizon
MDP with probability constraints. Then, we will design the
implementation algorithm for this problem.

The stationary policy µ = (µ̄, µ̄, . . .) can be represented
by a matrix F satisfying

F ∈ R(q̄+1)×(ū+1),

F ≥ 0,
F1 = 1.

(17)

A. Reformulation as LP

The following theorem provides an LP formulation for
Problem 2.2.

Theorem 4.1: Problem 2.2 can be reformulated as the
following LP:

min
G

∑
x∈X

∑
x∈U

c(x,u)G(x,u) (18a)

subject to
G ∈ R(q̄+1)×(ū+1),G≥ 0,1T G1 = 1, (18b)

∑
u∈U

G(x,u)−∑
y∈X

∑
u∈U

T (x|y,u)G(y,u) = 0,∀x ∈ X,(18c)

G1≤ p̄. (18d)
Proof: Please refer to [8] for a detailed proof. The

difference from [8] is the constraint (18d).
Corollary 4.1: If Problem 2.2 is feasible, the optimal

policy F∗ of Problem 2.2 can be recovered by

F∗(x,u) =


G∗(x,u)

∑
v∈U

G∗(x,v) , if ∑
v∈U

G∗(x,v)> 0

1
|Ux| , if ∑

v∈U
G∗(x,v) = 0,u ∈ Ux,

0, otherwise.

(19)

Proof: The proof is similar to that of Corollary 3.1.
Remark 4.1: The feasible set of Problem 2.2 is con-

structed by the constraints (18b)–(18d). Thus, we do not
impose feasibility conditions for the infinite-horizon case.
In addition, the decision variable G in the LP (18) is also
an occupation measure over X×U. The row sum of G
corresponds the stationary state distribution.

B. Implementation algorithm

For the infinite-horizon case, we provide an implementa-
tion strategy in Algorithm 2. The difference from Algorithm
1 is that the infinite-horizon problem is solved once to obtain
a stationary policy at the beginning. The control input at
each time instant is chosen according to this policy and the
observed state. The state-feedback of Algorithm 2 is static
and “uniform” while the state-feedback of Algorithm 1 is
state-adaptive.

Algorithm 2 Infinite-horizon Implementation Algorithm
1: Solve the LP (18) and obtain the optimal policy F∗ based

on (19).
2: Initialize t = 0.
3: Observe the current queue length qt and select the (qt +

1)th row of F∗ as µ∗t , i.e., the optimal policy when the
state is qt .

4: Randomly choose one control input following the distri-
bution µ∗t and implement it.

5: Set t = t +1 and go to step 2.

V. SIMULATIONS

In this section, we will simulate a dynamic queue system
with parameters as follows

q̄ = 6, ū = 5, and a(t)∼ poiss(λ ), (20)

where poiss(λ ) denotes the poisson distribution with average
rate λ . Set λ = 2. The cost is defined by

c(x,u) = αx+βu, c f (x) = γx, (21)
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Fig. 1. The probability of qt = q̄ under finite-horizon constrained queue
control and finite-horizon unconstrained queue control.
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Fig. 2. The optimal cost under finite-horizon constrained queue control
and finite-horizon unconstrained queue control for different horizons.

where the weight parameters α,β and γ are nonnegative
constants. We always choose the initial queue length q0 = 1,
which is a feasible starting point.

A. Comparisons and Analysis

We first clarify some notions used in the following.
The notion “finite-horizon constrained queue control” cor-
responds to Problem 2.1, the notion “finite-horizon uncon-
strained queue control” corresponds to only minimizing the
objective function of Problem 2.1 without probability con-
straints, and the notion “infinite-horizon constrained queue
control” refers to Problem 2.2.

Constraint satisfaction: Choose α = 0.05, β = 1, γ = 1,
N = 30, and ε = 0.1. In Fig. 1, we compare the probability
of qt = q̄ under finite-horizon unconstrained queue control
and finite-horizon constrained queue control. It shows that
our LP approach can generate a distribution satisfying the
constraint (5b) at each time instant while the unconstrained
queue control cannot guarantee the constraint satisfaction
even though the starting point is feasible.

