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Abstract

Hybrid automata have been proposed as a language for
modelling and analysing the interaction of digital and
analogue dynamics in embedded computation systems.
In this paper, hybrid automata are studied from a dy-
namical systems perspective. Extending earlier work
on conditions for local existence and uniqueness of ex-
ecutions of hybrid automata, we characterise a class
of hybrid automata whose executions depend continu-
ously on the initial state. The continuity conditions are
subsequently used to derive an extension of LaSalle’s
principle for studying the stability of invariant sets of
states of hybrid automata.

Keywords: Hybrid systems; Dynamical systems;
Continuity; LaSalle’s Invariance Principle.

1 Introduction

Despite intense research activity in recent years, many
fundamental questions regarding the dynamical prop-
erties of hybrid systems still remain unresolved. In this
paper, we try to address such problems for a fairly large
class of hybrid systems, known as hybrid automata.
This class is rich enough to subsume a number of inter-
esting subclasses such as switched systems [1], comple-
mentarity systems [2], and piecewise linear systems [3].
Earlier work by the authors [4] centred around con-
ditions for existence and uniqueness of executions for
hybrid automata. Global existence was also studied,
in the context of Zeno executions, i.e. executions that
take an infinite number of discrete transitions in a finite
amount of time [5]. The results were subsequently used
to study problems in behavioural robotics [6], and ex-
tend Lyapunov’s linearisation method to classes hybrid
automata [7].

In this paper, this line of work is pursued further by
establishing conditions that guarantee that the execu-
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tions of a hybrid automaton depend continuously on the
initial state. Even though the class of hybrid systems
that possess this property is known to be restricted [8],
we feel that these conditions can be of general interest.
For one thing, models that are sensitive to the choice
of initial conditions are more difficult to simulate, or
analyse numerically [9]. Furthermore, in this paper we
show how, using continuity properties, one can derive
an extension of LaSalle’s principle for studying the sta-
bility of invariant sets to hybrid automata. This allows
us to incorporate earlier results in this direction [10] in
a more structured and general framework.

The paper is organised in five sections. The defini-
tions of hybrid automata and executions are given in
Section 2. In Section 3, continuity of executions with
respect to initial conditions is defined and a class of
systems that possessed this property is characterised.
In Section 4, LaSalle’s invariance principle is extended
to hybrid automata. A summary and a discussion of
ongoing work are given in Section 5. To avoid inter-
rupting the flow of the paper the more straight-forward
proofs have been omitted. The more important facts
are proved in the appendix.

2 Definitions and Notation

Before we state the results of this paper, we recall some
of the definitions and notation of [4]. For a finite collec-
tion V of variables, let V denote the set of valuations
(possible value assignments) of these variables. We use
a lower case letter to denote both a variable and its
valuation; the interpretation should be clear from the
context. We refer to variables whose set of valuations is
finite or countable as discrete, and to variables whose
set of valuations is a subset of a Euclidean space as
continuous. For a set of continuous variables X with
X = R

n for some n ≥ 0, we assume that X is given the
Euclidean metric topology, and use ‖ · ‖ to denote the
Euclidean norm. For a set of discrete variablesQ, we as-
sume that Q is given the discrete topology (every subset
is an open set), generated by the metric dD(q, q′) = 0 if
q = q′ and dD(q, q′) = 1 if q 6= q′. We denote the valu-
ations of the union Q∪X by Q×X, with the product
topology generated by the metric

d((q, x), (q′, x′)) = dD(q, q′) + ‖x− x′‖.

We assume that a subset U of a topological space is
given the induced subset topology, and we use U to



x1
x2r1 r2

v1 v2

w

q1 q2

x2 ≤ r2

x1 ≤ r1

x1 ≥ r1 ∧ x2 ≥ r2 x1 ≥ r1 ∧ x2 ≥ r2
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Figure 1: Water tank system and the corresponding hy-
brid automaton.

denote its closure, Uo its interior, ∂U = U \ Uo its
boundary, U c its complement, |U | its cardinality, and
P (U) its power set (i.e., the set of all subsets of U). In
logic formulas, we use ∧ to denote “and”.

A hybrid automaton is a dynamical system that de-
scribes the evolution in time of the valuations of a set
of discrete and continuous variables.

Definition 2.1 A hybrid automaton H is a collec-
tion H = (Q, X, f , Init, D, E, G, R), where

• Q is a finite set of discrete variables;
• X is a finite set of continuous variables;
• f : Q× X → TX is a vector field;
• Init ⊂ Q× X is a set of initial states;
• D : Q → P (X) is a domain;
• E ⊂ Q× Q is a set of edges;
• G : E → P (X) is a guard condition;
• R : E × X → P (X) is a reset map.

We refer to (q, x) ∈ Q × X as the state of H . Because
we are more interested in the discrete-continuous inter-
play than in the purely discrete or purely continuous
dynamics, we impose the following standing assump-
tion.

Assumption 2.1 The number of discrete states is fi-
nite (|Q| < ∞), and X = R

n, for some n ≥ 0. For
all q ∈ Q, the vector field f(q, ·) is globally Lipschitz
continuous in its second argument. Moreover, for all
e ∈ E, G(e) 6= ∅, and for all x ∈ G(e), R(e, x) 6= ∅.

It can be shown that the last part of the assumption
can in fact be imposed without loss of generality [4].

It is sometimes convenient to visualise hybrid automata
as directed graphs (Q, E) with vertices Q and edges E.
The graphical notation is illustrated in the following
example.

Example Consider the two-tank system of Alur and
Henzinger [11] (Figure 1). For i ∈ {1, 2}, let xi denote
the volume of water in Tank i and vi > 0 denote the
constant flow of water out of Tank i. Let w denote the
constant flow of water into the system, dedicated exclu-
sively to either Tank 1 or Tank 2 at each time instant.

The objective is to keep the water volumes above r1
and r2, respectively, assuming that the water volumes
are above r1 and r2 initially. This is to be achieved by a
controller that switches the inflow to Tank 1 whenever
x1 ≤ r1 and to Tank 2 whenever x2 ≤ r2. The hybrid
automaton describing this system is

• Q = {q} with Q = {q1, q2};
• X = {x1, x2} with X = R

2;
• f(q1, x) = (w − v1,−v2),
f(q2, x) = (−v1, w − v2);

• Init = Q× {x ∈ R
2 : x1 ≥ r1 ∧ x2 ≥ r2};

• D(q1) = {x ∈ R
2 : x2 ≥ r2},

D(q2) = {x ∈ R
2 : x1 ≥ r1};

• E = {(q1, q2), (q2, q1)};
• G(q1, q2) = {x ∈ R

2 : x2 ≤ r2},
G(q2, q1) = {x ∈ R

2 : x1 ≤ r1};
• R(q1, q2, x) = R(q2, q1, x) = {x}.

A hybrid time trajectory defines the time horizon of an
execution of a hybrid automaton.

Definition 2.2 A hybrid time trajectory is a finite
or infinite sequence of intervals τ = {Ii}N

i=0, such that

• Ii = [τi, τ ′i ] for all i < N ;
• if N < ∞ then either IN = [τN , τ ′N ] or IN =

[τN , τ ′N ); and
• τi ≤ τ ′i = τi+1 for all i.

Note that the right endpoint of one interval coincides
with the left endpoint of the following interval. The
interpretation is that these are the times at which dis-
crete transitions take place. Note also that τi = τ ′i
is allowed, therefore multiple discrete transitions may
take place at the same time. Since all hybrid automata
discussed here are time invariant we assume that τ0 = 0
without loss of generality.

Hybrid time trajectories can extend to infinity if τ is
an infinite sequence or if it is a finite sequence end-
ing with an interval of the form [τN ,∞). Each hybrid
time trajectory τ is linearly ordered by the relation ≺,
defined by t1 ≺ t2 for t1 ∈ [τi, τ ′i ] and t2 ∈ [τj , τ ′j ] if
t1 < t2 or i < j. We say that τ = {Ii}N

i=0 is a prefix of
τ ′ = {Ji}M

i=0 and write τ ≤ τ ′ if either they are iden-
tical, or τ is finite, N ≤ M , Ii = Ji for all i = 0, . . . ,
N − 1, and IN ⊂ JN . The prefix relation is a partial
order on the set of all hybrid time trajectories.

For a hybrid time trajectory τ = {Ii}N
i=0, let 〈τ〉 de-

note the set {0, 1, . . . , N} if N is finite and {0, 1, . . .}
if N = ∞. We use q and x to denote, respectively, the
evolution of the discrete and continuous state over τ . q
is a map from 〈τ〉 to Q and x = {xi : i ∈ 〈τ〉} is a
collection of differentiable maps. An execution is now
defined as a triple χ = (τ, q, x) in the following way.
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Figure 2: Example of an execution of the water tank hy-
brid automaton.

Definition 2.3 An execution of a hybrid automaton
H is a collection χ = (τ, q, x), where τ is a hybrid time
trajectory, q : 〈τ〉 → Q, and x = {xi : i ∈ 〈τ〉} is a
collection of differentiable maps xi : Ii → X, with

• (q(0), x0(0)) ∈ Init;
• for all t ∈ [τi, τ ′i), ẋi(t) = f

(
q(i), xi(t)

)
and

xi(t) ∈ D(q(i)); and
• for all i ∈ 〈τ〉 \ {N}, e = (q(i), q(i + 1)) ∈ E,
xi(τ ′i) ∈ G(e), and xi+1(τi+1) ∈ R(e, xi(τ ′i )).