Cost vs. horizon: Choose α = 0.05, β = 1, γ = 1, and
ε = 0.1. In Fig. 2, we compare the optimal cost under
finite-horizon unconstrained queue control and finite-horizon
unconstrained queue control for different horizons N. The
cost of the constrained queue control is much higher than
that of the unconstrained queue control. This is the price for
the constraint satisfaction.
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Fig. 3. The average optimal cost under finite-horizon constrained queue
control and infinite-horizon constrained queue control for different proba-
bility level ε .
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Fig. 4. The probability of qt = q̄ under finite-horizon constrained queue
control for different α .

Average cost vs. probability level: Choose α = 0.05, β = 1,
γ = 0, and N = 30. Setting γ = 0 is to provide a fair compar-
ison between the finite-horizon case and the infinite-horizon
case. In Fig. 3, we present the average optimal cost under
the finite-horizon constrained queue control and the infinite-
horizon constrained queue control for different probability
levels ε’s. It further explains the relation between the optimal
cost and the constraint: the tighter the constraint is, the
higher optimal cost will be. Another observation is that the
average optimal cost under the infinite-horizon constrained
queue control is always higher than that under the finite-
horizon constrained queue control. One interpretation is that
the optimal policy in the infinite-horizon case is stationary
and “uniform” while the optimal policy in the finite-horizon
case is state-adaptive according to the initial state.

Probability distribution vs. cost weight: Choose β = 1,
γ = 1, N = 30, and ε = 0.1. In Fig. 4, we compare the
probability of qt = q̄ under finite-horizon constrained queue
control for different weight parameters αs. The intuitive
meaning of a and β is the tradeoff between the “delay” (i.e.,
the queue length qt ) and the “control power” (i.e., the control
input ut ). Fig. 4 shows that the increase of α compresses
the probability distributions of qt = q̄ in order to achieve a
shorter “delay”.
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Fig. 5. Queue length evolutions under Algorithms 1 and 2 for one
realization.

B. Implementations

Choose α = 0.05, β = 1, γ = 1, N = 30, and ε = 0.1. By
implementing Algorithms 1 and 2, we run 50000 realizations
for 50 time instants from the same feasible starting point
q0 = 1, respectively. One realization of the queue length qt
is shown in Fig. 5 under Algorithms 1 and 2, respectively.
Fig. 6 presents the corresponding probability of qt = q̄
over 50000 realizations. As shown in subfigure (a), the
probability of qt = q̄ generated by Algorithm 1, which uses
the optimal policy of Problem 2.1 in the receding-horizon
fashion, is always lower than the bound ε = 0.1 at each
time instant. In subfigure (b), Algorithm 2 can steer the
probability of qt = q̄ close to the the bound ε = 0.1 by uti-
lizing the optimal policy of Problem 2.2, which is consistent
with the resulting stationary optimal distribution, i.e., p =
[0.1218 0.2457 0.2479 0.1667 0.0840 0.0339 0.1000]T . In
comparison with the infinite-horizon case, one explantation
that the probability of qt = q̄ is always lower than ε = 0.1 in
the finite-horizon case is the state-adaptive policy resulting
from the receding-horizon manner.

VI. CONCLUSION

This paper investigated the stochastic optimal control
problem of dynamic queue systems when imposing prob-
ability constraints on queue overflows. This problem was
reformulated as an MDP with state distribution constraints.
Both the finite-horizon and the infinite-horizon stochastic
optimal control for the MDP with probability constraints
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(a) The probability of qt = q̄ under Algorithm 1
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(b) The probability of qt = q̄ under Algorithm 2

Fig. 6. The probability of qt = q̄ under Algorithms 1 and 2 over 50000
realizations.

were exactly transformed as an LP, respectively. Feasibility
conditions were explored for the finite-horizon case. Two
implementation algorithms were designed under the assump-
tion that only the state (not the state distribution) can be
observed at each time instant. Simulation results illustrate
the effectiveness of our approach.
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