An example of an execution of the water tank automa-
ton is shown in Figure 2.

We say that a hybrid automaton H accepts an execu-
tion χ if χ fulfils the conditions of Definition 2.3. For an
execution χ = (τ, q, x), we use (q0, x0) =

(
q(τ0), x0(τ0)

)

to denote the initial state. The execution time T (χ) is
defined as

T (χ) =
N∑

i=0

(τ ′i − τi) = lim
i→N

τ ′i − τ0.

We say that an execution, χ = (τ, q, x), of H is a prefix
of another execution, χ̂ = (τ̂ , q̂, x̂), of H (write χ ≤ χ̂),
if τ ≤ τ̂ and for all i ∈ 〈τ〉 and all t ∈ Ii,

(
q(i), xi(t)

)
=(

q̂(i), x̂i(t)
)
. We say χ is a strict prefix of χ̂ (write χ <

χ̂), if χ ≤ χ̂ and χ 6= χ̂. An execution is called maximal
if it is not a strict prefix of any other execution. An
execution is called finite if τ is a finite sequence ending
with a compact interval, it is called infinite if τ is either
an infinite sequence, or if T (χ) = ∞, and it is called
Zeno if it is infinite but T (χ) <∞.

We use EH(q0, x0) to denote the set of all executions of
H with initial condition (q0, x0) ∈ Init, EM

H (q0, x0) to
denote the set of all maximal executions, E∗

H(q0, x0) to
denote the set of all finite executions, and E∞

H (q0, x0) to
denote the set of all infinite executions. We use EH to
denote the union of EH(q0, x0) over all (q0, x0) ∈ Init.

Definition 2.4 A hybrid automaton H is called non-
blocking if E∞

H (q0, x0) is non-empty for all (q0, x0) ∈
Init. It is called deterministic if EM

H (q0, x0) contains
at most one element for all (q0, x0) ∈ Init.

Conditions for determining whether general hybrid au-
tomata are deterministic and/or non-blocking are given
in [4]. Algorithmic conditions for special classes of hy-
brid automata can be found in [2, 12] (for complemen-
tarity systems) and [13, 14] (for piecewise linear sys-
tems).

The continuity conditions developed in the next sec-
tions involve the set of states reachable by a hybrid
automaton and the set of states from which continuous
evolution is impossible. The set of states reachable by
H , ReachH , is given by

ReachH = {(q̂, x̂) ∈ Q× X : ∃ χ = (τ, q, x) ∈ E∗
H ,(

q(N), xN (τ ′N )
)

= (q̂, x̂)}.

Clearly, Init ⊂ ReachH , since we may choose N = 0
and τ ′0 = τ0.

The set of states from which continuous evolution is
impossible is given by

OutH = {(q, x) ∈ Q× X : ∀ε > 0, ∃ t ∈ [0, ε),
ψ(t, q, x) /∈ D(q)}.

Note that {q} × D(q)c ⊂ OutH . Moreover, if D(q) is
an open set, then {x ∈ X : (q, x) ∈ OutH} = D(q)c.
However, if D(q) is closed for some q ∈ Q , then OutH

may also contain parts of the boundary of D(q). For
certain classes of hybrid automata the computation of
OutH and ReachH is straightforward [4]. Reachability
computations are, however, difficult in general.

Notice that Definition 2.3 does not require the state to
remain in the domain. The state may start outside the
domain, if for some (q, x) ∈ Init, x 6∈ D(q). Moreover,
if a domain D(q) is open, the state can reach a point in
D(q) \D(q) by flowing along f(q, ·). Finally, the state
can take a discrete transition from some (q, x) with x ∈
D(q) to some (q′, x′) with (q, q′) ∈ E, x ∈ G(q, q′), and
x′ ∈ R((q, q′), x)∩Dc(q′). To prevent this situation we
impose an additional standing assumption. Let

DomH =
⋃

q∈Q

{q} ×D(q) ⊂ Q × X.

We call an automaton H domain preserving if
ReachH ⊂ DomH .

Assumption 2.2 DomH is closed. The hybrid au-
tomata considered are domain preserving, with Init =
DomH .

The assumption that H is domain preserving is the
most important part of Assumption 2.2. Even though
it may seem restrictive, it often turns out to be implicit
in models of physical systems, where the domains are
typically used to encode physical constraints that all
executions of the system must satisfy. The assumption



that DomH is closed can be relaxed for much of the
subsequent discussion, by changing the definitions to
include the closures of appropriate sets. The assump-
tion that Init = DomH is only made for convenience,
to avoid having to argue whether certain states in the
domain are reachable. Subsequent proofs are still valid
if the conditions of the theorems hold for all states in
ReachH (as opposed to all states in DomH). Notice
that, under Assumption 2.2, ReachH = DomH .

Determining whether a hybrid automaton satisfies As-
sumption 2.2 is usually straightforward. Using an in-
duction argument on the length of the executions one
can show the following.

Lemma 2.1 Consider a hybrid automaton H such
that the set DomH is closed. H is domain preserving if
Init ⊂ DomH and R((q, q′), x) ⊂ D(q′) for all q ∈ Q,
all (q, q′) ∈ E and all x ∈ D(q) ∩G(q, q′).

Using the conditions of Lemma 2.1, one can show that
the water tank system is domain preserving.

3 Continuity with Initial Conditions

In general, the behaviour of hybrid automata may
change dramatically even for small changes in initial
conditions. This fact is unavoidable, if one wants to al-
low hybrid automata that are powerful enough to model
realistic systems. However, discontinuous dependence
on initial conditions may cause problems, both theo-
retical and practical, when one tries to simulate hybrid
automata [8, 9]. Motivated by this observation, a num-
ber of authors have investigated continuity with respect
to initial conditions. In [8] it was shown that a reason-
ably large class of hybrid automata is continuous for al-
most all initial conditions. In [15] a Skorohod topology
was proposed as a framework for formulating continuity
properties. Even though this topology (initially devel-
oped for the space of piecewise continuous functions) is
natural for studying continuity in hybrid systems, the
definition and properties of the Skorohod metric make
it difficult to work with in practice. Here we give the
following alternative (and we feel easier to work with)
definition of continuity.

Definition 3.1 A hybrid automaton H is called con-
tinuous if for all finite executions χ = (τ, q, x) ∈
E∗

H(q0, x0) with τ = {Ii}N
i=0 and all ε > 0, there exists

δ > 0 such that all maximal executions in EM
H (q̃0, x̃0)

with d((q̃0, x̃0), (q0, x0)) < δ have a finite prefix χ̃ =
(τ̃ , q̃, x̃) ∈ E∗

H(q̃0, x̃0) with τ̃ = {Ĩi}N
i=0 that satisfies

1. |T (χ̃) − T (χ)| < ε; and

2. d((q̃(N), x̃N (τ̃ ′N )), (q(N), xN (τ ′N ))) < ε.

Roughly speaking, H is continuous if two executions
starting close to one another remain close to one an-
other. Notice that if H is continuous, one can choose
δ such that finite executions starting within δ of one
another go through the same sequence of discrete tran-
sitions.

The following theorem provides conditions under which
a hybrid automaton is guaranteed to be continuous.

Theorem 3.1 A hybrid automaton H is continuous if

1. H is deterministic;
2. for all e = (q, q′) ∈ E, G(e) ∩ D(q) is an open

subset of ∂D(q);
3. for all e ∈ E, R(e, ·) is a continuous function;
4. there exists a function σ : Q × X → R, differ-

entiable in its second argument, such that for all
q ∈ Q, D(q) = {x ∈ X|σ(q, x) ≥ 0};

5. for all (q, x) with σ(q, x) = 0, Lfσ(q, x) 6= 0.

Roughly speaking, conditions 4 and 5 are used to show
that if from some initial state we can flow to a state
from which a discrete transition is possible, then from
all neighbouring states we can do the same. This ob-
servation is summarised in the following lemma.

Lemma 3.1 Consider a hybrid automaton, H, satis-
fying conditions 4 and 5 of Theorem 3.1. Let χ =
(τ, q, x) ∈ EH(q0, x0) be a finite execution of H defined
over an interval τ = [0, τ ′0] with τ ′0 > 0 and x0(τ ′0) ∈
∂D(q0). Then there exists a neighbourhood W ⊂ D(q0)
of x0 and a differentiable function T : W → R

+, such
that for all y ∈ W ,

1. ψ(T (y), q0, y) ∈ ∂D(q0);
2. ψ(t, q0, y) ∈ D(q0)o for all t ∈ (0, T (y)); and
3. Ψ : W → ∂D(q0), defined by Ψ(y) =

ψ(T (y), q0, y), is continuous.

To complete the proof of Theorem 3.1, conditions 1, 2
and 3 are used to piece together the intervals of contin-
uous evolution. The details are given in the appendix.

It is easy to check that the water tank automaton sat-
isfies the conditions of Theorem 3.1, and therefore is
continuous.

4 Stability of Invariant Sets

We first recall some standard concepts from dynamical
system theory, and discuss how they extend to hybrid
automata.

Definition 4.1 A set M ⊂ ReachH is called in-
variant if for all (q0, x0) ∈ M , and all (τ, q, x) ∈
EH(q0, x0),

(
q(i), xi(t)

)
∈M for all i ∈ 〈τ〉 and t ∈ Ii.



Clearly, the class of invariant sets is closed under arbi-
trary unions and intersections.

The asymptotic behaviour of an infinite execution is
captured by its ω-limit set.

Definition 4.2 A point (q̂, x̂) ∈ Q × X is an ω-limit
point of an infinite execution χ = (τ, q, x) ∈ E∞

H ,
if there exists a sequence {θn}∞n=0 with θn ∈ Iin and
in ∈ 〈τ〉 such that as n → ∞, θn → T (χ) and
(q(in), xin(θn)) → (q̂, x̂). The ω-limit set, Sχ ⊂
Q × X, of χ ∈ E∞

H is the set of all ω-limit points of
χ.

Notice that under Assumption 2.2, ω-limit points are
reachable. The following proposition establishes some
basic properties of ω-limit sets for deterministic, con-
tinuous hybrid automata.

Lemma 4.1 Let H be a deterministic, continuous hy-
brid automaton. Consider an infinite execution χ =
(τ, q, x) and assume that there exists C > 0 such that
for all i ∈ 〈τ〉 and all t ∈ [τi, τ ′i ], ‖xi(t)‖ < C. Then the
ω-limit set Sχ of χ is a nonempty, compact, invariant
set. Furthermore, for all ε > 0 there exists K ∈ 〈τ〉
such that d((q(t), xn(t)), Sχ) < ε for all n > K and
t ∈ In.

The proof is an extension of the corresponding proofs
for continuous dynamical systems (see for exam-
ple [16]). The details are rather tedious and are omit-
ted.

LaSalle’s invariance principle for continuous dynamical
systems [17] provides conditions for an invariant set to
be attracting. The following statement extends the re-
sult to continuous hybrid automata.

Theorem 4.1 Consider a non-blocking, deterministic
and continuous hybrid automaton H. Let Ω ⊂ ReachH

be a compact invariant set and define Ω1 = Ω ∩ Outc
H

and Ω2 = Ω∩OutH . Assume there exists a continuous
function V : Ω → R, such that

1. for all (q, x) ∈ Ω1, V is continuously differentiable
with respect to x and LfV (q, x) ≤ 0,

2. for all (q, x) ∈ Ω2, e = (q, q′) ∈ E,
V (q′, R(e, x)) ≤ V (q, x).

Define S1 = {(q, x) ∈ Ω1 : LfV (q, x) = 0} and
S2 = {(q, x) ∈ Ω2 : ∀ e = (q, q′) ∈ E, V (q′, R(e, x)) =
V (q, x)}. Let M be the largest invariant subset of
S1 ∪ S2. Then, for all (q0, x0) ∈ Ω the execution
χ = (τ, q, x) ∈ E∞

H (q0, x0) approaches M as t→ T (χ).

“Approaches” should be interpreted as
limt→T (χ) d((q(t), xi(t)),M) = 0. Note that since
the class of invariant sets is closed under arbitrary

unions, M , the unique largest invariant set contained
in S1 ∪ S2, exists.

We demonstrate the use of this extension of LaSalle’s
invariance principle on the water tank system.

Example Consider the water tank hybrid automaton
and assume that r1 = r2 = 0, and max(v1, v2) < w <
v1 + v2. It is easy to show that this is a non-blocking,
deterministic, continuous, Zeno hybrid automaton [5].
Consider the set

Ω = {q1, q2} × {x ∈ R
2 : x1 ≥ 0 ∧ x2 ≥ 0 ∧

max{(w − v2)x1 + v1x2, v2x1 + (w − v1)x2} ≤ K}

for an arbitrary K > 0. Clearly Ω is compact. One
can also show that Ω is invariant, by induction on the
length of the system executions. A straight-forward
computation reveals that

Ω2 ={q1} × {x ∈ R
2 :

x1 ∈ [0,min{K/(w − v2),K/v2}] ∧ x2 = 0} ∪
{q2} × {x ∈ R

2 :
x1 = 0 ∧ x2 ∈ [0,min{K/(w − v1),K/v1}]}.

By definition, Ω1 = Ω \ Ω2.

Let V (q, x) = x1 + x2. Then for all (q, x) ∈ Ω1,
LfV (q, x) = w − (v1 + v2) < 0. Therefore, condition 1
of Theorem 4.1 is satisfied and S1 = ∅. Moreover, since
R is the identity, V (q′, R((q, q′), x) = V (q, x) whenever
a transition is possible. Therefore, condition 2 of The-
orem 4.1 is satisfied and S2 = Ω2. Notice that the set
{q1, q2}×{(0, 0)} is invariant. Moreover, this is the only
(hence maximal) invariant subset of S2, since if either
x1 > 0 or x2 > 0, after the discrete transition continu-
ous evolution would be initiated, taking the state out of
Ω2. Therefore, from Theorem 4.1, for all (q0, x0) ∈ Ω
the execution χ = (τ, q, x) ∈ E∞

H (q0, x0) converges to
{q1, q2} × {(0, 0)} as t→ T (χ).

Notice that sinceK can be taken arbitrarily large in the
example, the set {q1, q2} × {(0, 0)} is, in a sense, glob-
ally attracting. The conclusion of the example could
also have been derived using the properties of Zeno ex-
ecutions established in [18]. The advantage of using
LaSalle’s principle is that it does not require one to in-
tegrate the differential equations and argue about their
solutions, which is needed, for example, to establish
that the system is Zeno.

5 Conclusions

An definition of continuous dependence of the execu-
tions of a hybrid automaton with respect to initial con-
ditions was given. Conditions were derived to establish



a class of hybrid automata that possess this continuity
property. For this class of automata, an extension of
LaSalle’s principle for studying the stability of invari-
ant sets was derived.

We view the results in this paper as one more step to-
wards the analysis of hybrid systems from a dynamical
systems perspective. We are currently pursuing this
line of work further by research into methods for deal-
ing with systems with inputs. This will allow one to
model progressively more complicated systems through
the composition (appropriately defined) of simpler com-
ponents.
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Proof of Lemma 3.1: Since τ ′0 > 0, the state
(q0, x0(τ ′0)) is reached from (q0, x0) along continuous
evolution. We drop the superscript on x to simplify the
notation.

To show 1, notice that, by the definition of an ex-
ecution, x(t) ∈ D(q0) for all t ∈ [τi, τ ′i). Since
x(τ ′0) ∈ ∂D(q0), σ(q0, x(τ ′0)) = 0. The composed func-
tion σ(q0, ψ(·, q0, ·)) is differentiable in its first argu-
ment (t) in a neighbourhood of (τ ′0, x0) in R

+ × R
n.

This is because by assumption σ(q0, ·) is differentiable
and the flow ψ(·, q0, ·) is differentiable in its first ar-
gument. Moreover, σ(q0, ψ(·, q0, ·)) is continuous in its
second argument (x) in a neighbourhood of (τ ′0, x0) in
R

+ × R
n. This is because σ(q0, ·) is continuous and

ψ(·, q0, ·) is continuous in its second argument (by As-
sumption 2.1). Finally,

∂

∂t
σ(q0, ψ(t, q0, x))

∣∣∣∣
(t,x)=(τ ′

0,x0)

= Lfσ(q0, x(τ ′0)) 6= 0,



(by condition 5 of Theorem 3.1). By the Implicit Func-
tion Theorem (in particular, the non-smooth version
found in [19], Theorem 3.3.6), there exists a neigh-
bourhood Ω ⊂ R

+ of τ ′0 and a neighbourhood W ⊂
R

n of x0, such that for each y ∈ W the equation
σ(q0, ψ(t, q0, y)) = 0 has a unique solution t ∈ Ω. Fur-
thermore, this solution is given by t = T (y), where T is
a continuous mapping fromW to Ω and ψ(T (y), q0, y) ∈
∂D(q0).

To show 2, assume that for some y ∈ W there ex-
ists t ∈ (0, T (y)) such that ψ(t, q0, y) ∈ ∂D(q(i)).
Then, σ(q0, ψ(t, q0, y)) = 0, which contradicts the
fact that T (y) is the unique solution to the equation
σ(q0, ψ(t, q0, y)) = 0.

Finally, to show 3, recall that, since ψ(·, q0, ·) is con-
tinuous in both arguments, for all ε > 0 there exists
δ1 > 0, such that for all t with ‖t−T (x0)‖ < δ1 and all
y ∈W with ‖y − x0‖ < δ1,

‖ψ(t, q0, x0) − ψ(T (x0), q0, x0)‖ < ε

‖ψ(T (y), q0, y) − ψ(T (y), q0, x0)‖ < ε.

By the continuity of T there exists some δ2 > 0 such
that for all y ∈ W with ‖y−x0‖ < δ2, we have ‖T (y)−
T (x0)‖ < δ1. By setting δ = min(δ1, δ2), it follows that
for all y ∈W with ‖y − x0‖ < δ,

‖Ψ(y) − Ψ(x0)‖ = ‖ψ(T (y), q0, y) − ψ(T (x0), q0, x0)‖
≤ ‖ψ(T (y), q0, y) − ψ(T (y), q0, x0)‖

+ ‖ψ(T (y), q0, x0) − ψ(T (x0), q0, x0)‖
< 2ε,

which proves the continuity of Ψ.

The proof of Theorem 3.1 also makes use of the follow-
ing fact.

Proof of Theorem 3.1: Consider a finite execu-
tion χ = (τ, q, x) ∈ EH(q0, x0) with τ = {Ii}N

i=0

and an ε > 0. We construct a sequence of sets
{W 0, V 0, . . . ,WN , V N}, where W i ⊂ D(q(i)) is a
neighbourhood of xi(τi) and V i ⊂ D(q(i)) is a neigh-
bourhood of xi(τ ′i), such that the continuous evolution
in q(i) provides a continuous map from W i to V i and
the reset R(ei, ·) provides continuous map from V i to
W i+1. The notation is illustrated in Figure 3.

The construction is recursive, starting with i = N . De-
fine V N = {x ∈ D(q(N)) : ‖x − xN (τ ′N )‖ < ε}. We
distinguish the following three cases:

Case 1: τ ′N > τN and xN (τ ′N ) ∈ ∂D(q(N)). By
Lemma 3.1, there exists a neighbourhood,
W ⊂ D(q(N)), of xN (τN ) and a differen-
tiable function, T : W → R

+, such that for
all y ∈ W , ψ(T (y), q(N), y) ∈ ∂D(q(N)) and

x0(τ0)

x0(τ ′
0)

W 0

V 0

D(q(0))

x1(τ1)

x1(τ ′
1)

W 1

V 1

D(q(1))

Figure 3: Illustration of the proof of Theorem 3.1 for N =
1 and Case 1.

ψ(t, q(N), y) ∈ D(q(N))o for all t ∈ (0, T (y)). As
in Lemma 3.1, define ΨN : W → ∂D(q(N)) by
ΨN (y) = ψ(T (y), q(N), y). By the continuity of
ΨN , there exists a neighbourhood, WN ⊂ W ,
of xN (τN ) such that ΨN (WN ) ⊂ V N . Further-
more, all executions χ̃ with x̃N (τ̃N ) ∈ WN fulfil
x̃N (τ̃N + TN(x̃N (τ̃N ))) ∈ V N .

Case 2: τ ′N > τN and xN (τ ′N ) ∈ D(q(N))o. Define TN

by TN(y) ≡ τ ′N − τN . Let W ⊂ D(q(N)) be a neigh-
bourhood of xN (τN ) such that for all y ∈ W and
t ∈ (0, τ ′N − τN ), ψ(t, q(N), y) ∈ D(q(N))o. Such
a neighbourhood exists, because for all t ∈ (0, τ ′N −
τN ), ψ(t, q(N), xN (τN )) ∈ D(q(N))o (cf., proof of
Lemma 3.1). Define a function ΨN : W → D(q(N))
by ΨN (y) = ψ(TN (y), q(N), y). By continuous depen-
dence of the solutions of the differential equation with
respect to initial conditions, there exists a neighbour-
hood WN ⊂W of xN (τN ) such that both ΨN(WN ) ⊂
V N and all executions with x̃N (τ̃N ) ∈ WN satisfy
x̃N (τ̃N + TN(x̃N (τ̃N ))) ∈ V N .

Case 3: τ ′N = τN . Define TN by TN(y) ≡ 0, WN =
V N and ΨN the identity map. Clearly, ΨN(WN ) =
V N .

Next let us define V N−1. Let ei = (q(i), q(i +
1)) and notice that xN−1(τ ′N−1) ∈ G(eN−1). Since
R(eN−1, ·) is continuous, there exists a neighbour-
hood V ⊂ D(q(N − 1)) of xN−1(τ ′N−1) such that
R(eN−1, V ∩ G(eN−1)) ⊂ WN . By condition 2 of the
theorem, G(eN−1) ∩D(q(N − 1)) is an open subset of
∂D(q(N−1)), so there exists a neighbourhood V N−1 ⊂
V of xN−1(τ ′N−1) such that V N−1 ∩ ∂D(q(N − 1)) ⊂
G(eN−1)∩D(q(N−1)). Since H is deterministic, it fol-
lows that all executions with q̃(N − 1) = q(N − 1) and
x̃N−1(τ̃ ′N−1) ∈ V N−1 ∩ ∂D(q(N − 1)) satisfy x̃N (τ̃N ) ∈
WN .

Next, define TN−1 and ΨN−1 using Lemma 3.1, as
for Cases 1 and 3 above. There exists a neighbour-
hood WN−1 ⊂ D(q(N − 1)) of xN−1(τN−1) such that
ΨN−1(WN−1) ⊂ V N−1 ∩ ∂D(q(N − 1)). Moreover,
all executions χ̃ with x̃N−1(τ̃N−1) ∈ WN−1 satisfy
x̃N−1(τ̃ ′N−1) ∈ V N−1 ∩ ∂D(q(N − 1)) and τ̃ ′N−1 =
τ̃N−1 + TN−1(x̃N−1(τ̃N−1)). If τ ′N−1 = τN−1, some



executions close to χ may take an instantaneous transi-
tion from q(N−1) to q(N) (τ̃ ′N−1 = τ̃N−1) while others
may have to flow for a while (τ̃ ′N−1 > τ̃N−1) before they
follow χ’s transition from q(N − 1) to q(N). In the for-
mer case TN−1 and ΨN−1 can be defined as in Case
3 above, while in the latter they can be defined as in
Case 1.

By induction, we can construct a sequence of sets
{W 0, V 0, . . . ,WN , V N} and continuous functions T i :
W i → R

+ and Ψi : W i → V i for i = 0, . . . , N . For
k = 1, . . . , N , define the function Φk : W 0 → W k re-
cursively as

Φ0(x̃0) = x̃0

Φk(x̃0) = R(ek−1,Ψk−1(Φk−1(x̃0)))

For k = 0, . . . , N , define the function γk : W 0 → R
+ as

γk(x̃0) =
k∑

`=0

T `(Φ`(x̃0)).

Then, Φk(x̃0) = x̃k(τ̃k) and γk(x̃0) = τ̃ ′k − τ̃0 for the
execution χ̃ = (τ̃ , q̃, x̃) with (q̃0, x̃0) ∈ q0 ×W 0. The
functions Φk and γk are continuous by construction. By
the continuity of γN , there exists δ1 > 0 such that for all
x̃0 with ‖x̃0−x0‖ < δ1, we have |γN(x̃0)−γN(x0)| < ε,
or, in other words, |

∑N
i=0(τ̃

′
i − τ̃i)−

∑N
i=0(τ

′
i − τi)| < ε.

By the continuity of ΨN there exists δ2 > 0 such that
for all y ∈ WN with ‖y − xN (τN )‖ < δ2, ‖ΨN(y) −
xN (τ ′N )‖ < ε. Hence, by the continuity of ΦN , there
exists δ3 > 0 such that for all x̃0 ∈ W 0 with ‖x̃0−x0‖ <
δ3, ‖ΦN (x̃0) − xN (τN )‖ < δ2. Since ΨN(ΦN (x̃0)) =
x̃N (τ̃ ′N ), we have ‖x̃N (τ̃ ′N ) − xN (τ ′N )‖ < ε. The proof
is completed by setting δ = min(δ1, δ3).

Proof of Theorem 4.1: Consider an arbitrary state
(q0, x0) ∈ Ω and let χ = (τ, q, x) ∈ E∞

H (q0, x0). Since Ω
is invariant, (q(i), xi(t)) ∈ Ω for all i ∈ 〈τ〉 and t ∈ Ii.
Since Ω is compact and V is continuous, V (q(i), xi(t))
is bounded from below. Moreover, V (q(i), xi(t)) is a
non-increasing function of i ∈ 〈τ〉 and t ∈ Ii (re-
call that τ is linearly ordered), therefore the limit
c = limt→T (χ) V (q(i), xi(t)) exists.

Since Ω is bounded, x is bounded, and therefore
the ω-limit set Sχ is nonempty by Lemma 4.1.
Since Ω is closed, Sχ ⊂ Ω. By definition, for
any (q̂, x̂) ∈ Sχ, there exists a sequence {θn}∞n=0

with θn ∈ Iin , in ∈ 〈τ〉 such that as n →
∞, θn → T (χ) and (q(in), xin(θn)) → (q̂, x̂).
Moreover, V (q̂, x̂) = V (limn→∞(q(in), xin(θn)) =
limn→∞ V (q(in), xin(θn)) = c, by continuity of V .
Since Sχ is invariant (Lemma 4.1), it follows that
LfV (q̂, x̂) = 0 if (q̂, x̂) 6∈ OutH , and V (q̂′, R(ê, x̂)) =
V (q̂, x̂) if (q̂, x̂) ∈ OutH and ê = (q̂, q̂′) ∈ E. There-
fore, Sχ ⊂ S1 ∪ S2, which implies that Sχ ⊂ M since
Sχ is invariant and M is maximal. By Lemma 4.1, as

t → T (χ), the execution χ approaches Sχ, and hence
M .


